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Primary cilia are nonmotile, microtubule-based, antenna-like organelles projecting from the apical surface of most mammalian
cells. Elegant studies have established the importance of ciliary structure and function in signal transduction and the sensory roles
of cilia in maintaining healthy cellular state. In particular, dysfunctional cilia have been implicated in a large number of diseases
mainly characterized by the presence of fluid-filled cysts in various organs. Aside from polycystic kidney disease (PKD), however,
the roles of cilia in polycystic liver disease (PLD), polycystic pancreas disease (PPD), and polycystic ovarian syndrome (PCOS) are
still very vague. In addition, although gender and sex hormones are known to regulate cyst formation, their roles in regulating phys-
iological functions of cilia need to be further explored.

1. Introduction

The primary cilium is an antenna-shaped organelle present
on the apical surface of most mammalian cells (Figure 1).
The main structural features of the primary cilium include a
microtubule-based axoneme, which originates from the basal
body or the mother centriole. Cilia play an important role in
transmitting signals from the extracellular matrix to the cell
interior, resulting in changes in gene expression and asso-
ciated protein synthesis [1–3]. Their unique structures and
locations help cells to detect and transmit even the minutest
changes in the extracellular signals. Thus, cilia are important
mechano- and chemosensory organelles [4, 5]. To assist in
their sensory roles, cilia are bestowed with a large number
of specialized proteins, known as “ciliary proteins,” which
include receptors, ion channels, and secondary messengers;
many of which localize to the ciliary body or the basal body
[2]. Consequently, various studies in the past have shown
that improper structure and/or localization of the ciliary pro-
teins to the cilium and/or the basal body results in a special
class of diseases, collectively termed as ciliopathies [6, 7].

Ciliary structure and function play an important role
in mechanosensory function of the cilia [8–12]. The
mechanosensory function of the cilium is involved in sensing
fluid flow in many visceral organs such as kidneys, liver,

pancreas, brain, spleen, bone, and others [2]. Primary cilia,
expressed on the epithelial cells of these organs, sense fluid
flow and transduce these signals into an intracellular calcium
signaling response (Figure 2). Flow sensing is completely
abolished in deciliated cells and in cells with dysfunctional
polycystin-1 and polycystin-2. In the presence of fluid flow,
cilia are activated resulting in a transient increase in intra-
cellular calcium levels, which results in various cellular pro-
cesses, including cell growth, differentiation, proliferation,
and apoptosis [13–16]. Impaired mechanosensory function
of cilium results in low levels of intracellular calcium, which
then results in the activation of various cell proliferative
pathways including cAMP, ERK, p-Akt (Ser473) pathways
[17–20]. Abnormal regulation of these pathways promotes
an increased cell proliferation resulting in cyst formation.

One of the most predominant ciliopathy arising due to
impaired mechanosensory function of the primary cilium
is polycystic kidney disease (PKD) [21–23]. Interestingly,
PKD is also associated with cyst formation in other organs.
Polycystic liver and pancreas associated with PKD have also
been associated with abnormal cilia function or structure
[24–27]. In this paper, we will briefly introduce PKD and
focus on polycystic diseases in various organs, including the
liver, pancreas, and ovary.
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Figure 1: Primary cilia are present in vivo and in vitro. Primary cilia are present in all vestibular organs or tissues with vestibules (canals)
that support perfusion of bodily fluid. Shown here are representative images demonstrating the presence of primary cilia in endothelial cells.
(a) Scanning electron micrograph shows the presence of primary cilia in the lumen of mouse femoral artery. (b) Immunofluorescence image
verify the presence of cilia in the mouse femoral endothelia. (c) When these endothelial cells were isolated, the cells retained their cilia in
culture, as depicted in the image. Blue denotes cell nuclei; green represents acetylated-α-tubulin used as a cilia marker; red indicates actin
cytoskeleton.
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Figure 2: Mechanosensory cilia function involves calcium signal transduction. Mechanosensory cilia require functional polycystin complex.
Fluid-flow-induced cilia bending will activate polycystin complex. This will mobilize calcium ions (Ca2+) influx from the extracellular
matrix (ECM) into the cell. Calcium-induced calcium release will further activate various calcium-dependent proteins to maintain proper
organogenesis.

