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Successful seedling establishment depends on the optimum depth of seed placement
especially in drought-prone conditions, providing an opportunity to exploit subsoil water
and increase winter survival in winter wheat. Coleoptile length is a key determinant for the
appropriate depth at which seed can be sown. Thus, understanding the genetic basis of
coleoptile length is necessary and important for wheat breeding. We conducted a
genome-wide association study (GWAS) using a diverse panel of 298 winter wheat
genotypes to dissect the genetic architecture of coleoptile length. We identified nine
genomic regions associated with the coleoptile length on seven different chromosomes.
Of the nine genomic regions, five have been previously reported in various studies,
including one mapped to previously known Rht-B1 region. Three novel quantitative trait
loci (QTLs), QCL.sdsu-2AS, QCL.sdsu-4BL, and QCL.sdsu-5BL were identified in our
study. QCL.sdsu-5BL has a large substitution effect which is comparable to Rht-B1's
effect and could be used to compensate for the negative effect of Rht-B1 on coleoptile
length. In total, the nine QTLs explained 59% of the total phenotypic variation. Cultivars
‘Agate’ and ‘MT06103’ have the longest coleoptile length and interestingly, have favorable
alleles at nine and eight coleoptile loci, respectively. These lines could be a valuable
germplasm for longer coleoptile breeding. Gene annotations in the candidate regions
revealed several putative proteins of specific interest including cytochrome P450-like,
expansins, and phytochrome A. The QTLs for coleoptile length linked to single-nucleotide
polymorphism (SNP) markers reported in this study could be employed in marker-assisted
breeding for longer coleoptile in wheat. Thus, our study provides valuable insights into the
genetic and molecular regulation of the coleoptile length in winter wheat.

Keywords: Triticum aestivum, coleoptile length, semi-dwarf wheat, genome-wide association study, quantitative
trait loci, SNP (Single-nucleotide polymorphism), marker-assisted selection
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INTRODUCTION

Successful crop stand establishment is the first critical step for
achieving a high yield potential (Rebetzke et al., 2007b; Rebetzke
et al., 2014). Temperature and moisture are two major
environmental factors that determine the success of seedling
emergence out of the soil (Jame and Cutforth, 2004; Hunt et al.,
2018). Therefore, to ensure that ideal temperature and moisture
are available to the seed, optimum planting depth is critical. In
regions with dry soils and higher temperatures, deep seed
placement ensures optimum temperature and moisture (Mahdi
et al., 1998). Deep sowing of seeds also minimizes winter injury
and prevents seed damage caused by animals (Brown et al.,
2003), however, it delays emergence.

The coleoptile is a sheath that facilitates the emergence of the
shoot through the soil crust in monocots. The length of the
coleoptile dictates the maximum depth at which seed can be
sown. Thus, genotypes with longer coleoptile can be sown deeper
to circumvent dry and high-temperature conditions. Whereas
genotypes having shorter coleoptiles may fail to emerge if sown
too deep and thus result in a poor stand and eventually
leading to production losses (Mahdi et al., 1998; Rebetzke
et al., 2005; Rebetzke et al., 2007b). Further, an increase in
temperature affects coleoptile length negatively. Thus, such
genotype*environmental interactions can be devastating on
crop yield (Jame and Cutforth, 2004; Rebetzke et al., 2016).
Extremely dry situations during the fall season (Budak et al.,
1995; Schillinger et al., 1998) and dry spring in the northern
Great Plains lead to a poor establishment of hard winter and hard
spring wheat, respectively. Extreme fluctuations in weather with
changing climate necessitate an adjustment in the breeding
programs towards developing crop varieties having longer
coleoptiles to ensure better plant stands and establishment.

Present-day wheat varieties' genetic potential for coleoptile
length cannot adequately meet the requirements of deep-sowing
farming practices and of changing climate. Two reasons
responsible for the poor genetic makeup for coleoptile length
are; (1) no dedicated breeding effort has been made for
improving coleoptile length of wheat varieties; (2) development
of semi-dwarf wheat varieties using dwarfing genes Rht-B1b and
Rht-D1b which suppresses or have association with a locus which
suppresses coleoptile length (Allan et al., 1962; Allan, 1980; Yu
and Bai, 2010; Li et al., 2011; Rebetzke et al., 2016).

Molecular markers linked to genes or quantitative trait loci
(QTLs) can facilitate simultaneous marker-assisted breeding and
pyramiding for several traits, avoiding laborious and time-
consuming phenotyping. Recently, a few QTL mapping studies
in spring wheat have mapped several QTLs that control
coleoptile length on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B,
3D, 4A, 4BS (Rht-B1b), 4DS (Rht-D1b), 5A, 5B, 5D, 6A, 6B, and
7B (Rebetzke et al., 2007a; Spielmeyer et al., 2007; Yu and Bai,
2010; Rebetzke et al., 2014; Singh et al., 2015; Li et al., 2017)
However, linkage mapping studies have lower power in
identifying QTLs with smaller effect and typically demarcate
the QTLs to large genomic regions of 15-20 cM (Tuberosa et al.,
2002; Korte and Farlow, 2013).
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Nearly all previous studies (Spielmeyer et al., 2007; Yu and
Bai, 2010; Rebetzke et al., 2014; Singh et al., 2015) consistently
mapped QTLs close to Rht-B1b and Rht-D1b, however, the
diverse populations used in those studies led to the
identification of distinct novel loci; on chromosomes 1B, 3D,
4DL, and 5AS using a Chinese wheat variety (Yu and Bai, 2010);
on chromosomes 1D, 3A, 6A, and 7B using a population derived
from Australian cultivars (Spielmeyer et al., 2007; Rebetzke et al.,
2014); on chromosomes 3BS and 3BL using Indian cultivars
(Singh et al., 2015); and on chromosomes 1BS, 2DS, 4BS, and
5BL using diverse 893 accessions collected from around the
world (Li et al., 2017). This suggests that there are a number of
QTLs for coleoptile length and therefore, the potential of
utilizing these distinct loci in the development of varieties
suitable to specific regions.

