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Abstract: Plants in nature are under the persistent intimidation of severe microbial diseases, threat-
ening a sustainable food production system. Plant-bacterial pathogens are a major concern in the
contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-
based bactericides have been extensively used to evade plant bacterial diseases. To counteract this
pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive
immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial
compounds on the environment and human health, accentuates the development of an alternative
disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively
employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna
and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging
anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics
of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust
phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review,
we highlight the concrete and fundamental determinants in the development and application of
phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens.
Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria
for the biocontrol of devastating plant diseases.

Keywords: plant-bacterial pathogen; anti-phage defense; phage cocktail therapy; polyvalent phage;
biocontrol

1. Introduction

The immensely expanding human population on planet Earth poses intimidating
threats to the food supply chain, which creates ruinous food security risks. To meet the
overwhelming demand, a sustainable food production system may need to be developed
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by reducing the impact of crop diseases. Emerging plant diseases of crops caused by
a variety of major phytopathogens, including viruses, bacteria, fungi, nematodes, and
oomycetes, are provoking serious challenges, aggravating the global food security system
of the contemporary era [1–11]. There are more than 200 species of phytobacteria among
phytopathogens that are responsible for significant crop losses during pre-harvesting,
storage, and transportation [12]. The most significant are from the genera Agrobacterium,
Burkholderia, Dickeya, Erwinia, Ralstonia, Pectobacteria, Pseudomonas, Xanthomonas, and Xylella,
which are predominantly evolved to impede plant defense and various control strategies,
such as copper-based compounds and antibiotics [13–18].

In pathosystem antibiotics, resistance among phytopathogens became a problematic
issue when antibiotic application was started at a broader level in the 1940s, after Alexander
Flaming’s discovery of penicillin in 1928 [19]. Extensive application may have resulted in
the evolution of antibiotic resistance in various plant pathogenic bacteria via horizontal
gene transfer-mediated acquisition of resistance determinants. For example, antibiotic resis-
tance genes (strAB) are reported to occur in Pseudomonas syringae, Xanthomonas campestris,
and Erwinia amylovora, triggering resistance against streptomycin, and these genes are
considered to have been acquired from epiphytic bacteria co-located on host plants under
antibiotic selection [18,20–23].

The widespread use of copper-based antimicrobial pesticides may result in its accumu-
lation in the environment and food crops, which has been associated with human health haz-
ards, toxic effects on plants, and the evolution of copper-tolerant phytopathogens [24–29].
Copper-induced toxicity has primarily been associated with several human and animal
concerns, including reproductive, hepatic, gastrointestinal, and neurodegenerative dis-
orders [30–33]. Furthermore, copper-mediated intoxication has also been reported to
increase the mortality and morbidity of Drosophila melanogaster and Apis mellifera [34–36].
An excessive application of copper pesticides and copper-oxide nanoparticles on vari-
ous agricultural crops, such as Brassica chinensis, B. alboglabra, Chrysanthemum coronarium,
and Hordeum sativum distichum, may result in oxidative stress, impairment of growth,
photosynthetic pigment deterioration, and germination cessation [37–40]. However, phy-
topathogens have evolved to develop resistance against the aforementioned widespread
application of pesticides, which has become a serious challenge of the current scenario
in the agricultural production system [27,41]. Plant pathogenic bacteria included in the
genera Stenotrophomonas, Xanthomonas, and Pseudomonas, are resistant to copper-based
antimicrobial pesticides, threatening microbial control strategies [42–45]. Similarly, X. citri
subsp. citri, X. alfalfae subsp. citrumelonis, X. euvesicatoria, X. perforans, and P. syringae pv.
phaseolicola have exhibited copper resistance and have caused severe diseases in citrus
and tomato crops [42,46]. As copper application is regarded as a primary approach to
control phytopathogens, it is a huge concern in microbial disease management. Recently,
copper-based plant protection compounds have been banned or limited in several countries,
and innovative control strategies, including the recruitment of bacteriophages as potential
sustainable antimicrobial agents, have been established [47–52].

Bacteriophages (phages) are viruses specifically infecting and replicating in bacteria
as antimicrobial agents, leading to the degradation of bacterial hosts. Phage therapy is
a promising multifaceted approach to combat resistant bacterial plant pathogens for the
management of bacterial disease to improve crop productions [52]. Frederick Twort and
Felix d’Herelle independently discovered bacteriophages in 1915 and 1917, respectively,
after 20 years of virus discovery. The antimicrobial characteristics of phages were immedi-
ately recognized by Felix d’Herelle in 1919, demonstrating his phage preparation aptitude
to treat dysentery patients in the Hôpital des Enfants-Malades in Paris [12,53,54]. The
benign nature of phages to eukaryotic cells, host specificity, self-replication, capability to
overcome resistance, and ease of biosynthesis are all factors that have sparked interest
in them as biocontrol agents [52]. Their omnipresence and abundance in the biosphere
enable their isolation from their surroundings. Phages are tadpole-shaped; a polyhedral
head, a short neck with collar, and a straight tail are the hallmarks of their morphology. A



