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INTRODUCTION

The Plasmodium parasites belong to the phylum Apicomplexa, and harbor a vital multi membrane
organelle known as apicoplast (McFadden et al., 1996; Foth and McFadden, 2003). Various
metabolic pathways are functional inside the apicoplast; however, isoprenoid biosynthesis is the
essential one of these pathways (Jomaa et al., 1999). The isoprene units are produced via two routes
in this pathway, mevalonate dependent (MVA; functional in archaea and most eukaryotes) (Katsuki
and Bloch, 1967; Lynen, 1967) or mevalonate independent (MEP; functional in bacteria, plant
plastid, and apicomplexan parasites) (Arigoni et al., 1997). The MEP pathway is significantly
different from the MVA pathway. The malaria parasites completely lost the MVA pathway during
the evolutionary process, and the MEP pathway was left as the only option to supplement the
isoprenoids requirements (Figure 1). Two foundational questions erupted from this process. (1)
Why apicoplast-restricted MEP pathway is essential for the malaria parasite and (2) Is the MEP
pathway being the only important function of the apicoplast during erythrocytic stages? It is
possible that during evolution, the malaria parasite retained the simple energy-efficient MEP route
for the biosynthesis of isoprenoids. Whereas, the complex MVA route being extinct made the
apicoplast an essential site for this pathway. This opinion became more compelling when MEP
pathway inhibition resulted in the immediate death of the parasites, and these parasites were
recovered with the external supply of isopentenyl-5-pyrophosphate (IPP) (Yeh and DeRisi, 2011).
In addition, gene knockout studies in parasites reveal that other metabolic pathways (type II fatty
acid biosynthesis (FASII), haem biosynthesis, and iron–sulfur cluster biosynthesis) are not essential
during erythrocytic stages (Seeber, 2003; Ralph et al., 2004). However, the malaria parasite does
require the FASII pathway during the liver stage (Vaughan et al., 2009). Genome-based comparison
of Plasmodium parasites with blood stage-specific parasites Babesia and Theileria highlights that
these parasites lack the gene involved in FASII and haem biosynthesis along with significantly
reduced suf genes involved in Fe–S cluster biosynthesis (Brayton et al., 2007; Sato, 2011). This
reduction in apicoplast metabolism represents the limited use of apicoplast in these parasites and
suggests that the isoprenoid biosynthesis is the prime function of apicoplast during malaria
parasites’ erythrocytic (Cassera et al., 2004) and hepatic stages (Sparr et al., 2013). It also
implicates that the Fe–S cluster pathway is only required when the MEP pathway is essential for
malaria parasites. Additionally, MEP pathway products were also produced and utilized in the early
stages of parasite gamete development (Wiley et al., 2015).
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FIGURE 1 | Flowchart representation of apicoplast MEP pathway adapted from Saggu, 2016. Isoprenoids are derived from the basic 5-carbon isoprenoid
building blocks of IPP and its isomer, DMAPP. In the MEP pathway, IPP and DMAPP are generated from pyruvate and GA3P and thought to be transported by
putative transporter TPT and PPT. Enzymes of this pathway are encoded by parasite nuclear genome and targeted to apicoplast by NEAT sequence. Pathway
products are exported out of the apicoplast to parasite cytosol with an unknown mechanism. FOS inhibits the rate-limiting steps of this pathway and blocks the
biosynthesis of isoprenoids. Ferredoxin is reduced by the NADPH-dependent enzyme ferredoxin-NADP+ reductase and is believed to provide electrons to IspG
and IspH enzymes. The MEP pathway is a cascade of enzymatic reactions where inhibition of any step could impede the parasite growth. However, the reduced
condition made IspG and IspH enzymes more critical. 3PGA, 3-phospho-glyceraldehyde; CDP-ME, 4-diphosphocytidyl-2C-methyl-D-erythritol; CDP-ME2P, 4-
diphosphocytidyl-2C-methyl-D-erythritol-2-phosphate; CL, cholesterol; DC, dolichols; DHAP, dihydroxyacetone phosphate; DMAPP, dimethylallyl pyrophosphate;
DXS, 1-deoxy-D-xylose-5-phosphate synthase; DOXP, 1-deoxy-D-xylose-5-phosphate; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; FOS, fosmidomycin;
GA3P, glyceraldehyde-3-phosphate; HMBDP, 4-hydroxy-3-methyl-2-(E)-butenyl-4-diphosphate; IPP, isopentenyl-5-pyrophosphate; IspC, 2C-methyl-D-erythritol
4-phosphate synthase; IspD, 4-diphosphocytidyl-2C-methyl-D-erythritol synthase; IspE, 4-diphosphocytidyl-2C-methyl-D-erythritol kinase; IspF, 2C-methyl-D-
erythritol 2,4-cyclodiphosphate synthase; IspG, 2C-methyl-D-erythritol 2,4-cyclodiphosphate reductase; IspH, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate
reductase; MECP, 2C-metyl-D-erythritol 2,4-cyclodiphosphate; MEP, 2C-methyl-D-erythritol 4-phosphate; PEP, phosphoenolpyruvate; PPT, phosphoenolpyruvate
transporter; TPT, triose-phosphate transporter; UQ, ubiquinones.