Genome-wide association (GWAS) is a powerful tool for
dissecting genetic architecture of complex traits with the
availability of high-density SNP arrays (Wang et al., 2014)
and next-generation sequencing technologies (Poland et al.,
2012; Ayana et al., 2018; Ramakrishnan et al., 2019; Sidhu
et al., 2019). Further, GWAS can effectively identify many
natural allelic variations in a large set of unrelated individuals
as compared to the traditional QTL mapping (Huang and
Han, 2014). Li et al. (2017) conducted GWAS using a global
wheat collection of 893 accessions and identified two major
QTLs for coleoptile length. These two QTLs are present on
chromosome 4B and 4D, independent of Rht-B1b and Rht-D1b
respectively, but their physical locations are unknown.
Though a number of QTLs have been mapped in spring
wheat and a few in winter wheat, they may not cover the
entire variation for coleoptile length. Further, most of the
QTLs cover a large genomic region and information on
functional characterization of these QTLs is lacking. The
functions of candidate genes have only been reported in one
study (Singh et al., 2015) where cell wall expansion genes were
found in two QTL regions. The functional characterization of
genes is necessary to use them efficiently at the molecular and
genetic level. Furthermore, understanding the function
of genes will also help in navigating the complexity that
arises due to breeding for longer coleoptiles, but shorter
shoots simultaneously.

Allan et al. (1962) reported the correlation between coleoptile
length and final stand establishment in fall sown winter wheat
varieties. However, no study has been done to explore the genetic
regions controlling coleoptile length in winter wheat varieties of
the USA, even though regions of low-precipitation in the Great
Plains and Pacific Northwest necessitates deep sowing to ensure
moisture for germination (Budak et al., 1995; Schillinger et al.,
1998) and better winter survival. Identification and
characterization of QTLs by exclusively using winter wheat
varieties will shed light on the underlying diversity for
coleoptile length, and provide linked markers to facilitate
marker-assisted selection. Further, annotation of genes
associated with coleoptile length in the candidate regions will
help understand the molecular mechanism of coleoptile length in
wheat and other monocots.
February 2020 | Volume 10 | Article 1345
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The objectives of this study were; (i) mapping QTLs that
control the length of coleoptile by conducting genome-wide
association analysis in a hard winter wheat panel of 298 winter
wheat accessions; (ii) identifying SNP markers linked to QTLs
for marker-assisted selection; (iii) identifying candidate genes
located in the QTL regions.
MATERIALS AND METHODS

Plant Materials
In the present study, we used a hard winter wheat association
mapping panel (HWWAMP) of 298 winter wheat accessions
developed under the USDA TCAP project (Guttieri et al., 2015).
The total collection of 298 accessions consists of released
varieties since the 1940s and breeding lines from the US hard
winter wheat growing region including Colorado, Kansas,
Michigan, Montana, Nebraska, North Dakota, Oklahoma,
South Dakota, and Texas. Additional physiological and
agronomic data about the HWWAMP accessions is available
in the T3/Wheat database (https://triticeaetoolbox.org/wheat/
pedigree/pedigree_info.php).

Experimental Setup
Seed for all 298 HWW accessions were harvested from the field
and dried to 11–13% moisture content. The seeds of each line
were then carefully cleaned with a Carter Day dockage tester, and
clean uniform seeds from the #2 middle sieve were collected for
this experiment. Coleoptile lengths of 298 accessions were
evaluated in three independent experiments with two
replications in each experiment. In each experiment, 10
healthy-looking seeds of each genotype were placed and
germinated on a wet paper towel measuring 15 cm x 10 cm
(SGB1924B, Anchor Paper Co., USA). Seeds were placed about 1
cm apart with germ end downwards on wet germination paper
leaving a 1 cm margin at the bottom. Another wet germination
towel of the same size was placed on top. These two germination
papers enclosing the seeds were carefully placed in a plastic bag
and kept at 4°C for 48 h to break the seed dormancy. Later the
plastic bags were hanged vertically in a growth chamber for 14
days at 18°C. After 14 days, coleoptile lengths were measured
using a ruler. Distance between the tip of coleoptile and
scutellum was considered as the length of coleoptile.

Data Analysis
The phenotypic data was analyzed using the linear mixed model
(LMM) approach, considering all factors as random. The
analysis was conducted in R environment (R Core Team,
2016) using R package ‘minque' (Wu, 2014) based on the model:

Yijk = m + Gi + Ej + GEij + Ri jð Þ + eijk (1)

where “µ” stands for population mean, “G” stands for genotypes,
“E” for experiments, “R” for replications nested under
experiments, and “e” for the random error. Broad-sense
heritability (H2) was calculated using equation 2:
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H2 =
s 2
G

s 2
G + s 2

E=n + s 2
G*E=nr

(2)

Where, s2G = genotype, s2E = experiment, s2
G*E = genotype *

experiment, r = number of replications, and n = number
of experiments.

Genotyping
The HWWAMP was genotyped using the wheat Infinium 90K
iSelect array (Illumina Inc. San Diego, CA) under the USDA-
TCAP (Cavanagh et al., 2013) and the genotypic data (21,555
SNPs) was obtained from the T3 Toolbox (https://
triticeaetoolbox.org/wheat/genotyping/display_genotype.php?
trial_code=TCAP90K_HWWAMP). To avoid any spurious
marker-trait associations, the SNP markers with a minimum
allele frequency (MAF) < 0.05 and more than 10% missing SNP
data were excluded from further analyses, leaving 15,590 SNP
markers. The genetic positions of the wheat Infinium 90K iSelect
SNP markers used in the study were obtained from the
consensus genetic map of 46,977 SNPs (Wang et al., 2014).
The SNP flanking sequences were mapped to wheat Chinese
Spring RefSeq v1.1 assembly (IWGSC et al., 2018) using
BLASTN to identify the physical location of the mapped SNPs.

