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Abstract

Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically
disordered protein that is GPI-anchored to the surface of the invasive blood stage of the ma-
laria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine,
and is one of several disordered proteins that are candidates for inclusion in vaccines for
malaria and other diseases. Nonetheless, little is known about the implications of protein
disorder for the development of an effective antibody response. We have therefore under-
taken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2
(3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indi-
cate that conformational and dynamic properties of the N- and C-terminal conserved re-
gions in the two forms of MSP2 are essentially identical, but significant variation exists
between and within the central variable regions. We observe a strong relationship between
the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to re-
combinant MSP2. Regions of increased conformational order in MSP2, including those in
the conserved regions, are more strongly antigenic, while the most flexible regions are mini-
mally antigenic. This suggests that modifications that increase conformational order may
offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implica-
tions for vaccine design.

Introduction

Recent decades have seen an increasing recognition that many proteins naturally lack a defined
folded state, and that their function depends instead on conformational disorder [1,2]. Such
proteins are termed intrinsically unstructured or disordered proteins, and are found across all
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of biology. In particular, intrinsically disordered proteins are abundant in a range of pathogenic
organisms. The proteomes of some viruses are predicted to be almost entirely disordered [3],
and several parasite species also have an unusually high proportion of disordered proteins [4].
Nonetheless, the implications of protein disorder for immune recognition by B cells and anti-
bodies have received remarkably little attention [5]. On the one hand, it has been suggested
that intrinsically disordered proteins generally elicit weak immune responses or are even
completely non-immunogenic [6]. It has been observed that functionally important sites on
protein antigens are highly flexible, or are surrounded by flexible loops. This flexibility is pro-
posed in some instances to serve as a means of immune evasion [7]. In sharp contrast to this
view, however, it has been suggested that disordered antigens are in some contexts immunodo-
minant [8], but that they fail to contribute to an effective immune response. Thus, they are be-
lieved to function for some pathogens as a smoke screen, diverting the immune system from
targets with greater protective potential [9]. Nonetheless, numerous B-cell epitopes have been
characterised in disordered proteins, and many of these appear to contribute to functional im-
mune responses and therefore represent potential vaccine candidates [5,10-17]. For example,
the protective effects of RTS,S, the most advanced malaria vaccine in clinical development, ap-
pear to be mediated by antibodies to the disordered repeats of the circumsporozoite protein
[15,18].

In order to better understand the effects of conformational disorder on the immune re-
sponse, and to contribute to the development of a malaria vaccine, we have investigated mero-
zoite surface protein 2 (MSP2). MSP2 is an abundant component of the surface coat of the
Plasmodium falciparum merozoite, the form of the parasite that invades red blood cells during
the blood-stage of infection, which is responsible for symptomatic and severe malaria. Al-
though the specific function of MSP2 has not been defined, it appears to play an essential role
in blood-stage replication; it is retained on the merozoite surface during invasion and then de-
graded soon after invasion is complete [19]. An extensive body of evidence implicates MSP2 as
a potential target of protective immunity against P. falciparum infection [20-26]. Antibodies to
MSP2 have been associated with protection from malaria in prospective longitudinal studies
[27-29] and MSP2 antibodies promote opsonic phagocytosis of merozoites and antibody-
dependent cellular inhibition of blood-stage replication [26,30,31].

MSP2 is highly polymorphic, with conserved N- and C-terminal domains flanking a central
variable region, which contains tandemly arrayed repetitive sequences [32,33]. All MSP2 alleles
have been categorized into two families typified by the 3D7 and FC27 alleles, respectively, be-
cause of differences in the repeats and flanking variable sequences (Fig. 1) [32,34,35]. Indeed,
the sequence variability within each allelic family is limited to the repeat regions and to a few
localised regions of heterogeneity within the regions flanking the repeats (green and pink in
Fig. 1).