2. Polycystic Kidney Disease (PKD)

Autosomal dominant and autosomal recessive polycystic
kidney disease (ADPKD and ARPKD) are two of the most
common PKD diseases, which result in end-stage kidney
failure in adults and children, respectively. ADPKD is
caused by mutations in PKD1 (encoding polycystin-1) and
PKD2 (encoding polycystin-2), while ARPKD arises due to
mutations in PKHD1 (encoding fibrocystin) [28–30]. PKD
is characterized by the presence of fluid-filled cysts in the
kidneys, finally resulting in renal failure. Along with cystic
manifestation, PKD patients and animal models also exhibit
noncystic phenotype, including hypertension, left ventricu-
lar hypertrophy, abnormal arterial remodeling, intracranial
aneurysm, among others. Not surprisingly, autopsy results
of PKD patients show that more than 80% patients die of
cardiovascular reasons than end-stage renal failure [31, 32].

Ciliary dysfunction tends to result in abnormal renal
epithelial cells resulting in cyst formation and aberrant renal

proliferation [33, 34]. It is further hypothesized that in
healthy ciliated kidney cells, the mitotic spindle is oriented
in an axis parallel to the longitudinal axis of the tubule
[35, 36]. In PKD cells, however, a large number of cells
exhibit randomized angle of the mitotic spindle, resulting in
cyst formation (Figure 3).

2.1. Gender as a Factor. Incidence, prevalence, and progres-
sion of polycystic kidney diseases in humans and animal
rodents are known to be dependent on gender [37–39].
Testosterone is renotropic in normal as well as diseased
rodent models. Castrated male rodents exhibit limited
disease progression in terms of renal size and cyst volumes.
Interestingly, testosterone treatment of these castrated rats
obviates the effect of castration. On the other hand, female
rodents treated with testosterone exhibit increased cyst and
kidney growth in both, females with and without ovariec-
tomy [37]. Possible mechanisms for gender-related disparity
observed could be due to differences in diet, renal mass
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Figure 3: Defects in planar cell polarity results in cystogenesis. It is hypothesized that normal cilia function is required to control proper
directional cell division. (a) Normal directional cell division is required to have an elongated tubular formation. (b) Disrupted directional
cell division results in expanded formation of tubule.

or nephron number, systemic or glomerular hemodynamics
and direct cellular effects of sex hormones. Men tend to have
larger kidneys, in addition to more number of glomeruli
than women [38]. Most importantly, sex hormones regulate
various cytokines, growth factors, vasoactive agents, and
extracellular matrix, such as nitric oxide, angiotensin, and
collagen.

Detailed studies of the effect of androgens (male hor-
mones) and estrogen (female hormones) indicate that
androgens may be involved in stimulation of the renal
angiotensin system (RAS) and endothelin system (ET-1)
resulting in rapid cystic progression in males. Androgens also
cause a downregulation of VEGF system and nitric oxide
bioavailablity, resulting in increased cardiovascular problems
in male PKD rodent models and male patients. On the other
hand, estrogen seems to play a protective role in females.
Estrogen has been found to suppress both RAS and ET-1
systems and upregulate VEGF system resulting in decreased
loss of renal structure and associated renal function, along
with reduced severity of cardiovascular effects [39].

A more recent study on the effect on mammalian
target of rapamycin (mTOR) pathway indicates the role of
gender and sex hormones in the treatment of PKD [17].
Male Han : SPRD rats treated with rapamycin exhibited a
decreased proliferation of cystic tubules along with inhibi-
tion of renal enlargement, cystogenesis, and kidney failure by
activation of the mTORC1 pathway. Female Han : SPRD rats
of the same age treated with rapamycin for the same length
of time as the male rats did not show any improvement in
cystogenesis or kidney failure like male rats. Rapamycin was
found to inhibit the proliferative p-Akt (Ser473) activity. In
females, though mTORC1 pathway was activated in presence
of rapamycin similar to males, rapamycin increased the
proliferative p-Akt (Ser473) activity. This differential effect
in female rodents could be explained on the basis of the
female sex hormones, which are known to play a protective
role in disease progression in female PKD patients as well as
female rodents. However, further studies on castrated male
animal models and ovariectomized female animal models are
required to confirm the role of androgens and estrogens on
rapamycin treatment of PKD patients.