Population Structure And Linkage
Disequilibrium
Population structure among the 298 winter wheat accessions was
studied to determine any relationship between breeding
programs and coleoptile length. We used a set of 15,590 SNP
markers with MAF > 0.05 and less than 10% missing genotypic
data to estimate the population structure using a model-based
Bayesian cluster analysis program, STRUCTURE v2.3.4
(Pritchard et al., 2000). The admixture model was used with 10
independent replicates for each value of genetic groups (K = 1-
10) followed by 10,000 iterations of burn-in and 10,000 Markov
Chain Monte Carlo (MCMC) iterations. Structure Harvester
(Earl and vonHoldt, 2012) was used to extract the output of
the structure analysis. The optimum number of clusters was
inferred using statistic DK (delta K) (Evanno et al., 2005), which
is based on the rate of change in the log probability of given data,
between successive K values. Furthermore, we conducted
principal component analysis (PCA) in TASSEL 5.0 (Bradbury
et al., 2007) using the same set of markers and used the PCA
covariates for GWAS analysis. Linkage disequilibrium (LD)
decay distances for the HWWAMP were calculated using
TASSEL v5.0 (Bradbury et al., 2007) with only 1,842 markers
taking out non-informative markers in our previous study
(Ayana et al., 2018). The estimated r2 values were plotted
against the genetic distance (cM) to elucidate the LD decay for
all as well as individual genomes. The LD (r2 > 0.1) decay
distance of about 4.5 cM was estimated for the whole genome
(Ayana et al., 2018).

Marker Trait Associations
Genome-wide association mapping was conducted using 15,590
SNPs and coleoptile data from 298 HWWAMP accessions using
the mixed linear model (MLM) (Yu et al., 2006) implemented in
February 2020 | Volume 10 | Article 1345
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TASSEL (Trait Analysis by association, Evolution, and Linkage)
v 5.0 software (Bradbury et al., 2007). MLM is mathematically
represented as:

y = Xb + Zu + e (3)

where y represents the vector of the phenotypic values, b
represents fixed effects due to the marker and population
structure, u represents the vector of the random effects, e
represents the vector of residuals, and X and Z are the
incidence matrices for b and u, respectively.

MLM was used as it incorporates kinship and population
structure as covariates to minimize the confounding effects,
reducing the probability of type-I error when compared to the
general linear model (GLM). Kinship (K) was estimated using
the Centered IBS (identity by state) method in TASSEL v 5.0
(Endelman and Jannink, 2012). By default, TASSEL v5.0 uses
PCA as covariates to adjust for the population stratification. We
incorporated the first four PCAs as covariates in the MLMmodel
to reduce the confounding effects. As the false discovery rate
(FDR) correction for multiple testing was too stringent, markers
with a −log10(p-value) > 3 were considered as significant
associations. Furthermore, MLM results from TASSEL v5.0
were confirmed using MLM and SUPER in the genome
association and prediction integrated tool (GAPIT) (Lipka
et al., 2012) implemented in the R environment (R Core Team,
2016). Further, the identified QTLs were also subjected to five-
fold validation (Ramakrishnan et al., 2019). Briefly, the
population was randomly divided into five subsets of equal size
and process was repeated five times. Out of each of the five
subsets, four (240 lines) were used for marker-trait association
analysis and the last set (60 lines) was used to cross-validate the
significant markers using t-test among different alleles of each
significant SNP marker.

Identification and Annotation of the
Candidate Genes in the QTL Regions
We used the flanking sequence of significant SNPs to physically
map them on Chinese Spring Refseqv1.1 (IWGSC, 2018) using
BLASTN search with an E-value cut off 1e-50. To demarcate the
candidate QTL regions, the SNP markers with P < 0.005, both
up- and downstream of the most significant marker, were
identified. The coding sequences (CDS) of high confidence
genes (https://urgi.versailles.inra.fr/jbrowseiwgsc) from each of
these QTL regions were extracted in the FASTA format and
Blast2Go software (https://www.blast2go.com) was used for
functional gene annotation. Consequently, we identified the
candidate genes that may be associated with coleoptile length
based on the LD Decay in the region (Ayana et al., 2018) and
their putative functions after a thorough review of the literature.
RESULTS

Phenotypic Variance
Coleoptile length within 298 winter wheat accessions varied
from 49.40 to 111.00 mm with an overall mean of 74.65 mm
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(Supplementary Table S1). LMM analyses revealed that the
three experiments were consistent (Figure 1, Supplementary
Table S2). Average coleoptile length for the three independent
experiments (further referred to as Exp1, Exp2, and Exp3) was
76.10, 73.50, and 74.00 mm, respectively (Figure 1). Overall,
only 1.24% of the variation was contributed by experiments and
replications together. The estimated broad-sense heritability for
coleoptile length was 73.4%. The median coleoptile length was
71.75 mm. About 25% of the genotypes were less than 66.33 mm
and 25% were above 81.17 mm. The majority of the genotypes
in all the experiments reached a coleoptile length of ≥ 65 and ≤
70 mm (Figure 1). An accession from Oklahoma ‘OK05723W’
had the shortest coleoptile (49.40 mm) while the cultivar
‘AGATE’ had the longest coleoptile (111.00 mm). We also
evaluated if the seed source (location) may have an impact on
the coleoptile length by comparing the coleoptile length of two
varieties from four different locations. The genotype and
location effects were found to be significant for two
genotypes. However, genotype*location interaction was non-
significant, with the ranking of two varieties being the same
across four locations. Thus, the growing environment did not
significantly impact the ranking of the genotypes for
coleoptile length.