MSP2 is a candidate for inclusion in a malaria vaccine [36], and the 3D7 allele of MSP2 was
a component of a subunit vaccine that significantly reduced parasite densities in a clinical trial
in Papua New Guinea [25]. This vaccine showed protective efficacy against infections with par-
asites expressing the vaccine-like 3D7-type MSP2 sequence, indicating that vaccine efficacy
was mediated by strain-specific responses to MSP2 [23]. Efforts to elicit protective antibodies
against the conserved regions of MSP2 are complicated by the observation that anti-MSP2 anti-
bodies induced by infection with P. falciparum are largely directed against epitopes in the cen-
tral variable region of the molecule [37,38], and that many conserved-region epitopes are
cryptic on the parasite surface [10]. As such, the generation of a broadly effective MSP2-based
vaccine is likely to require fine control of the specificity of the induced immune response. In
this context, we have undertaken a detailed study of the conformational dynamics of MSP2,
with the goal of establishing the extent to which these properties might contribute to the
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Fig 1. Schematic depiction of the primary structure of the two allelic families of MSP2. The conserved N- and C-terminal regions of MSP2 are in blue,
while the allele-specific central region is composed of polymorphic repeats (green) and non-repetitive sequences (pink) as well as dimorphic regions (yellow)
that differ between the allelic families but are conserved within them. The position of the conserved disulfide bond in the C-terminal regions is indicated.

doi:10.1371/journal.pone.0119899.9001

observed patterns of antigenicity and immunogenicity against MSP2, and the extent to which
they might be exploited to fine-tune the specificity of the antibody response against MSP2.

Methods
Materials

Untagged full-length FC27 MSP2 was expressed and purified using a strategy specific for
recombinantly expressed disordered proteins, as described previously [39]. A synthetic gene
encoding 3D7 MSP2, codon optimised for expression in Escherichia coli (Genescript), was
cloned into pET32a (Novagen) using Kpnl and Ncol. The resulting construct contains an
N-terminal thioredoxin (Trx) and Hise-tag for affinity purification. Bacterial cell pellets were
lysed by heating, as for FC27 MSP2 [39]. The expressed fusion protein was isolated on a His-
TrapFF affinity column (GE Healthcare), eluted with imidazole and cleaved with 1% (w/w)
TEV protease. The released Trx-tag and any uncleaved fusion protein were subsequently re-
moved by a second passage through the His-trap column. Final purification of 3D7 MSP2 was
by HPLC, using a C18 column (0.9 x 25 cm, Zorbax) and a linear acetonitrile gradient in 0.1%
TFA. Isotopically enriched 3D7 and FC27 MSP2 for NMR studies was prepared by growing ex-
pression cultures in M9 minimal medium, with 1 g/L >N ammonium chloride and/or 4 g/L
13C glucose as the sole nitrogen and carbon sources, respectively. The final recombinant 3D7
MSP2 has an N-terminal Gly derived from the TEV cleavage site whereas recombinant FC27
MSP2 has an N-terminal Met derived from the start codon.

NMR spectroscopy

NMR samples contained 0.4 mM 3D7 or FC27 MSP2 in 50 mM sodium acetate, pH 4.5, with
7% *H,0 included for the spectrometer lock. All of the data used for resonance assignments
were acquired on a 700 MHz Bruker Avance III spectrometer equipped with the "H/**C/"°N
TXO cryogenic probehead with z-axis gradients at 25°C. The HNCO spectrum was acquired
with spectral widths set to 9800 (aq) x 2500 (*°N) x 2000 (**C’) Hz, and with maximal evolu-
tion times of 80 ms (*>C’) and 80 ms (*°N) in the indirectly detected dimensions. The inter-
scan delay was set to 1.1 s, and 4 transients per free induction decay (FID) were cumulated.
The overall number of 2048 complex points was acquired in the acquisition dimension, where-
as 600 hypercomplex points were randomly distributed over the indirectly-detected dimen-
sions. The experiment was acquired in 3.5 h, which represents 1.9% of the time needed for a
conventional experiment with similar settings. The 5D HN(CA)CONH experiment was ac-
quired with the spectral widths set to 9800 (aq) x 2500 (*°N) x 2000 (**C’) x 2800 (*°N) x 8000
("H) Hz [40]. The maximal acquisition times were adjusted to 15 ms for the 'H indirectly-de-
tected dimension, to 27 ms and 40 ms for '°N dimensions, and to 30 ms for the '*C’ dimension.

