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Background: Despite progress achieved in bladder cancer (BC) treatment, the prognosis of

patients with advanced BC (ie, metastasized from the bladder to other organs) is poor.

Although mortality in cases of low-grade BC is rare, the treatment, such as a radical

cystectomy, often has a serious impact on the quality of life. Thus, research is needed to

identify more effective treatment strategies and this work is aiming to examine the potential

application of combination of radiofrequency ablation (RFA) and SB435142, a inhibitor of

transforming growth factor β (TGFβ)/Smad pathway.

Methods: BC cells were transplanted into nude mice (thymusdeficiency Bal B/c) to

form subcutaneous tumors. The mice with subcutaneous tumors were then treated with

RFA and oral administration of SB431542, an inhibitor of TGFβ/Smad signaling path-

way. The antitumor effect of RFA was measured by tumor proliferation curves and

micro-positron emission computed tomography (micro-PET). The effect of SB431542

on epithelial–mesenchymal transition (EMT) related regulators in subcutaneous tumor

tissues formed by BC cells were examined by quantitative real-time polymerase chain

reaction (qPCR) experiments.

Results: The SB431542 treatment enhanced the antitumor effect of RFA on subcutaneous

growth of BCs. SB431542 also decreased EMT-related regulators in subcutaneous tumor

tissues formed by BC cells in nude mice.

Conclusion: SB431542 enhances the effect of RFA on BC.

Keywords: bladder cancer, radiofrequency ablation, SB431542, epithelial–mesenchymal

transition

Introduction
Bladder cancer (BC) is one of the most common human cancers and is associated

with high morbidity and mortality rates in the absence of optimal treatment.1 For

primary BC or nonmuscle-invasive BC, the first treatment choice is complete

resection of BC tissues (ie, radical treatment).2 Induction and maintenance immu-

notherapy with the Bacillus Calmette–Guérin vaccine or chemotherapies may pre-

vent BC recurrence or lengthen the time to recurrence.2,3 Although radical

treatments may prolong survival in cases of nonmuscle-invasive BC,4 they affect

patients’ quality of life. In advanced BC, systemic cisplatin-based chemotherapies

or immunotherapies may not control the progress of the disease. As a result, the

prognosis of patients with advanced BC remains poor.5 Therefore, more effective

treatment strategies for BC treatment are urgently needed.
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Radiofrequency ablation (RFA), which is a kind of

interventional therapeutic strategy, involves local ablative

therapy to selectively destroy tumor tissues and minimize

damage to tissues surrounding the tumor.6 RFA is a pro-

mising therapeutic strategy and has been widely used in

human cancer treatment, such as advanced hepatocellular

carcinomas.7,8 Although RFA selectively destroys tumor

tissues or decelerates the progress of human cancers, the

potential for rapid and aggressive recurrence of tumors

after incomplete RFA treatment is a major obstacle.7,8 It

is also impossible to infinitely increase the temperature

during RFA, as this would result in serious organ damage.

Therefore, research aimed at the development of adjuvant

treatment strategies for BC that can improve the safety and

effectiveness of RFA therapy is needed.

The ability of RFA to directly target tumor tissue for

destruction makes it important in the treatment of BC.9

RFA can ablate BC tissues and avoid urinary system

damage induced by extensive resection of bladder tissue

in radical treatment of BC. There are only a few reports on

the application of RFA in BC treatment.10 Previous studies

confirmed that the epithelial–mesenchymal transition

(EMT) played an important role in RFA resistance or

tumor recurrence after RFA treatment.11–13 A combination

of RFA with various molecular targeting agents (eg, sor-

afenib or apatinib) enhanced the antitumor effect of RFA

by inhibiting the EMT process.7,13 Therefore, inhibition of

the EMT is a promising approach to combine with RFA.

The transforming growth factor beta (TGFβ)/Smad signal-

ing pathway plays a central role in the EMT process in

human cancer cells.14,15 In the present study, we used

SB431542,16 an inhibitor of the TGFβ/Smad signaling

pathway, to enhance the effect of RFA on BC and exam-

ined its antitumor effect in combination with RFA using in

vivo and in vitro models.

Materials And Methods
Cell Lines And Agents
Clinical specimens of BC were obtained from five patients

with bladder urothelial carcinomas during surgery as part of

normal medical care. The specimens were preserved in our

lab until used. The collection of the clinical specimens and

protocols were in compliance with the Helsinki Declaration.