2.2. Fertility Issues. Because PKD patients exhibit cysts in
the male and female reproductive organs, fertility could
become an issue. Several abnormalities have been observed
in both men and women suffering from PKD. Infertility
in male PKD patients mainly arises due to necrospermia
or low sperm mortality and cysts in the seminal vesicles
and ejaculatory ducts [40–42]. In addition, sperm motility
is an issue in many PKD male patients. Sperms normally
express 9 + 2 (motile) cilia, required for motility. However,
large numbers of sperms in PKD patients express the 9 + 0
primary (immotile) cilia, which lack the central microtubule
rods essential for motility, with some patients exhibiting
only immotile cilia and hence immotile sperms [43]. Patients
expressing completely immotile sperms were unable to father
children with in vitro fertilization or intracytoplasmic sperm
injections [44]. On the other hand, women suffering from
PKD have not shown any specific fertility problems. This
could be due to the fact that hypertension, compromised
renal functions generally start after normal reproductive age
in female PKD patients [45, 46].

2.3. Hormone Replacement Therapy. Irrespective of age, ovar-
ian cyst is not found to be a major concern in PKD female
patients [47, 48]. However, the use of hormone replacement
therapy in postmenopausal PKD patients resulted in liver
enlargements in most of these patients. Given that the most
common extrarenal manifestation of PKD is hepatic cysts
[49–51], it is not surprising that hepatic cysts occur more
often, with more severity and at a younger age in female
than male PKD patients. Nearly 80% female PKD patients
exhibit hepatic cysts even with improved management of the
diseases. These patients exhibit complications such as cyst
infection, bleeding, or neoplasia [48, 51]. Endogenous and
exogenous estrogen has been implicated in the severity of
liver cysts in female PKD patients. In particular, pregnant
PKD patients are at risk of developing massive hepatic cysts.

3. Polycystic Liver Disease (PLD)

Though cystic liver is one of the most common extrarenal
manifestations observed in PKD, it also exists as an isolated
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inherited cystic disease, without any kidney cysts. PLD is
characterized by the presence of cysts in the liver caused
by proliferation and fluid secretion in cystic epithelial along
with remodeling of the extracellular matrix around the cysts.
PLD arises due to mutations in PPRKCSH or SEC63 [52, 53].
PPRKCSH encodes the noncatalytic β-subunit of glucosidase
II (GIIβ) involved in the folding of glycoproteins, whereas
SEC63 encodes a protein product, which helps nascent
peptides to translocate across the endoplasmic reticulum
to become secreted- or membrane-bound proteins [54–56].
Though both PPRKCSH and SEC63 protein products are not
known, as yet, to colocalize to the primary cilia and/or the
basal body, mutations in these two genes cause aberrant mat-
uration of newly synthesized glyocoproteins, including poly-
cystins. Overexpression or deletion of PPRKCSH in zebrafish
results in developmental changes similar to those induced by
imbalanced polycystin-2 [57, 58]. Rodent model studies with
aberrant Prkcsh, Sec63, Pkd1, Pkd2, and Pkhd1 genes indicate
that cyst formation can generally be modulated by altering
the expression of Pkd1, implying that polycytin-1 plays a
central or rate-limiting role in both PLD and PKD. This
further implies that PKD and PLD could share a common
pathogenic pathway, even though PKD manifests in both
liver and kidneys while PLD manifests only in the liver.

4. Polycystic Pancreas Disease (PPD)

The pancreas, involved in secretion of hormones and gastric
enzymes, contains a maze of tubules and ducts involved
in carrying the enzymes to the intestinal lumen. Ductal
epithelial cells secrete bicarbonate to neutralize the acidic
chime from the stomach. Pancreatic epithelial cells express
primary cilia involved in mechanosensing of luminal flow
and help maintain appropriate luminal dimensions [24, 25,
59, 60]. In addition, mice models with mutated hepatocyte
nuclear factor-6 (HNF-6) indicate a significant decrease in
the expression levels of ciliary proteins (i.e., cystin and
fibrocystin) in the pancreas [61]. Thus, it has been proposed
that HNF-6 is essential for activation of genes that activate
epithelial cell polarity and formation of primary cilia in
pancreatic cells.