Viruses 2022, 14, 171 3 of 27

bipyramidal hexagonal-shaped head encloses highly folded double-stranded DNA with
a capsid assembled by 2000 capsomeres (proteins), and a hollow cylindrical tail consists
of a central core enfolded by a contractile sheath. The phage genome enters the host cell
through the central space of the core [55,56] (Figure 1). The order Caudovirales is comprised
of three-tailed phage families, such as Podoviridae, which have short non-contractile tails,
Siphoviridae, which contain long flexible tails, and Myoviridae, which have rigid contractile
tails [12].
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control characteristics. A phage infects a bacterial host via interacting with receptors on
the cell, and then adsorbing and injecting its DNA into the host cell. The subsequent
strategy of phage replication depends exclusively on whether it is virulent or temperate.
Virulent phages (phage T4) infect and use the host cell metabolism to replicate via the
lytic cycle, a process involving the lysis of host cells and the release of new phage progeny.
Alternatively, temperate phages, such as phage λ, infect the host cell, enter either the lytic
cycle, resulting in episomes, or integrate into the bacterial genome, termed prophage, in
the process called lysogeny or the lysogenic cycle [57]. Lysogeny triggers the replication
of prophage in association with the host genome either in an isolated plasmid-like state
(phage P1) or incorporated into the bacterial chromosomes (phage λ). These prophages can
exit the lysogenic cycle under unfavorable conditions and produce ample virions through
the lytic cycle-mediated cell lysis [54,58]. Filamentous phages (phage M13) may reside
in the temperate or virulent phages of the host cell and proliferate via the chronic cycle
under stress conditions. These phages are either secreted from the host without cell lysis or
transferred horizontally with cellular division [59] (Figure 1).

Recently, increased copper and antibiotic resistance, along with a scarcity of novel
antimicrobial medicines, has sparked a revival of phage-inspired antibacterial strategies,
termed as phage therapy, in agriculture, medicine, and several food industries. Phage
therapy via employing natural or engineered virulent phages, such as phage cocktails, has
offered a highly effective biocontrol of wide-ranging plant bacterial diseases [12,49,60,61].
Consequently, phage cocktails are novel and potentially sustainable antibacterial genetic
entities to combat various resistant bacterial pathogens, including Xylella fastidiosa subsp.
fastidiosa, Ralstonia solanacearum, P. aeruginosa, and E. amylovora [61–64]. However, their
engineering and intricate antimicrobial interactions are a matter of consideration. Phage
therapy is a game-changer technology in agriculture, food industries, and clinical ther-
apeutics, but it needs considerable concentration from the scientific world to develop
eco-friendly biological control strategies for microbial pathogens. This communication
explores new insights into the formulation of effective phage cocktails and factors that
influence their development and applications. Additionally, it highlights the underlying
mechanism of interactions between phages and resistant bacterial pathogens, facilitating the
engineering of efficient phage cocktail therapeutics against phytobacteria for the biocontrol
of overwhelming plant diseases.

2. Phage Cocktails as Antibacterial Therapeutic Agents

Phage cocktails are ubiquitous attractive antimicrobial agents with exceptional ma-
jor characteristics of specificity and exponential proliferation. A cocktail of phages that
demonstrate wide-ranging host activity, reflects a diversity of receptors that might ex-
ploit the potency of the antibacterial therapeutics and curtail the possibilities of resistance
development [65,66]. Biologically engineered phage cocktails can be used as a natural
biocontrol for several bacterial diseases, targeting resistant pathogenic bacteria without
harming the host plant or animal and their commensal microflora. Although phage-based
biocontrol approaches still have to be explored, it is primarily accepted that temperate
phages should not be considered for therapeutic application due to their propensity for
specialized or generalized pathogenesis-determinant transduction [67,68]. Phage cocktails
have great promises in biocontrol of resistant bacterial infections of plants and animals.
For example, gamma-proteobacterium, X. fastidiosa subsp. fastidiosa, poses severe intim-
idation to the wine industry in the United States of America by causing Pierce’s disease
(PD) of grapevines. An engineered cocktail of four lytic phages is reported as an effective
therapeutic agent for the biocontrol of X. fastidiosa and its associated infections, including
PD, olive-quick decline syndrome, and oleander, almond, or coffee leaf scorch [62,69,70].
Similarly, a cocktail of phages is widely used to control antibiotic-resistant Staphylococcus
aureus and P. aeruginosa in the treatment of chronic otitis infections [64]. In the food industry,
phage cocktails are used as an innovative therapeutic approach to treat various foodborne
pathogens, such as Salmonella entrica, Listeria monocytogenes, Escherichia coli, Shigellasonnei,
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and Campylobacter jejuni for pre- and post-harvesting food protection and processing to
save millions of lives from food poison-mediated diseases [71–74]. P1 cocktail consisting
of six phage isolations may kill 98% of R. solanacearum through direct application via soil
drenching for the biocontrol of bacterial wilt disease of potato and tomato [61,75]. In
addition, phage cocktails can be applied in a variety of ways, such as foliar spraying, soil
drenching, infiltration, and immersion. Consequently, phage cocktails have been reported
as effective biocontrol agents to reduce the incidence of several diseases, including bacterial
blight in leek caused by P. syringae pv. porri [76], black rot of broccoli caused by X. campestris
pv. campestris [77], bacterial spot of pepper caused by X. euvesicatoria [78], and bacterial soft
rot of onion caused by Pectobacterium carotovorum subsp. carotovorum [79]. The applications
of phage cocktails as antimicrobial agents have revolutionized biocontrol strategies in
integrated disease management of resistant microbial pathogens without wreaking havoc
on fauna and flora. However, concrete efforts are required to enhance their optimal engi-
neering and control efficacy of resistant phytopathogens, and facilitate their availability at
a broad spectrum for field applications.