The methods and research were approved by the ethics

committee of the First People’s Hospital, Qujing City,

Yunnan Province, People’s Republic of China. Informed

written consent was obtained from all the patients. The

represented pathological analysis image of clinical speci-

mens of BC tissues was shown as Supplemental Figure 1.

The antitumor agent SB431542 (Cat. No. S1067) was pur-

chased from Selleck Corporation, Houston, Texas, USA.

Cell Culture And Survival Analysis
The BC cell lines, T24, 5637 or RT4, were purchased from

the Type Culture Collection of the Chinese Academy of

Sciences (Shanghai, People’s Republic of China), a Chinese

government organization containing typical biological sam-

ples. The BC cells were cultured in DMEM (Thermo Fisher

Corporation, Waltham, MA, USA) with 10% FBS (Thermo

Fisher Corporation). SB431542 was initially dissolved in

dimethyl sulfoxide and then diluted with DMEM without

FBS. To determine the impact of SB431542 on BC cell

survival/inhibition, the cells were treated with the following

concentrations of SB431542 for 48 hrs: 10 μmol/L,

3 μmol/L, 1 μmol/L, 0.3 μmol/L, 0.1 μmol/L, 0.03 μmol/L,

and 0.01 μmol/L. MTT assays were then performed, and the

optical density of the cell samples was examined. The inhibi-

tion rates of SB431542 on BC cells’ survival were calculated

using the methods described previously.17,18

Luciferase Experiments
The luciferase reporters (the vectors of luciferase repor-

ters) of TGFβ/Smad signaling pathway, the SRB-Luc or

the 3TP-Luc reporters, were gifts from Dr Fan Feng in

Research Center for Clinical and Translational Medicine,

the 302nd Hospital of Chinese PLA, Beijing, 100039,

People’s Republic of China. The BC cells, which were

transfected with luciferase reporters, were treated with

indicated concentration of SB431542. Then, cells were

harvested for luciferase activation-examination by using

a kit purchased from Promega Corporation (Madison,

Wisconsin, USA) following methods described by Yang

et al (2013) or Lu et al (2013).19,20 The inhibition rated od

SB431542 was calculated by using luciferase activation

and the IC50 values of SB431542 of SB431542 was cal-

culated based on the inhibition rates.

Quantitative Real-Time Polymerase Chain

Reaction (qPCR) Experiments
mRNA was extracted from the BC cells and subcutaneous

tumor samples and subjected to reverse transcription or the

qPCR in accordance with methods described previously.21,22

The primers used in the qPCR experiments are listed in

Table 1.
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Subcutaneous Tumor And RFA Experiments
The BC cells were cultured and harvested to prepare a cell

suspension. The cells were then injected into nude mice to

form subcutaneous tumors. When the tumor volumes

reached 1200–1500 mm3, the mice received RFA

treatment.7,8 The RFA was performed in accordance with

previous methods.7 RFAwas performed at 65–70°C for 3–5

mins to attenuate the subcutaneous growth of these cells.

Subsequently, the mice were treated with different concen-

trations of SB431542 or a solvent control (control) via oral

administration. The antitumor effect of RFA was measured

based on the tumor volumes and tumor weights. The

volumes were calculated based on tumor length and width

in accordance with the methods described previously.23,24

In Vivo Animal Micro-Positron Emission

Computed Tomography (micro-PET)

Experiments
The BC cells were cultured and then seeded into nude

mice to form subcutaneous tumors. The tumors were

then treated by RFA, and the nude mice were analyzed

by micro-PET (positron emission computed tomography).

The absorbance of 18F-FDG (fluorodeoxyglucose) by the

subcutaneous tumors formed by the BC cells was exam-

ined using previously described methods.25,26

Western Blot
The subcutaneous tumor tissues formed by BC cells were

harvested for Western blot experiments. The expression

level of EMT-related proteins was examined by their anti-

bodies (Abcam Corporation, Cambridge, CB2 0AX, UK).

The images of Western blot were quantitative examined by

Image J Software (National Institutes of Health, Bethesda,

Maryland, USA). GAPDH was chosen as a loading

control.

Transwell Experiments
The BC cells were separated from the tumor tissues. The

methods have been described previously.8,23 Single cells

were then separated and analyzed by transwell experi-

ments as described in our previous study.27 SB431542-

and RFA-induced inhibition of in vitro invasion or migra-

tion was calculated as follows: relative invasion/migration

cell number in the control group – relative invasion/migra-

tion cell number in the SB431542/relative invasion/migra-

tion cell number*100% in the control group.