PLOS ONE | DOI:10.1371/journal.pone.0119899 March 5, 2015 3/18



@'PLOS ‘ ONE

Dynamics and Antigenicity in the Disordered Malaria Antigen MSP2

The experiment was acquired with 2048 complex points in the acquisition dimension and 1750
hypercomplex points were randomly distributed over the indirectly detected dimensions. The
inter-scan delay was set to 1.25 s and 4 transients per FID were collected. The experimental
time of 46 h represents 0.0036% of the time needed for a similar experiment using conventional
settings. The 5D HabCabCONH experiment was acquired with spectral widths set to 9800 (aq)
x 2500 (*°*N) x 2000 (*C’) x 10000 (*C***) x 5000 ("H*"") [40]. The maximal evolution
times were set to 12 ms for "H*"", 6.5 ms for *C*""®, 30 ms for *C’, and 22 ms for "N indirect
dimensions. The total number of 1536 complex points was measured in the directly-detected
dimension, and 1750 hypercomplex points were randomly distributed in the indirectly-
detected dimensions. The experiment was acquired with 4 transients per collected FID and an
interscan delay of 1.25 s. The overall experimental time of 46 h represents 0.008% of the time
needed for acquisition of the conventional experiment providing similar resolution.

NMR relaxation experiments were performed on a 600 MHz Bruker Avance III NMR spec-
trometer equipped with a QCI-P cryogenic probehead with z-axis gradients at 25°C. Tempera-
ture was calibrated according to the chemical shift differences of pure methanol peaks. Spectral
widths were set to 8370 (aq) x 1428 (*°N) Hz. The overall number of 2048 complex points was
acquired in the acquisition dimension and 400 complex points were acquired in the indirect di-
mension for auto-relaxation rates R;, R,, cross-correlated relaxation rates I'y, I", and steady
state *>N-'H nuclear Overhauser effect (NOE) [41]. Standard experiments were used for the
measurement of R; (relaxation delays 11.2, 56, 134.4, 235.2, 380.8, 560, 896*, 1344, 1848, and
2352 ms) and R, (relaxation delays 0, 14.4, 28.8%, 43.2, 57.6, 72*, 86.4, 115.2, and 144 ms) [42].
Asterisks denote spectra recorded twice in order to estimate experimental error. Experiments
based on symmetrical reconversion were performed for determination of transverse cross-
correlated relaxation rates I'y (relaxation delays 30, 50, and 70 ms) and longitudinal cross-
correlated relaxation rates I, (relaxation delays 100, 150, 200, and 250 ms) [43,44].

Antigenicity

Antigenicity across the MSP2 sequence was determined using sera from mice and rabbits
immunised with full-length recombinant 3D7 or FC27 MSP2 (Genebank JN248383 and
JN248384). Both proteins were expressed in E. coli with C-terminal His, tags and purified by
metal-chelating, anion-exchange and reverse-phase chromatography [31]. Animals were
immunised with the recombinant MSP2 formulated in Montanide ISA720. Mice (C57Bl/6)
were immunised with 10 pg subcutaneously and rabbits were immunised with 100 pg intra-
muscularly on two occasions with a four-week interval between immunisations. Serum samples
used in antigenic analyses were obtained from blood samples collected two weeks after the sec-
ond immunization. Immunisations were approved by the La Trobe University Animal Ethics
Committee and were conducted in accord with the policies of the National Health and Medical
Research Council, Australia. Reactivity to a panel of 13-residue biotinylated peptides covering
the sequence of both antigens with an 8-residue overlap, was measured by ELISA, as described
previously [10,19]. The panel contains one copy of the first three peptides common to both
3D7 and FC27 MSP2, but because the central variable regions of 3D7 and FC27 MSP2 are dif-
terent lengths, the two peptide sets (3D7 and FC27) extended through the conserved
C-terminal region to give two sets of peptides covering the same sequence but out of frame
with respect to each other, as described previously [10]. Sixteen sera (four per condition) were
analysed in triplicate, with all sera tested at 1:1000 dilution and secondary antibody diluted
1:2000. Responses from unimmunised animals were also measured, and a background signal
three standard deviations greater than the mean of these responses was subtracted from all re-
sults. Agreement between animals was assessed using Pearson’s correlation coefficients for
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pairwise comparisons of mean ELISA results for each animal. Permutation tests were used to
estimate two-tailed p-values. Within each condition, each residue in MSP2 was accorded the
average response of all peptides in which that residue is represented and the resulting antige-
nicity profiles were normalised.