LD Analysis and Population Structure
The hard winter wheat association-mapping panel was
characterized for LD in our previous study (Ayana et al.,
2018). LD decay was calculated based on the r2 values for the
whole genome and within each genome of the association panel.
The distance where LD value (r2) decreases below 0.1 or half
strength of D' (D' = 0.5) was estimated based on the curve of the
nonlinear logarithmic trend line. LD dropped to 0.5 at about 4.5
cM for whole-genome; whereas, LD extent in A and B and D
genomes was around 3.4 and 3.6 cM, but much larger in D
genome (14.2 cM) owing to fewer markers.

The association-mapping panel used in this study is
comprised of 298 winter wheat cultivars/breeding lines from
different regions of the USA. We investigated the population
structure to reveal if the association-mapping panel is structured,
based on the breeding programs/origin; and figure out any
relationship of structure with the coleoptile length. We
identified four sub-populations in the HWWAMP, namely: P1,
P2, P3, and P4 (Supplementary Figure S1). Populations P1, P2,
P3, and P4 consist of 120, 34, 33, and 111 genotypes, respectively
with a corresponding average coleoptile length of 79.13, 75.18,
69.91, and 72.20 mm. The average coleoptile length of
population P1 was higher than the populations P2, P3, and P4;
however, it was statistically different only from P3 and P4
(Supplementary Table S3).

Marker Trait Associations (MTAs)
In total, GWAS analysis using MLM in TASSEL v5.0 identified
46 significant SNPs (P < 0.001) in nine genomic regions present
on seven different chromosomes (Supplementary Table S4).
Based on the threshold value of –log10 (p-value) > 3, we
identified 14, 1, 1, 2, 18, 6, and 4 significant SNPs on
chromosomes 2A (QCL.sdsu-2AS), 2B (QCL.sdsu-2BS), 2D
February 2020 | Volume 10 | Article 1345
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(QCL.sdsu-2DS), 3B (QCL.sdsu-3BS), 4B (QCL.sdsu-4BS and
QCL.sdsu-4BL), 5B (QCL.sdsu-5BL), and 6B (QCL.sdsu-6BL),
respectively (Figure 2). Like previous studies (Rebetzke et al.,
2007a; Rebetzke et al., 2014; Li et al., 2017), we also found Rht-B1,
a Gibberelin (GA) insensitive dwarf allele to be associated with
coleoptile length. Out of 298 genotypes, 201 (67.4%) carried the
dwarf allele (allele 2) and 84 (28.2%) carried the tall allele (allele
1) of Rht-B1. In the current study, Rht-B1 linked SNP was highly
significant with a -log10 (p-value) of 9.69 and explained 16.7% of
the variation. The average coleoptile length of genotypes carrying
allele 1 of Rht-B1 was 13.50 mm longer than genotypes carrying
allele 2. Another dwarfing gene, Rht-D1, was not found to be
associated with coleoptile length in the current study as only 14
(4.7%) of 298 individuals carried the dwarf allele for this gene.

In total, the eight QTLs, in addition to Rht-B1 explained 42.2% of
variation in coleoptile length (Table 1). After Rht-B1, QCL.sdsu-4BS
explained the highest variation (10.6%), followed by QCL.sdsu-5BL
and QCL.sdsu-2AS, explaining 5.26% and 5.00% variation,
respectively. The most significant SNPs linked to QTLs,
QCL.sdsu-2AS, QCL.sdsu-2BS, QCL.sdsu-2DS, QCL.sdsu-3BS,
QCL.sdsu-4BS, QCL.sdsu-4BL, QCL.sdsu-5BL, and QCL.sdsu-6BL,
we r e D_F 1BE JMU0 2 J I L PD_ 5 3 , B S 0 0 0 6 7 2 8 0 _ 5 1 ,
D_contig17313_245, Tdurum_contig43252_1407, IAAV971,
RAC875_rep_c82932_407, Tdurum_contig67535_391, and
BS00065357_51, respectively (Table 1). All eight QTLs identified
using TASSEL v5.0 were validated using MLM (P+K model) and
SUPER algorithms implemented in GAPIT to further ascertain the
significance. However, the QQ plots from different algorithms
revealed that MLM model has the better fit than SUPER (results
not shown).

In addition, five-fold cross-validation was used to ascertain
the significance of the identified SNP markers in each genomic
region. After dividing the HWWAMP into five subsets, we used
four sets for the marker-trait association and the remaining set of
Frontiers in Genetics | www.frontiersin.org 5
60 accessions were used for cross-validation of significant
markers. The cross-validation confirmed that six SNPs linked
to QTLs, QCL.sdsu-2AS, QCL.sdsu-2DS, QCL.sdsu-3BS,
QCL. sdsu-4BS , QCL. sdsu-4BL , and QCL. sdsu-5BL,
were significantly associated with coleoptile length (Based
on p-value for T-test, Table 1). Another QTL, QCL.sdsu-2BS
had p-value of 0.06 from the respective t-test; thus, marginally
out at 5% level of significance.

Pairwise comparison among the alleles of the significant SNPs
also verified their association with coleoptile length (Figure 3,
Supplementary Table S5). Positive allele (allele 1) increases the
coleoptile length and its counterpart, negative allele (allele 2)
decreases the coleoptile length. Allele 1 and allele 2 for each of
the most significant SNP on each chromosome is given in
Supplementary Table S5. Individually, coleoptile length
difference between the allele 1 and allele 2 of the SNP on
chromosomes 2A, 2B, 2D, 3B, 4BS, 4BL, 5B, and 6B was 8.62,
3.51, 7.13, 8.25, 10.70, 5.76, 10.94, and 4.56 mm, respectively. All
the differences were significant at a p-value < 0.05. Overall,
QCL.sdsu-5BL has the largest substitution effect (10.94 mm) for
coleoptile length following Rht-B1.