Ethics Statement
For the usage of cell lines or clinical specimens, the

methods, research, protocol or collection of the clinical

specimens were approved by the ethics committee of the

First People’s Hospital, Qujing City, Yunnan Province,

People’s Republic of China. All experiments were per-

formed in compliance with the Helsinki Declaration. The

collection of clinical specimens were the consent of

patients by written consent from all the patients. For

animal experiments, the methods, protocol or usage of

animals were approved by the ethics committee of the

First People’s Hospital, Qujing City, Yunnan Province,

People’s Republic of China. All animal studies were car-

ried out in accordance with the UK Animals (Scientific

Procedures) Act 1986 and associated guidelines.

Statistical Analysis
Statistical analysis was performed by Bonferroni correction,

with or without a two-way analysis of variance using SPSS

Software (IBM Corporation, Armonk, NY, USA). The IC50

or EC50 values (50% effective concentration on agents’

Table 1 Primers Used in This Work

Targets Primers Sequences (5ʹ-3ʹ)

β-Actin Forward

Sequence

CTCCATCCTGGCCTCGCTGT

Reverse

Sequence

GCTGTCACCTTCACCGTTCC

E-cadherin Forward

Sequence

AAGGCACGCCTGTCGAAGCA

Reverse

Sequence

ACGTTGTCCCGGGTGTCATCCT

N-cadherin Forward

Sequence

CCTCCAGAGTTTACTGCCATGAC

Reverse

Sequence

GTAGGATCTCCGCCACTGATTC

Vimentin Forward

Sequence

AGGCAAAGCAGGAGTCCACTGA

Reverse

Sequence

ATCTGGCGTTCCAGGGACTCAT

Snail Forward

Sequence

TGCCCTCAAGATGCACATCCGA

Reverse

Sequence

GGGACAGGAGAAGGGCTTCTC

Twist Forward

Sequence

GCCAGGTACATCGACTTCCTCT

Reverse

Sequence

TCCATCCTCCAGACCGAGAAGG
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inhibition rate or 50% effective concentration on agents’

effective rate) were calculated using Origin software, ver-

sion No 6.1 (OriginLab Corporation, Northampton, MA,

USA). A P-value of <0.05 was considered statistically

significant.

Results
SB431542 Inhibited The EMT Process In

Cultured BC Cell Lines
To examine the effect of SB431542 on BC cells, a patient-

derived BC cell line was cultured and treated with the

indicated concentrations of SB431542. As shown in

Figure 1, SB431542 inhibited the survival and EMT of

BC cells. The effect of the SB431542 treatment on the BC

cell lines from the five patients is shown in Table 2.

SB431542 inhibited the survival of the BC cells in a

dose-dependent manner. In addition, the SB431542 treat-

ment inhibited the EMT process in these cells (Table 3).

The effective dose of SB431542 in terms of the EMT in

BC cells was much lower than the effective dose of

SB431542 on BC cell survival (Tables 2 and 3). To exam-

ine the specificity of SB435142, the activation of 3TP-Luc

or SRB-Luc, two luciferase reporters of TGFβ/Smad was

examined. As shown in Supplemental Table 1 and

Supplemental Table 2, SB431542 repressed the activation

of the two reporters in a dose-dependent manner in BC

cells, both in current cell lines or PDCs. Therefore,

SB431542 could be used in BC treatment.

Figure 1 The effect of SB431542 on BC cells. A patient-derived BC cell line (patient no. 1) treated with the indicated concentrations of SB431542. The BC cells were

harvested for MTTexperiments (A) or qPCR experiments (B–D). The inhibition rates or effective rates of SB431542 on BC cell survival (A), E-cadherin (B), N-cadherin (C)

and vimentin (D) are shown as the mean±SD. *P<0.05 versus a solvent control with SB431542.

Abbreviations: BC, bladder cancer; qPCR, quantitative real-time polymerase chain reaction.
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SB431542 Inhibited The EMTOf BC Cells

In Subcutaneous Tumors
To further examine the effect of SB431542 on BC cells,

the BC cells obtained from the five patients were injected

into nude mice to form subcutaneous tumors. In this

patient-derived tumor xenograft model, the mice were

treated with various concentrations of SB431542. As

shown in Figure 2 and Table 4, SB431542 inhibited sub-

cutaneous growth of BC cells in a dose-dependent manner.