Results
Backbone resonance assignments for 3D7 MSP2

The assignment of observed spectral frequencies (chemical shifts) in an NMR spectrum to spe-
cific atoms in the protein is a prerequisite for detailed structural analysis by NMR, allowing
measured spectral parameters to be ascribed to specific structural features. We have previously
determined near-complete backbone assignments for FC27 MSP2, but expression yields for
3D7 MSP2 were insufficient to permit the detailed analysis of that allelic form [39]. Here, we
employ a new expression system, based on a thioredoxin fusion strategy, that yields ~ 10 mg
3D7 MSP2 per litre of culture medium. An assignment strategy tailored to repetitive disordered
proteins and exploiting two 5D experiments, HN(CA)CONH and HabCabCONH, was em-
ployed to assign the resonance frequencies of 3D7 MSP2 [45]. All the non-proline residues
were successfully assigned, although residues 37-58, within the GGSA repeats, show degener-
ate backbone chemical shifts, as do residues 77, 78, and 84-87 within the TTT repeats.

The amide chemical shifts of 3D7 MSP2 show minimal dispersion (Fig. 2), and backbone
shifts are close to those expected for a disordered protein (Fig. 3). This demonstrates that 3D7
MSP2, like FC27, is extensively disordered, consistent with our previous analyses [39,46]. Com-
parison of the backbone chemical shifts of the FC27 and 3D7 forms of MSP2 reveals almost
perfect correspondence between the shifts of the conserved N and C-terminal regions, indicat-
ing that the conformational propensities of these regions are identical in the two allelic forms
(Figs. 2 and 3). In particular, slightly elevated Co secondary chemical shifts are seen in the
N-terminal region of both MSP2 forms, indicating a weak preference for helical conformation
in this region (Fig. 3) [39,47,48]. CP chemical shifts of the two Cys residues confirm the pres-
ence of the single disulfide in MSP2 [49].

Conformational dynamics probed by °N relaxation

NMR relaxation rates are sensitive to fast conformational dynamics [51], and as such are valu-
able probes of the extent of disorder in unstructured proteins [52]. We have measured relaxa-
tion rates of the backbone amides of MSP2 to determine conformational dynamics at ps-ns
timescales and at single-residue resolution (Fig. 4). Values of the spectral density function J(w)
at zero frequency and at the "’N and "H Larmor frequencies were calculated from '°N relaxa-
tion rates (Fig. 5) [53]. These values represent the direct link between the experimental data
and the conformational dynamics of the protein, with a larger value of J(w) indicating a larger
contribution to relaxation from dynamic processes with frequency w. In order to identify resi-
dues exhibiting dynamics at ps-ms timescales, the J(0) and J(wy) values were calculated from
both auto-correlated (R;, R,, steady-state ['H]-"°N NOE) and cross-correlated (I',, I'y) relaxa-
tion data [54].

The results of the relaxation measurements are consistent with those expected for a disor-
dered protein; relaxation rates are uniformly low, while the steady-state ['H]-'"N NOE is gen-
erally negative. These results reflect conformational dynamics dominated by local processes on
timescales shorter than 1 ns. In contrast, the relaxation of a conventionally structured protein
is dominated by overall rotational diffusion (on a timescale >10 ns, for a protein the size of
MSP2), with relatively small contributions from faster local processes. For FC27 MSP2 we ob-
serve relaxation properties that are in excellent agreement with those we reported previously
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Fig 2. 'H,'°N heteronuclear single-quantum correlation spectra of 3D7 (blue) and FC27 (red) MSP2. Assigned peaks are labelled in the expanded
regions, highlighting the similarity of chemical shift for these residues in the conserved N- and C-terminal regions (labelled in black type, FC27 numbering) of

the two allelic forms of MSP2.