5. Polycystic Ovarian Syndrome (PCOS)

PCOS can be classified as an endocrinal heterogeneous dis-
order affecting about 20% of women in the reproductive age.
Hyperandrogenism, detected in 70% of PCOS patients, has
been projected as one of the most important causes of PCOS
[62–64]. This further results in long-term reproductive
consequences, including lack of ovulation, suppression of
gonadotropins, and development of cystic follicles in adult-
hood. Several studies have indicated an association between
multiple genetic and environmental factors to be responsible
for PCOS [65–67]. PCOS is associated with polycystic
ovaries and chronic oligoanovulation, along with depression,
mood disorders, obesity, hirsutism, and insulin resistance. In
addition, women with PCOS are predisposed to high levels
of high-density lipoprotein cholesterol, total cholesterol,

low levels of low-density lipoprotein cholesterol along with
cardiovascular disorders, and type-2 diabetes [68–71].

At present, no specific gene has been implicated in the
pathogenesis of PCOS, though a wide category of genes are
being studied based on the phenotypes observed, includ-
ing genes correlated to androgen biosynthesis/actions, insu-
lin resistance, inflammatory cytokines, and others [72–76].
Recent studies have identified that DKK1 and DNAJB1 are
differentially expressed in PCOS tissue [76]. Thus, DKK1
(encoding a dickkopf related protein) and DNAJB1 (encod-
ing DnaJ or Hsp40 homolog) are potential genes of interest
in the pathogenesis of PCOS.

DKK1, which is overexpressed in cultured ovarian theca
from PCOS patients, has been shown to play important roles
in embryogenesis and cell cycle regulation [76, 77]. On the
other hand, DNAJB1 is underexpressed in ovaries of PCOS
patients and has important roles in protein folding, protein
assembly-disassembly, and protein transport across cell
membranes, especially in androgen signaling pathways. Of
these two genes, DNAJB1 has been identified and replicated
as a gene of interest with respect to insulin resistance in
PCOS. Thus, DNAJB1 could affect androgenic pathways in
PCOS.

Management of PCOS depends on the symptoms and
mainly includes diet, weight management, exercise, and bari-
atric surgery in morbidly obese patients. In addition, low an-
ovulation in PCOS patients results from low follicle stim-
ulating hormone resulting from excess levels of luteinizing
hormone, insulin, and/or androgen. This is generally treated
with a variety of medications including estrogen receptor an-
tagonists, tamoxifen, aromatase inhibitors, glucocorticoids,
or gonadotropins. Androgen-related problems such as hir-
sutism, acne, and/or alopecia are generally treated with
antiandrogens that either bind androgen receptors or
decrease androgen production. Alternative medicines in-
cluding kinesiology, herbalism, homeopathy, reflexology,
acupressure, acupuncture, and massage therapy seem to be
effective treatment in PCOS [78, 79].

In a few cases, PCOS has been reported in female PKD
patients [80]. However, it is suggested that PKD patients
and their unaffected relatives do not exhibit elevated risks of
PCOS. This study includes a broad spectrum of female PKD
patients, including premenopausal and postmenopausal
female PKD patients. More specifically, ultrasound scanning
of these women shows no difference of ovarian volume or
frequency of ovarian cysts compared to control non-PKD
group. In addition, fertile-age women with PKD do not
exhibit impaired fertility [47, 48, 81].

6. Summary

Ciliopathy has been associated with cyst formation in various
organs, including kidney, liver, and pancreas. However, the
cellular and molecular roles of cilia are still vague. There is
no doubt that future studies are critically needed to look at
cystogenesis more extensively in various organs. In addition,
further understanding on the physiological roles of cilia is
undoubtedly necessary. For example, it is still a mystery how
gender and sex hormones play a key role in the prevalence
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and progression of these polycystic diseases. If primary cilia
play an important role in cystogenesis, we have no choice
but to investigate how cilia function or structure is altered
by hormonal regulation in our body.
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