3. Methods and Considerations for the Development of Effective
Bacteriophage Cocktails

As mentioned above, phages habitually demonstrate host specificity. This nature may
limit the application of a sole phage in the field when targeting different plant pathogens at
the same locality. Therefore, a developed cocktail of phages is mandatory for the biocontrol
of diverse resistant phytobacteria under field conditions. A cocktail of lytic phages isolated
from various sources could have the potential to be exploited as a universal antibacterial
biocontrol agent with minimal risk of resistance development. Idyllically, phages in a
cocktail would cover the broadest possible spectrum of target pathogens and have a dis-
tinct mechanism of infection while ensuring complementary pathogenic potential on the
host–pathogen interface [52,54,75,80,81]. Phages with diverse receptors, strong adsorption,
short latency, and huge burst size ought to be considered during phage cocktail formula-
tions. Polyvalent phages, with a broad host range that can infect multiple bacterial strains
belonging to the same species, may also be accounted for in the formulation of phage cock-
tails [82,83]. In the formulation of phage cocktails and their biocontrol applications, there
are several developmental steps involved, such as isolation and characterization of phages
with broad host-range, in vitro and in situ validation of candidate phages, and phage
adaptation for biocontrol therapeutics (Figure 2). Regardless of the design used to develop
phage cocktails, it is mandatory to assess a phage’s in vivo or in vitro therapeutic potential,
including its host range activity, genomic features, adaptations for biocontrol, storage and
application requirements, and efficiency against pathogens [84–88]. There are various ap-
proaches addressing all of these developmental steps for the formulation of effective phage
cocktail therapeutics. Several polyvalent phages are isolated from different environmental
samples, which are in direct contact with the targeted host bacteria. These may be sewage
samples, water samples, raw fecal matter, soil samples, infected plants, and clinical samples,
from which, polyvalence phages are isolated for the development of effective bacteriophage
cocktails employing various multi-dimensional approaches [61,75,83,89–94].
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bacteriophages to achieve maximum biocontrol efficacy against plant pathogenic bacteria.

3.1. Step-by-Step Method

SBS is the most significant and generally accepted approach for the development
of phage cocktails with inordinate therapeutic potential to combat multidrug-resistant
bacterial pathogens. In this method, wild-type lytic bacterial strains and wild-type phage
resistant mutants are used to isolate the phage employed in the development of a phage
cocktail. The wild-type bacterium is rendered insensitive to the first phage, resulting in
a phage-resistant mutant. Thereafter, this phage-resistant mutant is utilized further to
isolate the second phage. Similarly, the third phage may also be isolated by using bacterial
mutant resistance to the second phage. Finally, all of the phages are combined into a
cocktail that can inhibit the development of phage-resistant bacteria [95]. For example, a
tri-phage cocktail (GH-K1, GH-K2, and GH-K3) established by the SBS method has great
therapeutic efficacy against mono-phage-resistant Klebsiella pneumoniae and reduces its
resistance-triggering mutation frequency [90]. This method may be exploited to locate
rich sources of phage, which can be engineered to overcome the phage resistance in
phytobacteria. However, this approach can be laborious, notably when targeting diverse
phytopathogens. Therefore, to achieve effective biocontrol, it would be indispensable to
target all the distinct phytopathogens.
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3.2. Targeting Phage Receptors

The identification of phage receptors in a pathogen is the most imperative strategy in
the selection of phages involved in the development of a cocktail. Phage receptors mediat-
ing the adsorption of phage to host cells determine the susceptibility of bacteria to phage
infection. These receptors include outer membrane proteins, lipopolysaccharides (LPS),
pili, flagella, capsules or slime layers, and wall teichoic acid (WTA) [96–98]. For example,
R. solanacearum threatens several crops globally. However, mutations in R. solanacearum
GMI1000 loci (RSc2958-RSc2962/mla) that trigger LPS biogenesis may regulate phospholipid
trafficking in the outer membrane and peptidoglycan recycling can protect the mutants
from the adsorption of phages on the O-antigen [97]. In previous studies, it was reported
that phage receptors in Yersinia pestis were found across the LPS core. Knockout bacterial
mutants were generated by site-directed mutagenesis of genes involved in the production
of different parts of LPS. Thereafter, these genes regulating LPS biosynthesis were cloned
into vectors and utilized in trans-complementation tests to determine their susceptibility
to various phages [95,99]. This dynamic approach can be used to develop phage cocktails
for the biocontrol of different phytopathogenic bacteria. Moreover, for the development of
phage cocktails, the functions of exoploysaccharides (EPS) in phage–host interaction must
be considered, because composition and expression level of EPS determines the pathogene-
sis of virulent phages [100,101]. Phages from the Myoviridae and Podoviridae families are
lytic for the E. amylovora, but their infectivity is associated with EPS level and composition.
For example, Myoviridae phages preferentially infect low or acidic EPS (amylovoran), pro-
ducing hosts, while Podoviridae phages demonstrate a preference of infectivity to the hosts,
producing high or neutral EPS (levan) [101]. In the formulation of phage cocktails, it is
mandatory to target conserved receptors involved in the survival and infectivity of plant
pathogenic bacteria.

3.3. Phage Lytic Curve Approach

A phage lytic curve approach can also be used to assemble phage cocktails by selecting
phages from a phage agglomeration based on phage lytic or lysis curves. A phage lytic
curve is a measure of lytic phages’ antibacterial activities [75,102,103]. The lytic curves
are generated by continually computing the optical density of pathogenic bacteria in their
exponential phase infected with phage(s) at a certain concentration for a predetermined
period [95]. The phage(s) that lead to reduced bacterial optical density, demonstrating
different lytic curves, are selected for the formulation of phages with vigorous lytic activity.
Another phage score method is also established to describe phage lytic activity against the
bacterial host. In this method, two model organisms, such as gram-negative E. coli and
gram-positive Staphylococcus aureus, are cultivated under controlled conditions with three
T4-like wild-type phages for E. coli and three lytic phages infecting S. aureus in association
with different initial multiplicity of infection (MOI, ranging from 0.01–1 for E. coli and 0.1–1
for S. aureus) [104]. Through employing mathematical expressions, the phage score method
provides significant tools for the characterization and comparative evaluation of the lytic
activity of phages.