Genotypes With Longer Coleoptiles
We found eight genotypes with coleoptile length longer than 100
mm, namely: ‘CRIMSON’, ‘SCOUT66’, ‘GENOU’, ‘KIRWIN’,
‘KAW61’, ‘LONGHORN’, ‘MT06013’, and ‘AGATE’ (Table 2,
Supplementary Table S6). ‘AGATE’ had the longest coleoptile
length (average 111 mm) followed by ‘MT06103’ (average 110.6
mm). Interestingly, ‘MT06103’ carried positive alleles (allele 1)
for all the SNPs except Rht-B1. ‘AGATE’ was positive for all the
SNPs. Significant SNP data for the other six genotypes are given
in Table 2. From the perspective of most significant SNPs, all of
the eight genotypes with the longest coleoptiles carried positive
alleles for SNPs on chromosomes 2A, 2B, 4B, and 6B. On the
contrary, SNP “Tdurum_cotig67535_391” on chromosome 5B
was only positive in ‘GENOU’, ‘AGATE’, and ‘MT06103’.

Identification of Candidate Genes and
Putative Functions
To facilitate the identification of candidate genes governing
coleoptile length, the chromosome regions were first delimited
based on the consensus genetic map (Wang et al., 2014) and LD
decay distance from our previous study (Ayana et al., 2018).
Subsequently, these demarcated regions were identified by
BLASTN, searching the flanking sequence of significant SNPs
against CS RefSeqv1.1 (IWGSC, 2018). We then delimited the
QTLs region to a 5.3, 5.9, 7, 2, 5.5, and 1.6 Mb region on
chromosomes 2AS, 3BS, 4BS, 4BL, 5BL, and 6BL, respectively.
Contrarily, the significant markers on chromosomes 2BS and
2DS were localized on the terminal regions of respective
chromosomes, with no flanking marker available on the
terminal end in the consensus genetic map (Wang et al., 2014).
Therefore, the terminal regions, 6.9 and 10.3 Mb from 1bp
extending up to the flanking marker on the distal end were
identified as a candidate region on chromosome 2BS and 2DS,
respectively. The putative genes from these regions were further
FIGURE 1 | Boxplots showing the distribution of average coleoptile length of
298 genotypes of hard winter wheat association mapping panel (HWWAMP)
in three experiments.
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narrowed down based on the LD decay distance and proximity to
the most significant SNP. Finally, we annotated the coding
sequences of high confidence (HC) genes in these candidate
regions using the Blast2Go (Conesa et al., 2005).

Overall, 825 high confidence genes from the eight candidate
regions were annotated. Among these genes, we identified
candidate genes with possible involvement in coleoptile length
based on proximity to the most significant SNP and a thorough
review of the literature. Accordingly, we found 28 genes
predicted to encode 10 different putative proteins that can play
a role in governing the coleoptile length (Table 3). In the 5.3 Mb
region spanning QCL.sdsu-2AS, we found five genes that encode
1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
protein, which have possible involvement in coleoptile length.
Frontiers in Genetics | www.frontiersin.org 6
Another gene, TraesCS2A02G033900, is predicted to have a
jacalin-like lectin domain, found to be a coleoptile specific
lectin in barley (Grunwald et al., 2007). For QTL QCL.sdsu-
2BS, we identified two genes encoding a cytochrome P450 87A3-
like, and a probable indole-3-pyruvate monooxygenase
YUCCA5- like proteins. Similarly, two different genes were
identified in the region harboring QCL.sdsu-2DS encoding for
the same two protein. The 2DS region also harbors four other
genes predicted to encode cytochrome P450 85A1-like proteins.
In these two regions (2BS and 2DS), genes encoding cytochrome
P450 87A3-like and cytochrome P450 85A1-like proteins are of
specific interest-based on their established role in other species.
Another QTL, QCL.sdsu-3BS in the 5.9 Mb region of
chromosome 3BS harbored 10 genes of specific interest, all
FIGURE 2 | Distribution of marker-trait associations for coleoptile length in hard winter wheat association mapping panel (HWWAMP) based on their –log(10) p-
values. Manhattan plot was developed using a mixed linear model (MLM) in TASSEL v.5. The -log10 (p-values) from a genome-wide scan are plotted against
particular position on each of the 21 wheat chromosomes. Horizontal line indicate genome-wide significance thresholds.
TABLE 1 | Most significant SNP markers linked to the eight QTLs for coleoptile length detected from genome-wide association analysis of 298 winter wheat genotypes.

QTL Marker Chromosome Mb
a

-log10(p-value) R2 (%) T-test
b

QCL.sdsu-2AS D_F1BEJMU02JILPD_53 2A 15.61 3.80 5.00 6.64E-03
QCL.sdsu-2BS BS00067280_51 2B 6.10 3.25 4.10 6.76E-02
QCL.sdsu-2DS D_contig17313_245 2D 93.44 3.18 4.15 1.78E-05
QCL.sdsu-3BS Tdurum_contig43252_1407 3B 23.78 3.79 5.03 2.74E-04
QCL.sdsu-4BS IAAV971 4B 40.75 7.10 10.56 1.15E-06
QCL.sdsu-4BL RAC875_rep_c82932_407 4B 666.04 3.14 3.93 1.45E-03
QCL.sdsu-5BL Tdurum_contig67535_391 5B 536.63 4.00 5.26 5.18E-02
QCL.sdsu-6BS BS00065357_51 6B 705.75 3.31 4.19 1.25E-01
Rht-B1 Rht-B1 4B 30.86 9.69 16.69 –
February 2020
 | Volume 10 | Ar
aThe SNP position (Mb) is based on the CS RefSeq v1.1 (IWGSC, 2018).
bP-value obtained from the 5-fold cross validation.
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predicted to encode an expansin-like protein. The fifth QTL,
QCL.sdsu-4BS was delimited to a 7 Mb region with 65 annotated
genes including two genes of interest viz. TraesCS4B02G052000
and TraesCS4B02G049800 putatively encoding phytochrome A-
like and receptor protein kinase TMK1-like proteins,
respectively. In the region harboring QCL.sdsu-4BL, a gene
annotated as putative 2-oxoglutarate-dependent dioxygenase
seems a likely candidate as it catalyzes several metabolic
pathways in plants such as a gibberellins pathway. Most of the
identified genes from the QCL.sdsu-5BL region were annotated
as “predicted proteins”, with no clear differentiation into protein
families. Thus, only one gene with a likely role in coleoptile
length was discovered in a 5.5 Mb region harboring this novel
QTL (Table 3). Further, we were unable to select any candidate
genes in the region harboring QTL QCL.sdsu-6BS based on the
available literature.
Frontiers in Genetics | www.frontiersin.org 7
DISCUSSION