Saggu Plastid in Malaria Parasite
What makes apicoplast exclusive for the MEP pathway could
be justified with the reducing environment provided inside the
apicoplast. It was hypothesized that in the malaria parasite,
ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) play
a central role in the apicoplast maintenance and function
(Vollmer et al., 2001; Kehr et al., 2010; Gisselberg et al., 2013).
Recent studies described that this system maintains a redox
balance in the organelle where it exclusively provides reducing
power to various Fe–S cluster-dependent proteins functional
inside the apicoplast without having any role in apicoplast
maintenance (Swift et al., 2022). Further interrogation of MEP
pathways enzymes states their specific requirement of reducing
environment, divalent cations, and electron transfer through
NADP that could only be possible inside the apicoplast.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
Another point of evidence provided by the failed attempt to
create a complete MEP pathway in Saccharomyces cerevisiae,
later attributed to the lack of a suitable redox environment
(Partow et al., 2012). Studies described so far specify that the
sole function of the apicoplast is to provide a reduced
compartment for successful completion of the MEP pathway,
sugges t ing that the s i t e o f pathway execut ion i s
more fundamental.

The structures of the MEP pathway enzymes were predicted
from various microorganisms, plants, and malaria parasites
(Umeda et al., 2011; Handa et al., 2013; Rekittke et al., 2013;
O'Rourke et al., 2014; Umeda et al., 2015), providing an insight
into the enzyme kinetics (Saggu et al., 2016). It highlights that the
divalent cation and electron transfer process are crucial for the
April 2022 | Volume 12 | Article 881825
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substrate binding and for the enzyme conformational changes. For
example, the enzymatic activityof IspG(4-hydroxy-3-methylbut-2-
en-1-yl diphosphate synthase, also named GcpE) and IspH (4-
hydroxy-3-methyl-2-(E)-butenyl-4-diphosphate reductase (lytB))
enzymes are solely dependent on the reducing environment
(Figure 1). The IspG enzyme involved in the penultimate step of
the MEP pathway catalyzes the conversion of cyclic 2-C-methyl-d-
erythritol-2,4-cyclodiphosphate (MECP) molecule to aliphatic 4-
hydroxy-3-methyl-2-(E)-butenyl-4-di phosphate (HMBDP) in a
stepwise process.Here, IspGenzymecoreprovides a binding site for
MECP substrate on a TIM barrel domain followed by the [4Fe–4S]
cluster binding to the conserved cysteine residues aligned in the cap
region (Saggu et al., 2017). This binding is highly dependent on a
redox reaction where electrons required for the conversion process
are thought to be supplied by ferredoxin through [4Fe–4S] clusters
(Röhrich et al., 2005; Pala et al., 2019). This close confirmation lets
[4Fe–4S] cluster come in proximity to theMECP substrate, and the
electron transfer process converts the cyclic MECP to an aliphatic
HMBDP product. This HMBDP is then converted to the IPP and
DMAPP by IspH enzyme in a three-step conversion process: (i)
removal of a hydroxyl group, (ii) transfer of two electrons from the
[4Fe–4S] cluster, and (iii) the protonation of an intermediate allylic
anion (Laupitz et al., 2004). IspH enzyme has two domains, a LytB
domain for the binding of HMBDP and a [4Fe–4S] cluster-binding
domain-like IspG. In this process, the Fe–S cluster biosynthesis
pathway has an essential function to provide [4Fe–4S] clusters for
the IspGand IspHenzyme functionality (Figure1) (Pala etal., 2018;
Swift et al., 2022). In our study, the IspG enzyme expressed and
purified in laboratory conditions was not functional until a [4Fe–
4S] cluster to this oxidized IspGwas not transferred in an artificially
reduced environment (Pala et al., 2016; Saggu et al., 2017; Pala
et al., 2019).

An interesting Plasmodium parasite line was engineered
where isoprenoid precursors are produced using the MVA
route with an external supply of mevalonate (Swift et al.,
2020). However, IspG and IspH enzyme deletion stunted these
parasites’ growth in the absence of mevalonate (Swift et al.,
2022). Indirect involvement of IspG enzyme was also studied
where enzyme inhibition led to the accumulation of MECP
substrate resulting in retrograde signaling, altering the nuclear
architecture and functional dynamics (Xiao et al., 2012). Studies
described here support the view that during evolution, parasites
were unable to replace the functionality and environmental
condition facilitated by the apicoplast and that seems to be the
fundamental reason to let apicoplast persist inside the parasite.
In the future, it is possible to witness a parasite lacking this
compartment; however, that will either require a parasite
growing without isoprene units or a more efficient organelle
facilitating equally good environmental conditions.
APICOPLAST AND MEP PATHWAY
ENZYMES AS DRUG TARGETS