3.4. Application of Host-Range Mutant Phages

Host-range mutant (H-mutant) phages are vigorously used in the formulation of phage
cocktails with an expanded host range. Moreover, H-mutant phages may also be involved
in the characterization and determination of the host range [76,105–109]. Experimentally,
bacteria are plated on double-layer agar with a broad host range phage and incubated
to produce h-mutant phages. This method finds a phage-resistant mutant, which is then
exposed to a high phage concentration, plated on double-layer agar, and incubated. The
appearance of plaques on the double-layer agar leads to the selection of a mutant phage
capable of lysing both wild-type and phage-resistant mutant pathogenic bacteria [95,106].
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3.5. CRISPR-Cas System

Genetically engineered phages may also be used to develop synthetic cocktails to target
certain plant bacterial species within a mixed population [110,111]. There are several tech-
nologies, such as CRISPR-Cas-mediated genome engineering, homologous recombination,
bacteriophage recombineering of electroporated DNA (BRED), in vivo recombineering,
rebuilding/refactoring phage genome in vitro, yeast-based assembly of phage genome
platform, cell-free transcription–translation system, and whole-genome synthesis from
synthetic oligonucleotides, involved in the genetic modification of phages [112,113]. For
example, through homologous recombination, E. amylovora phage Y2 can be engineered by
introducing bacterial luxAB fusion or E. amylovora phage L1 depolymerase gene into the
genome of phage Y2, which leads to increasing its killing efficiency. The genetic modifica-
tion of phage receptor binding proteins may also enhance the host range [95]. Similarly,
the CRISPR-Cas system is frequently used in the engineering of phages. It was used to
edit the genome of T7 phage for the first time in 2014 [114]. Recently, CRISPR-Cas of
Listeria monocytogenes is being used as an emerging platform for the engineering of Listeria
phages [112,115]. Thus, these synthetic phages are also involved in enhancing the lytic
activity and determining the host range of various phages.

3.6. Phage–Bacteria Infection Networks

Recently, phage–bacteria infection networks (PBINs) have been developed by two
algorithms, such as genetic (nestedness temperature calculator) and heuristic (BinMatNest),
which is a newly emerging pipeline to design phages. It simplifies phage identification of
the broadest host range [116]. Host range matrices have never been transformed into PBINs
for designing phage cocktails. This novel approach optimizes the cocktail formulation and
reduces the complexity of phages, because excessive phages may lead to horizontal genes
that expand the fitness of host strains, dysbiosis, and manufacturing costs.

3.7. High-Throughput Sequential Platforms

The antibacterial resistance dilemma has rekindled interest in phage therapy as an
alternate method of infection treatment. However, traditional approaches for isolating
phages are time-consuming, laborious, and usually dysfunctional. Recently a computa-
tional approach has been established to meet the overwhelming demands of therapeutic
cocktails [117]. The computational bases include Islander [118] and TIGER [119], which
locate and map integrative genetic elements (IGEs) within bacterial and archaeal genome
sequences, leading to demonstrate bacterial hosts, complete sequence, and each prophage
end sequence. Thus, prophage sequences enable its genome engineering to develop safe
therapeutic cocktails combating the unscrupulous pathogen P. aeruginosa PAO1 [117]. This
technological platform may provide new insights in synthetic biology for the rapid develop-
ment of therapeutic cocktails against several pathogens, if not all plant pathogenic bacteria,
paving the way for the application of phage therapy against infectious diseases. In the
case of plant bacterial treatment, it needs further attention to develop a precise biocontrol
cocktail therapy against threatening bacterial diseases.

However, the above-mentioned phage cocktail formulations are not feasible to thor-
oughly avoid the emergence of new phage-resistant phytopathogens due to the never-
ending arms race between phages and bacterial pathogens. It is also worth emphasizing
that due to the complexity of plant–pathogen systems, a single multidimensional cocktail
for all bacterial phytopathogens may not be plausible to develop. Therefore, it needs
constant surveillance of phytopathogens and modification of phage cocktail formulations
to ensure the target of newly emerging phage-resistant plant pathogenic bacteria.

4. Critical Factors in the Development and Application of Phage Cocktails

The characteristics of cocktail therapeutics are associated with the phages used in
therapy. These include phage virion stability, phage receptor secretion, impeding bacterial
virulence factors, and host pathogenicity, all of which are in favor of phage cocktail therapy.
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However, there is an encoding of bacterial virulence determinants and a propensity to
produce bacterial lysogens, both of which are detrimental to phage therapy [67,81,84,120].
Furthermore, there are concerns about whether antibacterial therapy applied as mono-
phages rather than multi-phages cocktails will interact with each other’s ability to generate
new virions when infecting the same bacterium, whether bacterial resistance to individual
phages will or will not eagerly evolve in vivo or in vitro, and whether bacterial mutations to
phage resistance may lead to suppressing bacterial fitness or virulence [121–128]. Therefore,
several factors influence the formulation and application of phage cocktails.