Furthermore, SB431542 decreased the expression of

N-cadherin or vimentin and enhanced the expression of

E-cadherin in subcutaneous tumors formed by the BC cells

(Figure 3). The SB431542 treatment inhibited the EMT in

the BC cells in these subcutaneous tumors. Among the

various concentrations of SB431542, concentrations of

0.3 mg/kg, 1 mg/kg, 3 mg/kg and 10 mg/kg inhibited the

EMT process in the BC cells in subcutaneous tumors

(Figures 2 and 3, Tables 4 and 5). A concentration of

1 mg/kg of SB431542 which could significantly inhibit

the EMT process of BC cells was selected for use in

subsequent experiments.

SB431542 Enhanced The Antitumor

Effect Of RFA And Inhibited The EMT In

BC Cells In Subcutaneous Tumors
The BC cells were subcutaneously injected into nude

mice. The results are shown in Figure 4. As depicted in

Figure 4, the RFA treatment resulted in shrinkage of the

subcutaneous tumors formed by the BC cells.

Administration of a 1 mg/kg dose of SB431542 enhanced

the antitumor effect of RFA. The expression of

EMT-related factors in subcutaneous tumor tissues was

then examined by qPCR experiments and similar results

were obtained from Western blot (Supplemental Figure 2

and Supplemental Figure 3). The images of Western blot

are shown as Supplemental Figure 2 and the results from

quantitative analysis are shown as Supplemental Figure 3.

Moreover, as shown in Figure 5, the RFA treatment

induced the EMT process of cells in subcutaneous tumors,

and the SB431542 treatment inhibited the EMT process

induced by RFA. To further examine the antitumor effect

of RFA on tumor tissues, micro-PET screening was per-

formed to determine the vitality of the BC cells in the

tumor tissues. As shown in Figure 6, the RFA treatment

significantly inhibited the vitality of these cells, and a dose

of 1 mg/kg of SB431542 enhanced the effect of RFA.

To further examine the antitumor effect of SB431542,

the cells were isolated from the subcutaneous tumors

formed by the BC cells (Figure 4) for transwell assays.

As depicted in Figure 7, both the SB431542 treatment and

RFA treatment attenuated in vitro invasion or migration of

single cells separated from the tumor tissues, and

SB431542 enhanced the effect of RFA. Next, the in vivo

growth of the single cells separated from the tumor tissues

seeded into nude mice was examined. As presented in

Figure 8, the RFA treatment decreased the subcutaneous

growth of the cells, and the SB431542 treatment enhanced

the effect of RFA on the BC cells. Thus, SB431542

enhanced the antitumor effect of the RFA treatment.

Discussion
The important role of RFA in local therapy for advanced

HCC treatment is well known.28 Recently, RFA has also

been used to treat other cancers, such as non-small-cell lung

cancer.29 However, previous studies demonstrated tumor

recurrence after RFA treatment, as well as incomplete abla-

tion, which can induce cellular stress and lead to patholo-

gical changes, such as the EMT.11–13 The same studies

reported that EMT was related to RFA resistance or

Table 2 The IC50 Values Of SB431542 On BC Cells’ Survival

PDC IC50 values (μmol/L) of SB431542 on cells’

survival

No. 1 4.37±0.35

No. 2 2.52±0.22

No. 3 5.55±0.44

No. 4 3.33±0.10

No. 5 2.67±0.66

Averaged data 3.69±1.27

Abbreviations: PDC, patients derived cells; BC, bladder cancer; IC50, half-effect

concentration of inhibition rates.

Table 3 The IC50 Values Of SB431542 On BC Cells’ EMT Process

PDC E-Cadherin N-Cadherin Vimentin

IC50 Or EC50 values of SB431542 on cells’

EMT

No. 1 0.33±0.01 0.21±0.02 0.25±0.05

No. 2 0.26±0.01 0.28±0.04 0.30±0.03

No. 3 0.51±0.05 0.32±0.02 0.46±0.04

No. 4 0.25±0.04 0.25±0.04 0.25±0.04

No. 5 0.38±0.03 0.38±0.03 0.38±0.03

Averaged data 0.35±0.10 0.29±0.06 0.33±0.09

Abbreviations: PDC, patients derived cells; BC, bladder cancer; IC50, half-effect

concentration of inhibition rates; EC50, half-effect concentration of effective rates;