The apicoplast division is tightly regulated with a dynamin-like
protein equivalent to plant plastids (Striepen et al., 2000;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
van Dooren et al., 2009) and might have a physical connection
between their genome and centrioles in the cytoplasm, which
neatly ensures the crucial portioning of the organelle genome
into daughter cells (Francia et al., 2012). A close association
between apicoplast and mitochondria was reported in malaria
parasites, emphasizing its correlation with other organelles
during its progression to the next parasitic stage (van Dooren
et al., 2005). During metabolic processes, various steps of the
haem biosynthesis pathway jump between apicoplast and
mitochondria giving a hint about the transport between these
organelles. However, this phenomenon is not validated with the
presence of any transporter.

The apicoplast genome consists of a reduced 35-kb circular
molecule that encodes for the limited housekeeping functions
(approximately 30 proteins, tRNAs, and some RNAs) (Fichera
and Roos, 1997; Saxena et al., 2012). In contrast, more than 500
proteins are encoded and translocated from the parasite cytosol
to the apicoplast with the help of a bipartite leader sequence
(Ralph et al., 2004). These proteins are known as nuclear-
encoded apicoplast-targeted (NEAT) proteins and are involved
in various metabolic pathways (Parsons et al., 2007). The
apicoplast housekeeping processes are significantly different
from the host, suggesting their value as a target for the
development of potent and safe therapies for malaria
treatment. Inhibition of these processes with antibiotics limits
the division of apicoplast and its progression into subsequent
stages, ultimately killing the apicoplast-free parasite after 48 h,
known as the delayed death effect (Kennedy et al., 2019).
However, these apicoplast-free parasites could be revived with
an external supply of IPP, the final product of the MEP pathway
(Yeh and DeRisi, 2011). This delayed death phenomenon also
limits the use of these inhibitors in the case of severe malaria.

Metabolic pathway enzymes were also explored as putative
drug targets, and initial studies reported FASII enzymes as a
promising target (Waller et al., 2003). However, later studies
questioned the essentiality of this pathway during erythrocytic
stages (Vaughan et al., 2009). Whereas, inhibition of MEP
pathway enzymes causes the immediate death of parasites. The
IspC (DXP reductoisomerase/DXR) and IspD [2-C-methyl-D-
Erythritol 4-phosphate cytidylyltransferase (YgbP)] enzymes are
studied extensively as a target of natural antibiotic fosmidomycin
(Fos) (Jomaa et al., 1999; Zhang et al., 2011; Imlay et al., 2015;
Saggu et al., 2018), and these studies also made it to the clinical
stages (Wiesner and Jomaa, 2007). However, drawbacks like low
absorption and shorter half-life (Kuemmerle et al., 1985) did not
allow it to stand alone for further validation, and hence, it was
used in combination with other antimalarials (Na-Bangchang
et al., 2007). To overcome this limitation, different research
groups synthesized various analogs of Fos with chemical
modification without any success or activity equal to Fos in
vivo. During the inhibition process, Fos competes for the binding
on the active site of the IspC enzyme, and P. falciparum had one
strain develop resistance against it by higher production of IspC
substrate, 1-deoxy-D-xylose-5-phosphate (DXP) (Wang et al.,
2018). Based on the similarity with prokaryotic and plant MEP
pathways, other enzymes of the MEP pathway were also mapped
April 2022 | Volume 12 | Article 881825
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and studied as a target for various inhibitors (Wang et al., 2010;
Saggu et al., 2016). This pathway provides multiple opportunities
to develop a valuable combination therapy that could be either
the various enzymes of this pathway or the redox environment
created for the functioning of this pathway (Saggu et al., 2016;
Kimata-Ariga and Morihisa, 2022).
CONCLUSION

Apicoplast origin with secondary endosymbiosis resulted as a
continuous degenerative process for this relict essential plastid.
This process started with losing its autonomous power by losing
its photosynthetic ability followed by genome translocation to
the host cell (McFadden and van Dooren, 2004), making it
exclusively host-cell dependent. For establishing a symbiotic
relationship, the host cell reduced its metabolic functionality,
which was equivalent to the apicoplast, and with progression,
these metabolic pathways became essential for the host.
However, continuous degenerative processes made these
pathways more concise and restricted to a few enzymatic
reactions. In the present form, the only essential function
performed by the apicoplast is the MEP pathway. It requires
the Fe–S cluster pathway to synthesize and transfer the [4Fe–4S]
cluster to various enzymes in a redox environment created by Fd
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
and FNR (Swift et al., 2022). As discussed earlier, these enzymes
are NEAT proteins but their import mechanism is not well
understood. In this scenario, it could be hypothesized that
inhibition of the import of these proteins into the apicoplast
could also lead to outcomes like MEP pathway inhibition. In the
future, with this continuous degenerative process apicoplast
replacement may be possible with another compartment
providing environmental conditions suitable for the MEP
pathway enzyme functionality.
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