4.1. Long-Term Storage and Transportation

The antimicrobial effectiveness of phage cocktail therapeutics may be negated by
several factors influencing their course of development and applications. Several key
factors are considered to significantly undermine their biocontrol efficacy [129–134]. Phages
may gradually lose their activity when they are stored for a long duration under ambient
conditions, necessitating the use of stabilized formulations and the conversion of aqueous
phage formulations to powder form. Primarily, phages are composed of genetic material
encased by a protein capsid (protein-rich coat of phages, as well as their complexity,
makes them vulnerable to external storage conditions), which interacts with each other via
intermolecular interactions. Therefore, high-level conversion of aqueous phage formulation
into powder phase for long-term storage or transportation may be prohibited because
it adversely affects their viability. The stabilizers, including polyethylene glycol (PEG)
and sucrose in lyophilized phage, have not been confirmed to be effective for long-term
storage [135]. In addition, none of the stabilizing approaches or formulations explored
so far appear to be universal, due to the variable susceptibility of particular phages to
chemical and physical factors, such as acidity, ions, and temperature. The stability of phages
is correlated with external factors. Most phages can be stored in an aqueous or lyophilized
form for an extended time at neutral pH levels ranging from 6 to 8 [136]. In general, phage
titers are decreased gradually with pH. For example, the phage titer of S. aureus is reported
to decrease by 2 logs within 4 to 6 hours as the pH changed from 6.19 to 5.38. A pH lower
than 4.5 may impede the proliferation of several phages. For example, the phage PM2 from
the Corticoviridae family completely loses its viability after 1 hour at pH 5.0 at 37 ◦C. Phage
T4 from the Myoviridae family is not stable at pH < 5. Phages of Lactococcus can survive at
high temperatures (40–90 ◦C). Furthermore, phages can be stored for a long duration when
stored at refrigerator temperature [137,138]. It is reported that NaNO3 electrolyte does not
influence the stability and titer of the F-specific RNA phages (MS2), and the ionic strength
may enhance the aggregation of phages [139,140]. Thus, in a cocktail, each phage may have
variable storage conditions, and it has become an emerging challenge in synthetic biology
for the long-term storage of phage cocktails developed by phages of varying sensitivity. For
the effectiveness of phage cocktail therapeutics, it is mandatory to maintain the viability of
individual phages over a specified duration of storage.

4.2. Adverse Environmental Conditions

In the phage cocktail-based biocontrol of plant diseases, the transient persistence of
phages in diverse plant environments is still a major challenge [141–145]. Probably, most
practicing approaches of phage cocktail application to plant systems are spraying, drench,
or drip application [12,141,144]. These methods expose phage cocktail biocontrol agents
to adverse rhizosphere and phyllosphere environmental conditions. In the rhizosphere,
heterogeneous soil matrix, moisture, and soil pH inhibit phage diffusion in soil and may
prevent the use of phage cocktails as biocontrol agents. In the phyllosphere, phages are ex-
posed to sunlight and unfavorable temperatures, which adversely reduce the effectiveness
of phage cocktails. Therefore, the phyllosphere is more destructive to phages as compared
to the rhizosphere. To achieve the efficacy of these biocontrol agents in the phyllosphere,
several techniques have been investigated to increase phage viability and survival, such
as protective formulation, avirulent bacterial carriers, and phage cocktail application in
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the early mornings and evenings [144,146,147]. For example, the X. perforans attenuated
strains increase the phage cocktail persistent on the leaf surface of Solanum lycopersicum
and sustain the population of phages without affecting the plant development and phage
cocktail viability [106,107,144]. Several protective materials, such as pregelatinized corn
flour (PCF), skim milk, and casecrete in specified formulations protect the phage from
adverse environmental conditions and improve their effectiveness [146,148–152]. For in-
stance, natural compounds in a formulation of 5% red pepper juice or 10% carrot, 34%
and 28%, respectively, of the initial phage titer protect the E. amylovora phage Y2 from
5-min exposure to UV irradiation. Furthermore, 50 mM phenylalanine, 50 mM tryptophan,
and 50 mM tyrosine in a ratio of 1:1:1 may also increase the viability of the phage [148].
These formulations are very critical in phage cocktail therapy, which makes it laborious and
time-consuming. The use of avirulent bacterial strains with phage in equivalent numbers
may be a challenge in wide-host range cocktails. Therefore, precise strategies are needed to
promote the biocontrol mechanism of plant pathogenic diseases.

In phage therapy, the escape of invading pathogens into confined tissue and organ
compartments may obstruct the successful use of phages, particularly if the phage cocktail
cannot aggressively chase the bacterium. Therefore, it is questionable how efficient phages
would be in addressing disease induced by intracellular pathogens including Salmonella
species [153,154]. Mostly, phage cocktails cannot diffuse across the membrane-like antibiotic
molecules and thus require a mechanism of administration to reach a specific target cell. To
attain an efficient mechanism of delivery, non-pathogenic bacteria may be used as a vehicle
to transport the phage to its pathogenic target [131].

4.3. Affecting Plant Microbiome

Complex phage cocktails, containing polyvalent phages, may pose a serious threat
to non-targeted bacterial communities (plant microbiome), even if the impact is minimal.
Polyvalent phage cocktails are applied as antimicrobial agents to target several plant
pathogenic bacteria and may end up killing endophytes. Polyvalent phages are expected to
influence the composition of a plant microbiome either directly by affecting the evolution
or population size of a microbial community or indirectly by shaping competition among
species within the plant [12,155]. Moreover, the plant microbiome may be hostile to the
action of a phage cocktail if it is antagonistic to phytopathogens. Consequently, the plausible
influence of phage cocktails on the plant microbiome during field trial investigations may
be explored by employing quantitative molecular approaches before and after phage
cocktail application.

4.4. Time and Cost of Development

The time and expense of developing, evaluating, and modifying relatively complex
phage cocktails are key factors affecting the development and application of phage cocktails.
Although phages may be isolated in a matter of days, comprehensive characterization,
purification, validation, and formulation of large numbers of phage cocktails can be time-
consuming and expensive [110]. The cost, however, would be determined by the number
of phytopathogens addressed. Phage banks can be used to hold freshly isolated and
described phages, reducing the time required to design and formulate phage cocktails.
Plant protection products or biopesticides must meet regulatory standards, such as safety,
reliability of efficacy, and quality. Legislative standards vary from country to country and
may necessitate new approvals and certification when a phage cocktail is modified, as it
may be deemed a new product [95,156]. Although scientific standards must be maintained,
there is a need for regulatory framework versatility to allow for the swift updating of phage
cocktails in response to the emergence of phage-resistant phytopathogens.