doi:10.1371/journal.pone.0119899.g002

under more acidic conditions [39]. Under both conditions, we observe more rapid relaxation
and smaller magnitude (and in some cases small positive) 'H-'"N NOEs, consistent with a de-
gree of conformational constraint, in the following three distinct regions: throughout the con-
served N-terminus, in part of the C-terminal region coincident with the single disulfide bond
in MSP2, and in part of the FC27-specific dimorphic region, between residues 140 and 150
(Figs. 4 and 5). It should be stressed that, although these regions are more ordered than the rest
of MSP2, they do not represent regions of folded regular structure as both their relaxation
properties and chemical shifts are indicative of significant residual disorder, well beyond that
observed in conventional structured proteins. Rather, the flexibility of these regions is weakly
constrained by transient helical structure in the N-terminal region, and by the disulfide in the
C-terminal region. For a few residues in the C-terminal conserved region, values of J(0) calcu-
lated from auto-correlated relaxation data are larger than those obtained from the cross-
correlated relaxation (Fig. 5). This is suggestive of exchange contributions to the measured R,
relaxation rates for these residues, and may imply the existence of a weakly populated meta-
stable conformational state with a lifetime in the us-ms range [55]. The repeat regions of FC27
MSP2 show somewhat variable dynamic properties, with elevated values of J(wy), indicating
more extensive sub-ns dynamics than observed in the rest of the dimorphic and C-terminal re-
gions, but with significant variation in the lower-frequency spectral densities across the
32-residue repeat (Fig. 5).

The variable region of 3D7 MSP2 shows greater diversity in its dynamic properties, as re-
ported by relaxation measurements. The largest region of polymorphism in 3D7 MSP2, the
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Fig 3. Secondary chemical shifts of MSP2. The difference between the observed Ca (A) and HN (B) chemical shifts and those predicted for a disordered
protein by the method of Tamiola et al. [50] is plotted for 3D7 (black) and FC27 (red) MSP2. The data for FC27 are plotted on a broken axis (top) in order to
correctly align the conserved regions.

doi:10.1371/journal.pone.0119899.g003

GGSA repeats, is exceptionally flexible, with relaxation properties indistinguishable from the
extreme termini of the protein (Fig. 5; residues 32-63). Presumably this flexibility is a conse-
quence of the uniformly small side chains in this region, and the correspondingly small steric
barriers to backbone reorganisation. It is noteworthy that, despite the high levels of polymor-
phism, this region is consistently rich in small residues, with Gly, Ser and Ala representing over
90% of residues seen in this region across all 3D7 MSP2 alleles characterised. In contrast, the
next largest region of polymorphism, residues 103-122 appears relatively ordered, to essentially
the same degree as the more ordered region in the FC27 dimorphic domain, residues 140-150.
Likewise, the degree of order in the 3D7 dimorphic region (residues 123-180; yellow in Figs. 4
and 5) is comparable to the remainder of the FC27 dimorphic region, and the 3D7 TTT repeats
are comparable to the FC27 32- and 12-residue repeats.

In contrast to the variable regions, the dynamic properties of the conserved regions of MSP2
are indistinguishable in the two allelic forms at ps-ns timescales, as indicated by identical relax-
ation rates, with the regions of reduced flexibility within the N- and C-terminal regions being
the most ordered regions in both alleles (Fig. 3). Together with the perfect correspondence of
backbone chemical shifts, this agreement indicates that the ensembles of rapidly inter-
converting conformational states sampled by these regions are identical in FC27 and 3D7
MSP2. The intervening variable regions exert no perceptible influence on these properties.
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doi:10.1371/journal.pone.0119899.g004

More generally, this suggests that the conformational properties of MSP2 are entirely locally
determined. This inference is consistent with our observation that each member of a large
panel of monoclonal antibodies recognises a simple linear epitope [10].

For 3D7 MSP2, the J(0) values calculated from auto-correlated relaxation data are never sig-
nificantly larger than those obtained from cross-correlated relaxation (Fig. 5), suggesting that
the ps-ms dynamics that was inferred for FC27 MSP2 C-terminal conserved region are absent
in this region of 3D7 MSP2. This suggests that the variable region may influence the population
or lifetime of meta-stable conformations in the conserved C-terminal domain. Remarkably,
this appears to occur without affecting the ps-ns dynamics, or the overall conformational pref-
erences (as reported by chemical shift) of either region.