Breeding Wheat for Longer Coleoptiles
Winter wheat is grown in a range of harsh environments around
the globe, (Stockton et al., 1996; Bai et al., 2004) and challenges
are further elevated by rising temperatures and unpredictable
droughts. In conditions like hard and dry grounds (drought), and
unpredicted freezing and thawing, early wheat establishment is
challenged, potentially leading to lower yields (Stockton et al.,
1996; Bai et al., 2004). One of the solutions to increase seedling
establishment is deep sowing in order to exploit the leaching
moisture regime. Coleoptile length is the limiting factor for deep
planting since it affects the emergence capacity of seedlings
planted deep, especially in fields with thicker stubble (No-till)
and/or crusted soil surfaces (Rebetzke et al., 2014). Furthermore,
around 90% of the modern semi-dwarf wheat varieties have GA-
FIGURE 3 | Average coleoptile length of hard winter wheat association mapping panel genotypes corresponding to each allele of the most significant marker on the
respective chromosome. Error bars are also shown at top of the bars.
TABLE 2 | Hard winter wheat association mapping panel (HWWAMP) genotypes with coleoptile length longer than 100 mm, along with their genotype for the most
significant markers related to coleoptile length.

SNP on 2A 2B 2D 3B 4BS 4BL 5B 6B Rht-B1 CL* CSE‡

Substitution effect 8.6 3.5 7.1 8.2 10.7 5.8 10.9 4.6 13.5
Allele 1/Allele 2 C/T T/C C/A T/C C/T A/G C/A C/T a/b
CRIMSON 1 1 1 1 1 2 2 1 1 101.00 56.27
SCOUT66 1 1 1 1 1 1 2 1 1 101.50 62.04
GENOU 1 1 N 2 1 1 1 1 1 101.80 57.59
KIRWIN 1 1 1 1 1 1 2 1 1 103.66 62.06
KAW61 1 1 1 2 1 1 2 1 1 105.50 53.78
LONGHORN 1 1 1 1 1 1 2 1 1 106.83 62.04
MT06103 1 1 1 1 1 1 1 1 2 110.66 59.48
AGATE 1 1 1 1 1 1 1 1 1 111.00 72.98
Febru
ary 2020 | Volu
me 10 | Article
*Coleoptile length (mm), ‡Cumulative substitution effect. ‘1' represents positive allele and ‘2' represents the negative allele.
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insensitive dwarfing genes, which are strongly associated with
shorter coleoptiles (Rebetzke et al., 1999; Li et al., 2017; Grover
et al., 2018). One of the easier ways to increase coleoptile length is
pyramiding of larger effect QTLs in modern-day wheat cultivars.
A number of studies have shown that coleoptile length is under
strong additive gene control (Rebetzke et al., 2007a; Spielmeyer
et al., 2007; Yu and Bai, 2010; Li et al., 2011; Rebetzke et al., 2014;
Singh et al., 2015; Li et al., 2017), thus identification of novel
QTLs for increased coleoptile length would be desirable.
Moreover, limited information is available in winter wheat,
compelling winter wheat breeders to rely on spring wheat
resources. Accordingly, we employed GWAS using 298 hard
winter wheat lines in this study to develop resources for longer
coleoptile length in winter wheat.

Phenotypic Evaluation for Coleoptile
Length
Our results for phenotypic evaluation show that sufficient
variation for coleoptile length exists in the hard winter wheat
association panel, with coleoptile length ranging from 49.4 to 111
mm which overlaps with previous studies; 25 to 170 mm
(Rebetzke et al., 2014) and 57 to 202 mm (Li et al., 2017).
Variations among the ranges in different studies can be
attributed to the diversity among the lines used and the
temperature at which seedlings were grown. HWWAMP
constitutes of released winter wheat cultivars and breeding
lines from US winter wheat breeding programs; however, more
diverse germplasm was evaluated in other studies (Rebetzke
Frontiers in Genetics | www.frontiersin.org 8
et al., 2014; Li et al., 2017). The average coleoptile length of
lines from the South Dakota breeding program was highest,
whereas, lines from the Michigan breeding program had the
shortest coleoptile, but we did not see any significant differences
among any of the breeding programs. This suggests that there is
no specific focus or indirect selection for coleoptile length in any
of the hard winter wheat breeding programs in the US.

Plant height has been known to be correlated with be the
coleoptile length (Allan et al., 1962; Allan, 1980; Yu and Bai,
2010; Li et al., 2011; Rebetzke et al., 2016). Although we did not
collect the plant height data on 298 accessions for this
experiment, the HWWAMP has been evaluated for agronomic
traits including plant height under the USDA-NIFA TCAP grant
at several locations and the data is available in the wheat T3
database. We compared plant height at four locations to the
coleoptile length of 298 accessions in this study. As expected,
plant height and coleoptile length showed correlation (0.28, 0.30,
0.26, and 0.37 for four locations, respectively), but these
correlations were not very high. This suggests that other
factors (genomic regions) in addition to plant height QTLs
identified in this study affect the coleoptile length.

QTLs for Coleoptile Length
In the present study, MLM based genome wide associations
identified eight QTLs associated with coleoptile length on seven
different chromosomes. The identified QTLs were validated
using five-fold cross-validation (Ramakrishnan et al., 2019).
This approach validated six of the eight identified QTLs,
TABLE 3 | Annotation of candidate genes in the demarcated QTL regions identified through GWAS in hard winter wheat association mapping panel (HWWAMP).