5. Types of Phages Used as Biocontrol Agents and Underlying Mechanisms of Action

From a historical perspective, the term phage therapy was premeditated for animal
and human therapeutics, but nowadays phage biocontrol strategy is more frequently
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used against a large number of devastating plant bacterial pathogens with significantly
promising consequences [12,62,76,82,157–161]. The main consideration in determining
whether a phage is suitable for biocontrol is whether it is predominantly lytic or temperate
in nature. Virulent phages induce the infection that eventually ends with the lysis of
the host bacterium, releasing progeny phage particles. Temperate phage can invade the
host via lytic route, but can also infect through the lysogenic pathway, in which the
genome of phage integrates into the chromosomes of the host bacterium or persist as
a prophage [162,163]. However, filamentous phage genome may proliferate exclusively
within the host or following the lysogenic route of infection and phages consistently
extruded across bacterial membranes without being lysed.

5.1. Filamentous Phages

Filamentous phages are single-stranded DNA (ssDNA) viruses from the family Inoviridae,
which can infect several gram-negative bacteria included in the genera Salmonella, Xan-
thomonas, Escherichia, Pseudomonas, Vibrio, Neisseria, and Thermus [59,164–166]. Filamentous
phages are also employed as biocontrol agents against plant bacterial infections. In one
study, it was reported that the filamentous phage XacF1 can invade X. axonopodis pv. citri
at dif site (attB) through the host XerC/D recombination. Fascinatingly, the infection with
XacF1 results in various physiological alterations in host cells, such as the downregulation
of EPS production, restricted motility, delayed growth rate, and a significant decline in
pathogenicity. Particularly, the reduction in pathogenicity demonstrated that XacF1 may be
used as a biocontrol agent against citrus canker disease [167]. The underlying mechanism
of infection requires the binding of filamentous phage to its host. Phage (M13, fd, f1)
adsorption is triggered by the binding of a phage-encoded protein (gene 3 protein, g3p) to
the host cell surface receptor, namely, the F-pilus of E. coli cells. Subsequently, g3p binds
to ToIA, an inner membrane protein that serves as a co-receptor. Phage genomic ssDNA
is translocated into the host cytoplasm, stripping itself of the major-coat protein (gp8).
The complementary DNA strand of the phage genome is produced in the host and then
incorporated into the host’s genome by exploiting the host’s machinery. In such cases,
the phage genome remains inactive until stress signals trigger replication to synthesize
circular, supercoiled double-stranded DNA (dsDNA), also named as the replicative form
(RF), with the integrated genome serving as a template. Some filamentous phages (M13)
have genomes as plasmid-like vectors, and their DNA is immediately transformed to RF by
host-encoded enzymes. The phage’s genome may be transferred horizontally with the cell
division, similarly to other plasmids, or by recombination [166–169]. Filamentous phages
may reside in the host cell as either temperate or virulent phages, and integrate themselves
into the host chromosomes as prophages, playing significant roles in the virulence and evo-
lution of pathogenic bacteria as reported with the plant pathogen R. solanacearum with its
phage φRSS1, which causes increased virulence. Therefore, their precise role as biocontrol
agents is still a matter of consideration.

5.2. Temperate Phages

As above-mentioned, temperate phages can enter the lysogenic route of infection in
which their DNA genomes integrate into host chromosomes as prophages and multiplicate
in synchrony with host chromosomes [170–176]. Temperate phages can enter into the lytic
cycle by spontaneously switching from lysogeny under physical or chemical environmental
cues (UV-light or heat). Recently, Al-Anany et al. reported that the temperate phage HK97
and antibiotic ciprofloxacin combined application results in the eradication of bacterial
pathogens [177]. This phage–antibiotic synergy (PAS) increases the effectiveness of the
phage against several bacterial pathogens [178–182]. Furthermore, it is a diverse mechanism
that does not simply enhance the phage production and operates through the RecA protein,
but is also a critical component of the bacterial SOS response [177]. This strategy may
somewhat strengthen their candidature for biocontrol agents but it needs serious attention
in this regard [183]. On the other hand, prophages are considered as evolutionary molecular
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time bombs, because prophage DNA can play a significant role in the evolution and
emergence of novel pathogenic strains via transduction or horizontal transmission of
virulence genes among bacteria [57,184–188]. For example, in the case of phytopathogens,
prophages of the P. atrospeticum, such as ECA29 and ECA41, both increase the bacterial
host motility [189]. Therefore, suitability of both the filamentous and temperate phages
for biocontrol applications is questionable, as their infection can have varied impacts on
host virulence.

5.3. Lytic Phages

Ideally, a candidate phage for biocontrol therapeutics should be exclusively lytic with
a wide-host ranging capability that enables an efficient infection on all resistant pathogenic
bacterial strains, including the genus and species being targeted. Furthermore, the pre-
vailing thought is that phages should be capable to lyse the host swiftly while creating a
large number of phage progeny and diffuse efficiently through the environment in which
they are being administered. Phages included in the Caudovirales infect the host through
an immediate expression of discrete genes followed by hijacking the host cellular ma-
chinery and diverting it to phage DNA replication and protein synthesis, triggering the
pathogenicity of these phages that degrade the peptidoglycan (PG), leading to host cell lysis,
death, and progeny release for succeeding infections [190]. The pathogenicity of three lytic
phages, including vRsoP-WF2, vRsoP-WR2, and vRsoP-WM2, was confirmed in a variety
of realistic situations and host ranges, inducing a successful infection in the targeted plant
pathogens, such as R. syzygii subsp. indonesiensis, R. solanacearum, or R. pseudosolanacearum,
and exhibiting features suited for biocontrol application [12,47]. Similarly, Podoviridae-like
lytic phages, such as RsoP1IND, φRSA1, φRSB1, and φRSL1, are also effectively employed
in the biocontrol of bacterial wilt caused by R. solanacearum, although their infectivity is
associated with the EPS level and composition. Consequently, Podoviridae phages preferen-
tially infect hosts that produce high or neutral EPS [47,101,191–194]. Lytic phages interact
with the host through completely different mechanisms than antibiotics, having extraor-
dinary effectiveness against both antimicrobial resistant (AMR) and non-AMR bacterial
infections [195]. For example, lytic phages can interact with SAR inducers to integrate into
the host for successful management of tomato bacterial spot and Xanthomonas leaf blight
of onion [50,52]. Lytic phages have prime importance in agriphage cocktail formulations
for sustainable disease management to enhance crop production. Considerable attention
is required to study their underlying mechanism of infection due to the diversity and
interaction of each phage in a cocktail.