EMT, epithelial–mesenchymal transition.
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recurrence of tumors after RFA. The TGFβ signaling path-

way is one of the foremost mediators of the EMT,15,16 and

the TGFβ/Smad signaling pathway plays an important role

in many important physiological processes, such as neuro-

muscular regulation and bone metabolism.30–32 The septi-

city of SB431542 was examined by luciferase experiments:

treatment of SB431542 inhibited the activation of 3TP-Luc

or SRB-Luc in a dose-dependent manner. The 3TP-Luc or

SRB-Luc is the common and widely accepted tools to

examine the activation of TGFβ/Smad pathway.33–35 The

findings of the present study suggest that inhibition of

Figure 2 The effect of SB431542 on subcutaneous growth of BC cells. A patient-derived BC cell line (patient no. 1) was injected into nude mice to form subcutaneous

tumors. The mice were treated with the indicated concentrations of SB431542 via oral administration. Results of effect of SB431542 on BC cells’ subcutaneous growth were

shown as photographs (A), tumor volumes (B) and tumor weights (C). *P<0.05.
Abbreviation: BC, bladder cancer.

Table 4 The IC50 Values Of SB431542 On Subcutaneous Tumor

Formed By BC Cells

PDX IC50 values (mg/kg) of SB431542 on cells’

survival

No. 1 1.24±0.45

No. 2 0.93±0.22

No. 3 1.10±0.30

No. 4 1.46±0.67

No. 5 1.02±0.35

Averaged data 1.15±0.20

Abbreviations: PDX, patient-derived tumor xenograft; BC, bladder cancer; IC50,

half-effect concentration of inhibition rates.
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activation of the TGFβ/Smad signaling pathway is a pro-

mising approach to enhance the antitumor effect of RFA.

In the present study, we established an RFA model

based on subcutaneous growth of BC cells derived from

BC patients. Subsequent treatment with SB431542 inhib-

ited the EMT of BC cells and enhanced the antitumor

effect of RFA in multi-models, eg, subcutaneous tumors.

These findings point to the potential importance of

SB431542 as an adjuvant in antitumor therapy. A urothe-

lial carcinoma, also known as a transitional-epithelial

tumor carcinoma, is the most common pathological sub-

type of BC.36–38 Given the histological features (epithelial

source/origin) of urothelial carcinomas, the EMT may be

Figure 3 The effect of SB431542 on the EMT process in BC cells in subcutaneous tumors. A patient-derived BC cell line (patient no. 1) was injected into nude mice to form

subcutaneous tumors. The mice were treated with the indicated concentrations of SB431542 via oral administration. Tumors were harvested for qPCR experiments. The

inhibition rates or effective rates of SB431542 on tumor weights (A), E-cadherin (B), N-cadherin (C) and vimentin (D) are shown as the mean±SD. *P<0.05.
Abbreviations: BC, bladder cancer; EMT, epithelial–mesenchymal transition; qPCR, quantitative real-time polymerase chain reaction.

Table 5 IC50 Values Of SB431542 On Subcutaneous Tumor

Formed By BC Cells’ EMT

PDX E-Cadherin N-Cadherin Vimentin

IC50 or EC50 values (mg/kg) of SB431542 on

cells’ EMT

No. 1 0.11±0.00 0.20±0.03 0.15±0.02

No. 2 0.15±0.02 0.25±0.01 0.22±0.03

No. 3 0.25±0.03 0.16±0.02 0.24±0.05

No. 4 0.08±0.01 0.11±0.02 0.10±0.01

No. 5 0.13±0.02 0.21±0.04 0.13±0.02

Averaged data 0.14±0.06 0.19±0.05 0.17±0.06

Abbreviations: PDX, patient-derived tumor xenograft; BC, bladder cancer; IC50,

half-effect concentration of inhibition rates; EC50, half-effect concentration of effec-

tive rates; EMT, epithelial–mesenchymal transition.

Dovepress Zhou et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
7815

http://www.dovepress.com
http://www.dovepress.com


closely related to the occurrence and progression of BC.

The EMT may also play a role in BC cell tolerance to

treatment.39,40

Radical treatment for BC, such as a cystectomy, can

markedly prolong the survival of BC patients.1–3 However,

both total and partial bladder resection affect the quality of

life of the patient.1–3 In advanced BC, where metastasis or

invasion has occurred, surgical treatment may be

contraindicated.1–3 In this setting. RFA can play a role

by precisely targeting and destroying local tumor tissue

and reducing damage to tissues surrounding the tumor.7,8

There are few reports on the application of RFA in BC.