Antigenicity is correlated with local dynamics

Potential correlations between the conformational dynamics characterised above and the anti-
genicity of MSP2 have been investigated by examining the patterns of local antigenicity in sera
of mice and rabbits immunised with recombinant 3D7 and FC27 MSP2. The reactivity of
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MSP2 antisera to an array of overlapping peptides covering the entire sequences of 3D7 and
FC27 MSP2 was measured by ELISA [10,19]. To enable direct comparison between these re-
sults and our NMR measurements, which are resolved at the level of individual residues, we
adopted a scoring scheme in which each residue was scored according to the average reactivity
of each of the peptides in which that residue was represented. There was good agreement across
the individual mice immunised against each antigen. Pairwise comparisons of ELISA results
from individual mice immunised with 3D7 MSP2 yielded average correlation coefficients of
0.7 £ 0.1 and for mice immunised with FC27 MSP2 the average correlation was 0.6 £ 0.1 (Pear-
son’s 1; p<10° for all comparisons). For rabbits, there is substantially greater variation between
individuals, with correlation coefficients of 0.3 + 0.2 for each antigen (p<0.05 for seven of 12
comparisons). Nonetheless there was reasonable qualitative agreement across all antigenicity
profiles for each antigen, with most regions identified to be antigenic in mice also antigenic in
at least one rabbit, and vice versa (Fig. 6). The following analysis therefore considers a single
average profile for each antigen in each species (Fig. 7A).

Several lines of evidence give rise to confidence that these profiles of antigenicity are robust
estimations of the intrinsic immunogenicity of MSP2. First, there is excellent agreement
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Fig 6. Antigenic profile of MSP2 mapped by ELISA. Four mice (top panels, black bars) and four rabbits (bottom panels, blue bars) were immunised with
either FC27 (left panels) or 3D7 (right panels) MSP2. Individual immune sera were tested against a single panel of overlapping peptides covering the
sequences of both 3D7 MSP2 (peptides 1-45) and FC27 MSP2 (peptides 46—84), as shown schematically above. The conserved N terminal (peptides 1-3)
and C terminal (peptides 37—45 and 77-84) regions are common to both 3D7 and FC27 MSP2 and are delineated with dashed red lines. Peptides showing
greater than the median level of conformational restriction are shaded grey (Table 1). Mean optical density from triplicate assays is plotted for each serum,
corrected for the response from unimmunised control sera. Error bars are one standard deviation.

doi:10.1371/journal.pone.0119899.g006
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Fig 7. Comparison of experimental patterns of antigenicity, predicted antigenicity, and conformational dynamics, for FC27 (left) and 3D7 (right)
MSP2. A. Antigenicity profiles of MSP2 inferred from experimental immunisation of mice (black) and rabbits (red) are plotted against the sequence. Black
bars (top) denote the location of epitopes of a panel of monoclonal antibodies to MSP2. B. Conformational flexibility of MSP2 as measured by the spectral
density functions derived from the 5N relaxation data. Spectral density functions are plotted at zero frequency (black line) and at the 5N Larmor frequency
(red line). C. Antigenicity of MSP2 as predicated using BepiPred [60] (red, right axis) and the method of Kolaskar and Tongaonkar [61] (black, left axis). The
threshold for epitope prediction for both methods is denoted by the grey line.

doi:10.1371/journal.pone.0119899.g007

Table 1. Conformationally constrained peptides are more antigenic.

No. animals responding® No. peptides with > 2 animals
responding®
J(0)® mice rabbits total mice rabbits total
Constrained 42 1.06-1.88 22+04 1.1+02 1.7+0.3 14 4 18
Flexible 42 0.36—1.06 0.50 £ 0.15 0.45+0.10 0.48 £ 0.09 3 0 3

a Range of maximum J(0) values defining each peptide class.

b The number of sera generating a background-corrected response greater than 0.3 OD (mice) or 0.05 OD (rabbits) to individual peptides, averaged (+
SEM) over each class.

¢ Number of peptides in each class to which more than two sera respond.

doi:10.1371/journal.pone.0119899.t001
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between the current 3D7 profile and those derived previously from experimental immunisa-
tions of mice and humans with recombinant 3D7 MSP2 [56,57]. Second, the conserved regions
of MSP2 show similar patterns of antigenicity in both the FC27 and 3D7 profiles. Finally, the
epitopes of an extensive panel of monoclonal antibodies to MSP2 [10,30,58,59] all coincide
with peaks in the antigenicity profile (Fig. 7A).