6. Recent Advances in the Use of Phage Cocktail Therapies against Phytobacteria

Phage cocktail therapy is a biotechnologically designed biocontrol multidimensional
approach for sustainable disease management, capable of targeting resistant phytobacteria
with extremely high efficiency [12,52,95,196–198]. As mentioned earlier, the co-evolution
of phages and their hosts has brought several phage-resistant mechanisms (Figure 3),
which make phytobacteria invulnerable to phage therapy. Indeed, it is a big challenge in
sustainable disease management, which needs to addressed. E. amylovora, for instance,
is a devastating pathogen of various destructive bacterial diseases of the family Rosaceae
and several economically important fruit trees, such as pear and apple trees. To avoid
the infection, E. amylovora produces EPCs as a physical barrier that subverts cell surface
receptors, inhibiting phage adsorption and rendering the bacterium immune to phage in-
fection [8,199]. Recently, a SBS method has enabled phage cocktail formulations, including
a combination of three phages, φEa2345-6, φEa1337-26, and Eh21-5, from Myoviridae and
Podoviridae, against fire blight of apple and pear, and a cocktail of four Myoviridae phages,
Eram2, Eram26, Eram24, and Eram45, against fire blight of pear. These engineered phage
cocktails are being applied vigorously to achieve effective control of E. amylovora [198].
These phage cocktails may establish synergy between the phages in the cocktail, where one
enhances the characteristics of another, resulting in improved phage adsorption and robust-
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ness in pathogen lysis rates. Unlike the antibiotics and copper-based disease management
approaches, which pose serious threats to the environment and human beings as well, a
phage cocktail therapy is an eco-friendly approach that provides new insights to control
the infections of widespread pathogens, including P. syringae pv. porri [76], X. campestris
pv. campestris [77], X. euvesicatoria [78], Pectobacterium carotovorum subsp. carotovorum [79].
More recent developments in phage cocktail therapy against plant pathogenic bacteria
have been included in Table 1. Moreover, a moko disease of banana, plantain, and heliconia
plants was reported as an epidemic in Brazil and Latin America due to the diversity of the
disease-causing pathogen R. solanacearum and indeterminate disease management strate-
gies [200]. Nowadays, a cocktail of two lytic phages, such as M5 and M8, is formulated and
dynamically applied in Colombia and found to be effective against all resistant strains of
R. solanacearum [201]. Similarly, a phage cocktail (NJ-P3, NB-P21, NC-P34, and NN-P42)
effectively killed the majority of R. solanacearum in the soil, rendering phage resistance
enhancement and reducing the growth and competitiveness of phage-resistant bacterial
pathogens in the rhizosphere. There is a higher rise in microbiota diversification and an
enrichment of bacterial species that are antagonistic to R. solanacearum, both of which
lead to an extremely low pathogen density [80]. In carrot fields, an antimicrobial resistant
pathogen, including the P. aeruginosa (PAO1) encoding cm1A, a chloramphenicol resistant
gene, is effectively controlled by the application of a cocktail of four polyvalent phages,
such as φYSZ1, φYSZ2, φYSZ3, and φYSZ4 [202].
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Table 1. Phage cocktails, which have recently been applied to effectively control plant-pathogenic
bacterial diseases.

Bacterial
Pathogen Disease Host Phage Cocktails Treatment Effects Year Reference

Ralstonia
solanacearum Bacterial wilt Tomato

vRsoP-WM2,
vRsoP-WF2, and

vRsoP-WR2

The development of symptoms is
significantly inhibited. 2019 [47]

Erwinia amylovora Fire blight Apple and pear
φEa1337-26,

Eh21-5
and φEa2345-6

Reduces disease infection
predominantly. 2011 [159]

Xylella fastidiosa
subsp. fastidiosa Pierce disease Grapevine Polyvalent

phages

In laboratory investigations,
therapeutic and prophylactic
phage administration greatly
reduces disease symptoms.

2015 [62]

Dickeya solani,
Pectobacterium
Atrosepticum,

Pectobacterium
carotovorum subsp.

Carotovorum

Soft rot Potato φPD10.3
and φPD23.1

The soft rot disease is decreased
by 80–95% when the phage

cocktail and pathogens have been
co-inoculated on potato tuber

slices and entire tubers.

2015 [82]

Pectobacterium
atrosepticum

Pectobacterium
carotavorum

subsp.
Carotavorum

Soft rot
and

blackleg
Potato

fMA1, fMA1A,
fMA2, fMA5,

fMA6 and fMA7

Soft rot disease development is
considerably reduced when

phages are applied to the soil.
Tissues maceration is also

inhibited significantly.

2020 [79]

Pectobacterium
atrosepticum Soft rot Potato

Phage Nepra,
Lelidair, Nobby,
Slant, Gaspode
And Momine

Under field condition, disease
severity and incidence are reduced
by 64.2% and 61.3%, respectively.

2019 [203]

Pectobacterium
atrosepticum Soft rot Potato

vB_PatP_CB1,
vB_PatP_CB3,

and vB_PatP_CB4

The percentage of decaying tissue
is reduced significantly. 2018 [204]

Pseudomonas
syringae pv.
actinidiae

Bacterial canker Kiwi
CHF1, CHF7,
CHF19, and

CHF21

In a greenhouse, phage cocktail
treatment resulted in a 75%

reduction of bacterial titer in
leaves 24 h after inoculation.