Chr QTL Gene ID
a

Start position of the gene (bp)
a

Gene Annotation

2AS QCL.sdsu-2AS TraesCS2A02G025800 12,129,444 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G025900 12,139,588 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G026500 12,247,082 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G036900 15,756,318 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G037900 15,959,789 1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
TraesCS2A02G033900 15,011,079 mannose/glucose-specific jacalin-like lectin

2BS QCL.sdsu-2BS TraesCS2B02G009100 5,041,094 cytochrome P450 87A3-like
TraesCS2B02G010100 5,628,213 probable indole-3-pyruvate monooxygenase YUCCA5

2DS QCL.sdsu-2DS TraesCS2D02G012100 5,747,458 probable indole-3-pyruvate monooxygenase YUCCA5
TraesCS2D02G012800 6,204,775 cytochrome P450 87A3
TraesCS2D02G014400 7,062,903 cytochrome P450 85A1
TraesCS2D02G014500 7,072,238 cytochrome P450 85A1
TraesCS2D02G014600 7,085,341 cytochrome P450 85A1
TraesCS2D02G014700 7,089,687 cytochrome P450 85A1

3BS QCL.sdsu-3BS TraesCS3B01G051000 25,906,973 expansin
TraesCS3B01G051100 25,921,029 expansin
TraesCS3B01G051200 26,043,431 expansin
TraesCS3B01G051300 26,057,175 expansin
TraesCS3B01G051400 26,191,126 expansin
TraesCS3B01G051500 26,246,150 expansin
TraesCS3B01G051600 26,301,286 expansin
TraesCS3B01G051800 26,385,625 expansin
TraesCS3B01G051900 26,399,446 expansin
TraesCS3B01G052000 26,430,002 expansin

4BS QCL.sdsu-4BS TraesCS4B02G052000 40,780,124 phytochrome A
TraesCS4B02G049800 38,280,457 receptor protein kinase TMK1-like

4BL QCL.sdsu-4BL TraesCS4B02G389500 665,956,360 putative 2-oxoglutarate-dependent dioxygenase
5BL QCL.sdsu-5BL TraesCS5B02G356700 536,321,998 auxin Efflux Carrier family protein isoform X1
aGene ID and physical positions are based on CS RefSeq v1.1 (IWGSC, 2018).
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namely QCL.sdsu-2AS, QCL.sdsu-2DS, QCL.sdsu-3BS, QCL.sdsu-
4BS, QCL.sdsu-4BL, and QCL.sdsu-5BL (Table 1). Another QTL,
QCL.sdsu-2BS and QCL.sdsu-6BL were not validated using the
five-fold approach. These could be potential associations
affecting coleoptile length and need further validation.

We compared the findings of this study by fetching the
physical location of previously reported QTLs from several
coleoptile length mapping studies (Rebetzke et al., 2007a;
Rebetzke et al., 2014; Singh et al., 2015; Li et al., 2017) (Figure
4). As a result, we identified three novel QTLs, namely,
QCL.sdsu-2AS, QCL.sdsu-4BL, and QCL.sdsu-5BL and four
QTLs that are in the proximity to previously mapped QTLs
(Figure 4). Among the novel QTLs, QCL.sdsu-5BL explains
largest variation (R2 = 5.26%) followed by QCL.sdsu-2AS (R2 =
5.00%). Furthermore, the pairwise comparison among the
alleles of the significant SNPs revealed that QCL.sdsu-5BL has
the largest substitution effect after Rht-B1. Therefore, QCL.sdsu-
5BL is a valuable novel QTL which could be used to compensate
for negative effect of Rht-B1 locus on coleoptile length.

Two QTLs namely QCL.sdsu-2DS and QCL.sdsu-3BS,
previously mapped using Simple sequence repeats (SSR) markers
(Rebetzke et al., 2007b; Singh et al., 2015) were also validated using
SNPs in this study. The newer positions of these twoQTLs are likely
more accurate as highly saturated SNP markers were used in the
current study compared to less dense SSR markers used in the
previous studies. Different studies (Rebetzke et al., 2014; Li et al.,
Frontiers in Genetics | www.frontiersin.org 9
2017) have reported a QTL for coleoptile length on chromosome
4BS. In this study, we identified a QTL (QCL.sdsu-4BS) in the same
region, which is around 10 Mb apart from the Rht-B1 gene
(IWGSC, 2018). Based on the estimated LD (r2 = 0.54) between
the Rht-B1 andQCL.sdsu-4BS, these two could be different regions or
QCL.sdsu-4BS could likely represent Rht-B1. Further investigation is
needed to validate the independence of these regions.

Out of the nine significant associations (including Rht-B1)
found in the current study, seven are mapped to the B genome.
Furthermore, among the total unique QTLs mapped for coleoptile
length so far (including this study), 57% QTLs are mapped on the
B genome, 26% QTLs are mapped on the D genome and 17%
QTLs are mapped on the A genome. Thus, it seems that B genome
comparatively may have more genes controlling the coleoptile
length. It would be interesting to study the variation among the
diploid progenitors of wheat for coleoptile length.