Strikingly, both of the regions of marked conformational restriction in MSP2, the conserved
N-terminal region and the region around the disulfide in the conserved C-terminal region, co-
incide with peaks in the experimental antigenicity profiles of both 3D7 and FC27 MSP2, and
with the epitopes of several monoclonal antibodies (Fig. 7). Likewise, antigenic regions within
the repeats and dimorphic regions of FC27 correspond to those that show slightly elevated
low-frequency spectral densities, indicative of conformational restriction. Although the GGSA
repeat, which is the most flexible region in 3D7 MSP2, shows some antigenicity, this arises
from a significant response in only a single rabbit (Fig. 6), suggesting that this very flexible re-
gion is only rarely antigenic (Fig. 7). Indeed, there is a significant correlation between the anti-
genicity profile and relaxation-based measures of conformational flexibility: Spearman’s p for
the comparison of the average antigenicity profiles over all mice with J(0) are 0.35 and 0.54 for
FC27 and 3D7 MSP2, respectively, and for rabbits 0.30 and 0.21 (two-tailed p < 0.005 for all
comparisons, by permutation). Thus, it appears that restricted conformational disorder within
MSP2 may be a robust predictor of local antigenicity. To explore this further, we divided the
peptides into two equal groups according to the maximum value of J(0) measured for the resi-
dues in each peptide, representing the conformationally constrained and flexible regions of
MSP2 (Table 1). The peptides from constrained regions are almost four times as likely as the
peptides from flexible regions to be significantly antigenic, while 85% of peptides that show sig-
nificant responses in more than two animals (of either species) are from conformationally con-
strained regions of MSP2.

In contrast, sequence-based predictors of B-cell epitopes [60,61] perform poorly when ap-
plied to MSP2, showing weak and in some cases negative correlation with the experimental an-
tigenicity, and failing to predict monoclonal antibody epitopes (Fig. 7). The Bepipred predictor
[60] predicts 80 of 84 peptides in our array to contain B-cell epitopes, when in fact only 21 pep-
tides reacted significantly with more than two antisera (Fig. 6), and these 21 peptides included
two of the four peptides not predicted to be epitopes by this method. The approach of Kolaskar
and Tongaonkar [61] performs only slightly better, predicting 35 peptides to contain epitopes,
including 10 that reacted with more than two antisera.

Discussion

Intrinsically disordered proteins are increasingly attracting interest as potential vaccine candi-
dates against malaria [11-15,36] and other pathogens [16,17]. In spite of this, little is known
about the implications of conformational disorder for the development of an effective immune
response. In the case of MSP2, the recombinant protein used for both experimental immunisa-
tion and clinical trials is highly disordered, as demonstrated previously [39] and characterised
further here. On the other hand, the conformation of the native GPI-anchored protein is likely
to be constrained, to a greater or lesser extent, by interactions with the merozoite membrane
[48] or by self-association [36,46,47,62]. These interactions also modulate the accessibility of
certain epitopes on the parasite surface [10]. In light of these observations, it is evident that the
efficacy of an MSP2-based vaccine is likely to depend on the appropriate targeting of epitopes
that exist in an accessible form on the parasite surface. Achieving this will require an improved
understanding of the way antigen conformation and flexibility modulates the specificity of the
immune response. As a first step to addressing this problem, we have compared the local
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conformational dynamics of MSP2, as reported by '°N relaxation measurements, with local an-
tigenicity as inferred from experimental animal immunisations. We find that regions of MSP2
that are most antigenic correspond to those regions in which conformational flexibility is
somewhat constrained, whereas those regions that are most flexible appear to be the

least antigenic.

In contrast, we find no evidence that the polymorphic regions of MSP2 are particularly anti-
genic. Indeed, the most polymorphic region of MSP2, the GGSA repeats of 3D7, is also the
most flexible and amongst the least antigenic regions. Other polymorphic regions (green and
pink in Fig. 7) are no more antigenic than are the dimorphic and conserved regions. There is
evidence that the polymorphisms within these regions are selectively favoured, and although
details of these selective processes are unclear, they are expected to involve host immune pres-
sure [63,64]. As such, the lack of obvious antigenic bias towards these regions is surprising, and
may highlight important immunogenic differences between recombinant MSP2 and the native
parasite antigen [10].