The present study established a relevant research model

that not only contributes to RFA-related research on BC

but also to clinical treatment selection.

The methodological approach used in this study is

transferable to the clinical setting. We also determined

the weights of the subcutaneous tumors and generated

tumor-growth curves, which quantitatively reflected the

antitumor effects of RFA on tumor tissues. Furthermore,

we used micro-PET, which is an effective in vivo imaging

technique, to visually reflect the effect of RFA on the

viability of tumor tissues. Further isolation/separation of

cells from the tumor tissue and subsequent analysis further

confirmed the antitumor effect of RFA and SB431542. It is

reported that, some molecular targeting agents, including

aorafenin or apatinib, could inhibit the EMT of cancer

cells.41–45 However, these agents were targeting to the

receptor tyrosine protein kinases represented by vascular

endothelial growth factor receptor.46–52 Therefore, the

inhibitor of TGF/Smad pathway may be a more useful or

specific strategy to enhance the efficiency of RFA via

repressing EMT process.

It is worth mentioning that the RFA conditions used in

this study are similar to those of incomplete ablation.

Thus, RFA can change the characteristics of tumor cells

Figure 4 The effects of a combination of SB431542 and RFA on subcutaneous growth of BC cells. A patient-derived BC cell line (patient no. 1) was injected into nude mice

to form subcutaneous tumors. RFA of the tumor tissues was performed, and the mice were treated with SB431542 at a dose of 1 mg/kg via oral administration. The results

are shown as photographs (A) of subcutaneous tumors, tumor-growth curves (B) or tumor weights (C) at the end of the experiment. *P<0.05.
Abbreviations: BC, bladder cancer; RFA, radiofrequency ablation.
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and induce the EMT process in tumor cells while inducing

tumor cell injury and delaying the growth of tumor tissues.

The tumor model established herein was a subcutaneous

tumor model. Future research will focus on how to estab-

lish bladder in situ tumors or simulate the characteristics

of bladder organs.

Figure 5 The effects of a combination of SB431542 and RFA on the EMT in subcutaneous tumor cells. A patient-derived BC cell line (patient no. 1) was injected into nude

mice to form subcutaneous tumors. RFA of the tumor tissues was performed, and the mice were treated with SB431542 at a dose of 1 mg/kg via oral administration. Tumors

were then harvested for qPCR experiments. The mRNA levels of E-cadherin (A), N-cadherin (B), vimentin (C), ZEB1 (D), twist (E) and Snail (F) in tumor tissues are shown

as scatter diagrams. *P<0.05.
Abbreviations: BC, bladder cancer; RFA, radiofrequency ablation; EMT, epithelial–mesenchymal transition; ZEB1, zinc finger E-box binding homeobox 1.

Figure 6 Results of the micro-PET analysis of the combined effect of SB431542 and RFA on subcutaneous growth of BC cells. A patient-derived BC cell line (patient no. 1)

was injected into nude mice to form subcutaneous tumors. RFA of the tumor tissues was performed, and the mice were treated with SB431542 at a dose of 1 mg/kg via oral

administration. The results of micro-PET at particular time points, showing (A) images of micro-PET, (B) tumor areas and (C) tumor intensity. In the micro-PET images, the

arrows indicate the location of the tumor tissues (A). *P<0.05 versus control group with RFA treatment group; #P<0.05 versus RFA treatment group with RFA+SB431542

treatment group.

Abbreviations: BC, bladder cancer; qPCR, quantitative real-time polymerase chain reaction; RFA, radiofrequency ablation; PET, positron emission computed tomography.
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Figure 7 In vitro invasion or migration of BC cells separated from subcutaneous tumors. The subcutaneous tumor tissues (Figure 4) were harvested, and single cells were

separated. Transwell experiments were then performed to determine in vitro invasion or migration. Photographs of in vitro invasion (A) and migration (B). The results are

the mean±SD. *P<0.05.
Abbreviation: BC, bladder cancer.
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Conclusion
Only a few previous studies have reported antitumor effects

SB431542 on BC.53–55 In the present study, SB431542 inhib-

ited the effects of the RFA-induced EMTand upregulated the

antitumor effect of RFA. Thus, SB431542 enhanced the

effect of RFA on BC. The results indicate that SB435142

combined with RFA is a new and promising treatment strat-

egy for BC.
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