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Abstract: Some neurotropic viruses induce specific lesions in the deep structures, such as basal ganglia
and thalamus. These anatomical structures play an important role in initiating and maintaining
different types of epileptic seizures. We present the case of a 25-year-old male, transferred to our clinic
one week after the onset of the symptomatology, with a recent history of traveling to Turkey and Egypt.
At the moment of his hospital admission, his symptoms included altered consciousness, agitation,
and seizures. Shortly after, his state worsened, requiring intubation. Viral tick-borne encephalitis
diagnoses were favored by the CSF (cerebrospinal fluid) analysis, EEG (Electroencephalography),
MRI (magnetic resonance imaging) images presenting symmetric hyper signal in the basal ganglia,
and IgM antibodies for anti-tick-borne encephalitis. These lesions persisted for several weeks, and the
patient’s seizures were polymorphic, originally generalized onset motor, generalized onset non-motor,
and focal myoclonic. The patient achieved his independence, seizures decreasing both in intensity
and frequency; the MRI images became almost normal. The reduction in antiepileptic doses was not
followed by seizure recurrence.

Keywords: tick-borne encephalitis (TBE); flavivirus; tick-borne encephalitis virus (TBEV); imaging;
CSF; EEG; basal ganglia; MRI; polymorphic seizures

The thalamus and basal ganglia significantly trigger and sustain various types of
seizures, having a neuromodulatory role. Some viruses that invade the central nervous
system induce specific lesions in the basal ganglia and thalamus. The Flaviviridae family is
one of the most common sources of zoonoses. Its most important representatives are the
Japanese encephalitis virus, the yellow fever virus, the West Nile virus, the hemorrhagic
fever viruses, the Zika virus—all being transmitted by the Culex mosquito—and tick-borne
encephalitis virus (TBEV), transmitted via tick bite. Mainly the basal ganglia and sometimes
the thalamus are affected by cerebral involvement.

A 25-year-old patient with a known history of recent travel to Turkey and Egypt
(countries where there have been recent cases of TBE) was admitted to a regional medical
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care unit for a significantly altered general status, headache, seizures, and fever and was
transferred to our ward five days later.

At admission, the patient had a profoundly altered general condition. The brain
CT was normal, and the MRI revealed slightly increased bilateral putaminal and cau-
date nucleus signal, with moderate bilateral putaminal restricted diffusion (Figure 1).
Intercritical EEG recording with alpha background rhythm, average frequency 8 Hz and
amplitude 28 µV, intricate with slow waves predominantly left frontotemporal with sec-
ondary bilateraleralization, was suggestive of a lesional substrate. In the clinical con-
text, the patient’s seizures were polymorphic, originally generalized onset motor, gen-
eralized onset non-motor, and focal myoclonic. Unfortunately, video-EEG monitoring
was not possible at that time. Slightly increased leukocytes were found in the blood
tests, with 10.3% lymphocytes, 81.5% granulocytes, and 113 mg/dL glycemia. Dosing
of anti-NMDA (N-methyl D-aspartate receptors), anti-GAD (glutamic acid decarboxy-
lase), anti-GABA (gamma-aminobutyric acid), anti-neuronal, and anti-VGKC (voltage
gated potassium channel-complex) antibodies were negative. A lumbar puncture was
performed, obtaining a clear, colorless CSF with a glycorrhachia of 97 mg/dL, proteins
of 51 mg/dL, 586 erythrocytes/mm3 (traumatic lumbar puncture), 27 leukocytes/mm3,
lymphocytes 83%, and polymorphonuclears 17%. Common bacterial or viral pathogens
were absent in the CSF using the PCR analysis panel for Staphylococcus, Streptococcus,
Enterobacteriaceae, Enterococcus, Escherichia Coli, Haemophilus influenzae, Listeria mono-
cytogenes, Neisseria meningitides, Streptococcus agalactiae, Streptococcus pneumonia,
Cytomegalovirus, Enterovirus, Herpes simplex virus 1/2, Human herpesvirus 6, Human
parechovirus, Cryptococcus neoformans/Gatti, and Varicella zoster virus. The immuno-
enzymatic test IgM antibodies for the anti-tick-borne encephalitis virus was positive (over
0.8 ratio). Therefore, the diagnosis was tick-borne encephalitis. The treatment of the in-
fection is mostly symptomatic, as there are currently no specific anti-TBEV agents. The
patient required oro-tracheal intubation, which was maintained for 23 days. He continued
to have generalized motor seizures and was sedated, presenting GCS 3, SOFA 4 (Sequen-
tial Organ Failure Assessment—mortality prediction in ED; SOFA 4 ≈ 7.0% mortality),
APACHE 7 (Acute Physiology and Chronic Health Evaluation–mortality prediction in ED;
APACHE 7 ≈ 10% mortality). Phenytoin and, later, valproic acid and levetiracetam were
initiated for underlying seizures and psychotic disturbances.

At that time, after intubation, the second MRI revealed bilateral putaminal high signal
intensity, on T2 and FLAIR sequences and low restricted diffusion in both putaminal
regions, without enhancement in the bilateral caudate nucleus and putamen (Figure 2).