Previous studies of structured antigens have established that increased epitope flexibility
tends to increase antigenicity [65,66], in contrast to the current findings. An important distinc-
tion is that these studies have addressed epitopes that are variably flexible loops in largely struc-
tured proteins. The most flexible of these loops are unlikely to be as flexible as even the least
flexible regions of MSP2. In the model structured antigen lysozyme, all residues show positive
steady-state ['H]-'°N NOE values greater than 0.6 [67], reflecting markedly more constrained
sub-ns dynamics than is seen for any region of MSP2 (Fig 4). One possible explanation for the
apparent discrepancy, therefore, may be that a moderate degree of flexibility is optimal for anti-
genicity, with epitopes that are either too rigid, or too flexible, being less effective. Alternatively,
the determinants of antigenicity in structured and disordered proteins may differ in a more
fundamental way. For example, it has been suggested that the correlation between flexibility
and antigenicity observed in structured proteins reflects accessibility, rather than flexibility per
se [68], whereas the accessibility of potential epitopes in a disordered antigen is likely to be uni-
formly high. Perhaps consistent with this interpretation is our observation that epitope predic-
tors, parameterised primarily on the basis of structured antigens, perform poorly for MSP2.

The consistency of the antigenic profiles we have measured here between animals and with
other previous studies in mice and in humans, strongly suggests that these profiles are deter-
mined by the intrinsic immunogenicity of the recombinant MSP2 antigen. As such, the correla-
tion we observe between conformational restriction and antigenicity probably reflects a
tendency for more flexible regions of MSP2 to be less immunogenic. The mechanistic basis un-
derlying this tendency is currently unclear, though several possible explanations are worthy of
consideration. It has been suggested that the unusual residue composition of disordered and re-
petitive antigens may give rise to extensively cross-reactive responses, which fail to mature into
high-affinity and specific antibodies [69]. Alternatively, it may be that conformational disorder
itself frustrates the process by which a mature antibody response develops. Any disordered an-
tigen exists in a vast ensemble of distinct conformations, but a developing antibody is likely to
be limited in the range of conformations it is capable of recognising. The conformational diver-
sity of disordered antigens may therefore impose a significant barrier to antibody maturation,
as proposed for the Staphylococcus aureus fibronectin binding protein [70]. This effect may be
viewed as a conformational analogue of the epitope dilution effect recently described in the
context of a polyvalent vaccine of the polymorphic antigen apical membrane antigen
1 (AMAL1) [71,72]. In that context, polymorphic epitopes are ‘diluted’ relative to conserved epi-
topes by the combination of diverse allelic forms of AMA1, resulting in an antibody response
that favours conserved epitopes. In the current context, we envisage that epitope conformations
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are diluted to an extent determined by the degree of disorder present in the epitope, with the
result that the antibody response is biased towards more ordered epitopes.

Little is known about which MSP2 epitopes contribute to a protective immune response.
Vaccine-derived protection mediated by MSP2 appears to be strain specific [23,73], suggesting
that variable epitopes dominate. However this does may not be the case for the natural immune
response to MSP2, where strain-specific protection has not been detected [37,74]. Nonetheless,
a protective, strain-independent response is clearly desirable in the context of vaccine develop-
ment. As such, our observation that conserved N- and C-terminal epitopes are amongst the
most immunogenic regions of MSP2 is encouraging, although it is likely that not all of these
epitopes will be accessible on the parasite surface [10].

The correlation established here begs the question of causation: is it possible to modulate
the immunogenicity or antigenicity of a disordered antigen by altering its flexibility? Antigen
flexibility could be modulated by directly modifying the antigen by addition of bulky residues
or disulfide bonds at sites flanking a target epitope. Alternatively, simply changing the formula-
tion of the antigen may have the desired effect. For example, the N-terminal region of MSP2
can be conformationally stabilised by interactions with lipid membranes, in a way that may
better reflect the conformation of MSP2 on the merozoite surface [48]. These possibilities have
important implications for the development of vaccines based on MSP2, where it is desirable to
tune antigenicity towards epitopes that are conserved and exposed on the parasite surface
[10,36].
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