Pyramiding of favorable QTLs can be successfully used for
developing varieties with longer coleoptile (Li et al., 2017). In
agreement with the previous studies (Rebetzke et al., 2014; Li
et al., 2017), we observed an additive effect for coleoptile length
among the identified QTLs in the current study. The stacking of
positive alleles at different loci increased coleoptile length in
additive fashion (Figure 5). A cultivar ‘AGATE’ has all the
positive alleles for associated SNPs and has the longest
coleoptile length. We also compared the allelic composition of
three cultivars having shortest coleoptile length. These three
FIGURE 4 | Chromosomal positions of QTLs associated with coleoptile length identified in the current study and their comparative analysis with the previous
studies. The scale represents physical distance based on Chinese Spring RefSeq 1.1 (IWGSC, 2018).
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cultivars namely ‘GARRISON’, ‘OK5723W’, and ‘OK04505’ have
negative alleles (allele 2) at six, five, and four associated SNPs,
respectively. In addition, all three cultivars have the dwarfing
allele for Rht-B1. Though, it will be desirable to keep the negative
allele of Rht-B1 so that the stature/height of cultivars remains
semi-dwarf. We identified a breeding line ‘MT06103’ which has
the positive alleles at all loci except for the Rht-B1. MT06103 has
coleoptile length very close to ‘AGATE’ (Table 2). While
studying the seedling emergence in fall sown wheat, Allan
et al., 1962 also found a selection (14 X 50-3 B-4), which was
moderately short in plant height but was ranked towards top
with respect to coleoptile length. Thus, it is evident that
coleoptile length can be improved while maintaining short
stature of plant. Thus, such genotypes which already have all
the favorable alleles can directly be exploited in winter wheat
breeding programs to improve the coleoptile length of the
new cultivars.

In silico Gene Annotation of the Candidate
Regions
After a thorough examination of the available literature and
proximity to the most significant SNPs, we identified 27 genes
predicted to have a role that could likely affect coleoptile elongation
(Table 3). We found genes with diverse functions, including
phytohormone biosynthesis-related, cytochrome P450 family
genes, expansins, etc. that are probable candidates. Further, it is
expected that the genes common to many QTL regions are more
likely to play a role in determining the length of coleoptile.

Phytohormones are the signaling molecules, which play a
crucial role in the development and physiological processes in
plants (Rudnicka et al., 2019). Specifically, auxins are a major
group of phytohormones, which affect coleoptile length in grass
species by inducing cell elongation either directly (Vanneste and
Friml, 2009; Paque and Weijers, 2016), or by interacting with
other plant hormones such as ethylene (Woodward and Bartel,
2005). Two genes from different candidate regions on
chromosomes 2BS and 2DS were predicted as indole-3-
pyruvate monooxygenase YUCCA5 protein, which catalyzes
Frontiers in Genetics | www.frontiersin.org 10
the biosynthesis of indole-acetic acid (IAA), the most
commonly occurring natural auxin, from tryptophan (Won
et al., 2011). We also found a PIN protein (a component of
auxin-efflux carrier family) in the QCL.sdsu-5BL region. The PIN
proteins are known to play role in auxin transport and expressed
in several plant tissues, affecting plant growth (Zhou and Luo,
2018). Whereas, another putative ACO1-like protein was found
in the 2AS candidate region. ACO1-like protein is a part of the
ethylene biosynthetic pathway and is speculated to affect rice
coleoptile elongation in stress conditions (Hsu and Tung, 2017).

Brassinosteroids (BRs) play an important role in cell
elongation and proliferation (Nakaya et al., 2002), and thus in
determining plant height. A BR-deficient (brd) mutant was used
to characterize OsDWARF gene in rice, an orthologue of the
tomato DWARF gene and CYP85A1 or BR6OX1 in Arabidopsis
(Shimada et al., 2001; Shimada et al., 2003) and found to affect
polar elongation of stem cells (Hong et al., 2002). Another
cytochrome P450 superfamily protein CYP87A3 has been
characterized in rice as an auxin-induced gene specifically
expressed in coleoptiles (Chaban et al., 2003). In our study, we
found putative cytochrome P450 85A1-like and cytochrome
P450 87A3 proteins spanning the QTLs, QCL.sdsu-2BS, and
QCL.sdsu-2DS which may affect coleoptile length in wheat.
Additionally we found 10 genes all encoding putative expansin
proteins in the genomic region spanning QCL.sdsu-3BS. Our
finding corroborates with Singh et al. (2015) who also reported
the presence of expansin like genes in this region while mapping
coleoptile length in a biparental mapping population. Expansins
have been reported to affect cell growth and elongation (Marowa
et al., 2016); and express in wheat coleoptiles and correlate with
the coleoptile growth (Gao et al., 2007; Gao et al., 2008). The
cytochrome P450 superfamily genes and expansins are thus
strong candidates for coleoptile length and need further
investigation in wheat.

Further, phytochrome A (PHY A) protein identified in the
QCL.sdsu-4BS candidate region is of specific importance with
respect to coleoptile length. In rice, phytochrome A gene is well
known to affect coleoptile elongation, plant height, and internode
elongation either directly or by affecting jasmonate signaling
genes (Garg et al., 2006; Riemann et al., 2008). Apart from these
genes, we also found jacalin-like lectin, related to Horcolin
protein specifically expressed in barley coleoptiles (Grunwald
et al., 2007) and putative 2-oxoglutarate-dependent dioxygenase
(Table 3), related to a versatile enzyme family catalyzing
biosynthesis and catabolism of auxins and gibberellins (Farrow
and Facchini, 2014).
CONCLUSION

Coleoptile length is regularly evaluated in advanced breeding lines
in several breeding programs. However, due to limited knowledge
about the underlying QTLs and linked molecular markers,
breeding for coleoptile length becomes challenging.
Characterization of eight QTLs associated with coleoptile length
in winter wheat and identification of tightly linked SNPs could be
FIGURE 5 | Average coleoptile length corresponding to each stack of
positive alleles in hard winter wheat association mapping panel (HWWAMP).
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a valuable resource for wheat breeders. The critical SNPs
identified in our study could be used to develop breeder friendly
kompetitive allele-specific PCR (KASP) assays (Supplementary
Table S7) for marker-assisted selection (Rasheed et al., 2016; Gill
et al., 2019). Marker-assisted stacking of these QTLs would result
in the development of wheat varieties with longer coleoptile. Also,
these QTLs can be effectively combined with previously reported
QTLs to breed for desired coleoptile length in wheat. In addition, these
markers could beweighted and incorporated into the genomic selection
strategy. Further functional genomic studies are crucial to validate the
effect of the identified candidate genes on coleoptile length.
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