Six days later, MRI showed a persistent high T2 signal intensity in the posterior
2/3 of the putamen and normal signal intensity of the caudate nucleus, with symmetrical
moderate restricted diffusion in the posterior 2/3 of the putamen and no restricted diffusion
in the caudate nucleus (Figure 3).

After resuming unassisted breathing, the neurological examination showed an ori-
ented patient with focal motor, generalized non-motor, and focal myoclonic seizures, being
partially aware. Perceptual qualitative disorders such as simple and complex auditory
hallucinations were highlighted; inappropriate behavior, voluntary and spontaneous hy-
poprosexia, accelerated rhythm and verbal fluency, no delusional ideation, and moderate
depression due to the recognition of health problems were also noted. Olanzapine was
introduced to treat his psychosis. Another lumbar puncture showed a glycorrhachia of
96 mg/dL and Crl proteins of 39 mg/dL.

MRI on day 45 revealed limited hyperintensity T2 in bilateral putamen in the posterior
external region and minimal hyperintensity in the periphery of bilateral putamen on FLAIR.
Minimal restricted diffusion persisted in the periphery of bilateral putamen (Figure 4).

On discharge, the patient presented normal signal intensity with only a discrete band
of peripheral high signal intensity T2 wi/FLAIR in bilateral putamen but without restricted
diffusion in the lenticular nucleus (Figure 5). The patient had a normal neurological
examination and no seizure activity. Treatment with valproic acid 1200 mg, levetiracetam
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2000 mg, and Olanzapine 5 mg was indicated at his discharge. One month later, he was
fully recovered, without seizures, showing a normal EEG, and it was decided to gradually
reduce the anticonvulsant and antipsychotic medication.
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Figure 1. First Magnetic Resonance Imaging (MRI)—day 1 at the admission to our clinic (D1). (A) Ax-
ial T2-weighted image sequence: slightly increased bilateral putaminal and caudate nucleus signal;
(B) Axial FLAIR sequence: increased bilateral putaminal and caudate nucleus signal; (C) Axial
T1-weighted image sequence: slightly decreased bilateral putaminal and caudate nucleus signal;
(D) Diffusion-weighted image sequence (DWI); (E) Apparent diffusion coefficient map (ADC): mod-
erate bilateral putaminal restricted diffusion; (F) Coronal FLAIR image: slightly increased bilateral
putaminal (white arrow) and caudate nucleus signal (yellow arrow).
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Figure 2. Second MRI-D5. (A) Axial T2-weighted image sequence: bilateral putaminal high signal
intensity; (B) Axial FLAIR sequence: bilateral putaminal high signal intensity; (C) Axial DWI: high
signal intensity in putaminal regions; (D) Axial ADC map: low ADC in the putaminal regions
suggestive of restricted diffusion in both putaminal regions (white arrow); (E) Contrast-enhanced
Coronal T1wi; and (F) Contrast-enhanced Axial T1wi: no enhancement in the bilateral caudate nucleus
(yellow arrow) and putamen (white arrow) with slightly decreased signal in bilateral putamen.
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Figure 3. Third MRI—D11. (A) Axial T2-wi sequence: persistent high T2 signal intensity in posterior
2/3 of the putamen; (B) Axial FLAIR image: Symmetrical hyperintensity of the posterior 2/3 of the
putamen (white arrow) and normal signal intensity of the caudate nucleus (yellow arrow); (C) Axial
DWI: persistent symmetrical moderate restricted diffusion in the posterior 2/3 of the putamen (white
arrow) and no restricted diffusion in the caudate nucleus (yellow arrow).
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Figure 4. Fourth MRI (D45). (A) T2-wi sequence: limited hyper signal in bilateral putamen in the
posterior external region; (B) Cor FLAIR image: minimal hyperintensity in the periphery of bilateral
putamen; (C) Axial DWI: minimal restricted diffusion persistent in the periphery of bilateral putamen
(white arrow).
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Figure 5. Fiveth MRI (D63). (A) Axial T2-wi; (B) Axial FLAIR: normal signal intensity with only a
discrete band of peripheral high signal intensity T2 wi/FLAIR in bilateral putamen; (C) Axial DWI:
there is no more restricted diffusion in the lenticular nucleus (white arrow).

Tick-borne encephalitis is generated by TBEV infection, transmitted by ticks. There
are more variants of Eurasiatic TBEV, such as the European variant, the Far Eastern variant,
and the Siberian variant. Other variants of lesser importance have recently been discovered
in the Balkans (Greece and Bulgaria), Turkey and Spain, and also in India and Egypt [1].

With an incubation period of 7 to 15 days, 30% of infections caused by TBEV remain
asymptomatic. The disease’s evolution usually has two phases. Initially, most of the
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symptoms are flu-like, such as headache or myalgia, and they can last for 4–7 days or even
up to 15 days [2]. In a minority of cases, after a short afebrile period, the encephalitic phase
begins, and the symptoms worsen, affecting the nervous system: myelitis, meningitis, or
encephalitis, depending on the location of the lesion [3,4].

The role of the basal ganglia in initiating and maintaining seizures is controversial.
While some authors consider the frontal and temporal lobes to be epileptogenic sources,
others incriminate the basal ganglia. The role of the latter is well established: it is known
that the efferents of the direct and indirect pathways exert an inhibitory activity on the
anterior and lateral ventral thalamus, filtering the exaggerated motor activity from the
cortex. Multiple studies demonstrated the above [5–9]. Regarding generalized nonmotor
seizures, the basal ganglia have a better-established role. The main pathways involved in
controlling seizures are excitatory pyramidal neurons, subthalamic nucleus, spinal medial
neurons, and specific relay nuclei [10]. Various studies suggest that stimulation of the
striatum, external globus pallidus, subthalamic nucleus, and reticulated substantia nigra
or thalamus by deep brain stimulation may decrease epileptiform activity in generalized
nonmotor seizures. Recent MRI studies suggested that substantia nigra atrophy, along
with metabolic and blood flow abnormalities, are responsible for decreased antiepilep-
tic inhibitory activity [11,12]. Pars compacta degeneration plays a role in the onset of
epilepsy [8]. There was a link between damage to the basal ganglia and initiation—then
continuation—of polymorphic seizures.

Most people infected with TBEV recently traveled to areas known to be at high risk.
Turkey, Egypt, and even Romania are countries where there were recently reported cases of
infections caused by TBEV.

Our patient did not recall being possibly bitten by a tick. A minority of cases obtain
the virus from low-risk areas, probably through non-vector transmission. In the case of
our patient, the onset of encephalitis was clinically dramatic, with acute deterioration
of consciousness and seizures. It is important to emphasize the characteristic prodrome
consisting of headache, altered general condition, and chills. We would like to mention that
the patient had never been vaccinated against the yellow fever virus. The immunoassay test
could be falsely positive due to cross-linked reactions with other flaviviruses. The patient
had not been vaccinated against TBE either. We would like to emphasize the importance of
vaccination in endemic areas using the FSME Immun or other anti-TBEV vaccines.

MRI imaging revealed symmetrical bilateral damage to the basal ganglia and the
temporally overlapped remission of the lesions with the improvement of symptoms. Other
pathologies that can affect the basal ganglia symmetrically and have a specific MRI appear-
ance were excluded (Table 1).

Table 1. MRI abnormalities of the basal ganglia found in different pathologies.

Disease T1w Sequence T2w Sequence FLAIR DWI

Hypoxic-ischemic
encephalopathy [13,14]

In severe cases,
hyperintensities may

be encountered due to
the accumulation of
denatured proteins,

secondary to necrosis

In the first two weeks,
hyperintensities and

swelling of the affected
areas due to

inflammation of the
affected grey matter

can be observed

Hyperintensities in the
affected areas

Increased DWI signal
and low ADC,

suggestive of restricted
diffusion

Leigh disease [15,16]

Decreased T1wi signal
in the areas with T2

hyperintensities; rarely,
T1 hyperintensities
may be encountered

Hyperintensities in the
following structures:

basal ganglia
(especially putamen),

brain stem,
periaqueductal brain

matter, medulla,
midbrain, thalami

Hyperintensities such
as T2wi

Restricted diffusion
may be seen in the

acute setting
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Table 1. Cont.

Disease T1w Sequence T2w Sequence FLAIR DWI

Hypoglycemic
encephalopathy [17–19]

Hyposignal (usually
bilateral) in the cerebral
cortex, internal capsule,
hippocampus, or basal

ganglia

Hyperintensity in one
or more of the

T1w-mentioned
structures

Hyperintensities such
as T2wi

It is a sensitive
sequence showing
reversible diffusion
restriction from the

early hours

Wilson’s disease [20,21] Hypointensities in deep
grey matter structures

Hyperintensities in
deep grey matter

structures, especially in
the putamen and

bilateral thalami. Giant
panda sign (increased
signal intensity in the
midbrain tegmentum

with the normally
hypointense red

nucleus

Giant panda sign.
Restricted diffusion

may be the first
imaging change

Toxic substances [22,23] It depends on the
substance involved

Generally, T2
hyperintensities in the

affected areas

Generally, FLAIR
hyperintensities in the

affected areas
Confluent, symmetrical

lesions that may
involve the corpus

callosum

Confluent and
symmetrical

restricted-diffusion
lesions that may

involve the corpus
callosum or white

matter

Hepatic
encephalopathy [24,25]

Hyperintensities in the
basal ganglia,

subthalamic regions,
and globus pallidus

High signal intensities
involving the
hemispheric

corticospinal tract and
focal hyperintense T2
lesions in subcortical

hemispheric white
matter

Hyperintensities such
as T2wi

Increase mean
diffusivity in the

affected areas

Non-ketonic
hyperglycemia [26,27]

Hyperintensities in the
basal ganglia (more

often, the putamen or
caudate nucleus are

involved)

Hyperintensities in the
regions described in the

T1w sequence

Sometimes subcortical
hypointensity and

cortical hyper signal

Basal ganglia
hyperintensity

We concluded that MRI is an important non-invasive tool for the follow-up and
prognosis of viral meningitis.
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