2020 [205]

Pseudomonas
syringae pv.
syringae, P.
syringae pv.

morsprunorum
race 1, and race

2

Bacterial
canker Cherry trees

MR1, MR2, MR4,
MR5, MR6, MR7,

MR8, MR12,
MR13, MR14,

MR15, MR16, and
MR18

In a field, 15–40% reduction in
bacterial titers has been reported

in bean leaves and in cherry twigs
and seedlings as well.

2020 [206]

Pseudomonas
syringae pv.

porri
Bacterial blight Leek KIL3b and KIL5

Reduces bacterial concentration
100-fold significantly.

In LPS, bacterial resistance
mutations have a cost in terms of

viability.

2020 [207]

Ralstonia
solanacearum Bacterial wilt Potato

P-PSG-1, P-PSG-2,
P-PSG-3, P-PSG-7,

P-PSG-8, and
P-PSG-9

In preventative therapy, wilt is
reduced by 80%.

In curative therapy, there is a
delay in disease development.
In a soil assay, phage spraying
resulted in a 98% reduction in
bacterial titer after one week.

2017 [75]

Ralstonia
solanacearum Bacterial wilt Potato

vRsoP-WF2,
vRsoP-WM2, and

vRsoP-WR2

Symptom development has been
greatly decreased in both the

green house and the field.
2019 [47]

Xanthomonas citri
subsp. citri Citrus canker Grapefruit

φXV3-21,
φXaacF1, and

ccφ19-1

φXaac F1 with φXV3-21 and
ccφ19-1 phage is reported to

reduce disease symptoms by 58%
in first and 69% in second phase of

application.
The φXaac F1 is most persistent in

the phyllosphere and multiplies
more efficiently than the other two

phages.

2018 [141]
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Phage cocktail therapy in conjunction with other antimicrobial agents, including an-
tibiotics and plant SAR inducers, which help to reduce disease severity, has revolutionized
sustainable disease management and received a lot of attention, showing great poten-
tial [177,179,181]. Applications of the phage cocktail with acibenzolar-S-methyl (ASM)
efficiently reduces the disease incidence of bacterial spot of tomato caused by X. campestris
pv. vesicatoria and bacterial leaf blight of onion induced by X. axonopodis pv. allii under green-
house as well as field conditions [52]. Phage-encoded peptidoglycan hydrolases (PGHs),
called endolysins and holins, which trigger enzymatically degradation of the host bac-
terium’s PG, have brought voluminous advances in phage cocktail therapy of wide-ranging
antimicrobial-resistant pathogens. Based on catalytic activity, these endolysins have been
categorized into five groups: endopeptidases, transglycosylases, N-acetylmuramidases, N-
acetylmuramoyl-L-alanine amidases, and endo-β-N-acetylglucosaminidases [184,208–214].
These endolysins demonstrate great bacteriolytic range not only within a species but
also across the other genera. Indeed, a phage Xop411 of X. oryzae encodes gp21 protein
that kills Xanthomonas species as well as other aggressive bacterial pathogens, including
Stenotrophomonas maltophilla and P. aeruginosa [215]. The application of phage CMP1 on
tomato plants may induce the expression of the endolysins gene (lys) that triggers resistance
in plants against C. michiganensis and reduces diseases severity as well as the number of bac-
terial cells in the xylem sap and leaf extracts [216]. On the other hand, several pathogenic
bacterial communities use extracellular matrix, including EPS, to form biofilms on the sur-
face of plants, which has notable implications in plant disease control strategies [217,218],
because many phages have limited access to bacteria inside these structures. However,
phage-encoded enzymes, such as endolysins, depolymerases, holins, and other PGHs, may
offer a concrete solution to biofilm degradation and eradication. This is a dynamic approach
for phage cocktail-based biocontrol against resistant phytopathogenic bacteria [219–222].
The bactericidal potential of some endolysins is not reported against gram-negative bacte-
ria because their outer membrane prevents the PG from hydrolysis by phage endolysins.
Therefore, several approaches have been developed to circumvent this disadvantage, such
as a cocktail of two or more phages encoding endolysins that meet each other’s limitations
to produce effective bactericidal actions against a variety of bacterial pathogens [190]. Thus,
these strategies may open new frontiers for developing drugs, vaccines, and designing
phage cocktails for large numbers of antimicrobial-resistant phytobacteria.

7. The Issue of Host Resistance and Advantages of Phage-Mediated
Biocontrol Strategies

Plant pathogenic bacteria undergo enormous evolutionary pressure from phages. To
cope with this pressure, bacteria have evolved with diversified immune mechanisms, in-
cluding innate and adaptive, which evade the phage infection through a variety of phage
resistance actions (Figure 3) [96,142,196,223–228]. For the identification and characteriza-
tion of the anti-phage underlying mechanisms, newly discovered CRISPR-Cas and RM
systems have been established. A comprehensive review has been published on anti-phage
mechanisms and counter-defense strategies of phages [229]. The alteration or loss of the
bacterial cell surface and bacterial extracellular matrix-mediated blockage of receptors
may also result in phage resistance, leading to the inhibition of phage penetration, the
production of modified restriction endonucleases degrading phage DNA, or the inhibi-
tion of phage intracellular development [96,99]. For example, to avoid the adsorption of
particular phages SA039 and PP01 of Staphylococcus aureus (SA003) and E. coli (O157:H7),
eliminate the OmpC protein and β-GlcNAc residue on the WTA, respectively. As a counter-
adaptation, phages evolve and adopt point mutation in receptor binding proteins (RBPs) to
adapt receptors, enabling them to target resistant hosts. For example, a mutation in gp38,
encoding a tail protein in coliphage (PP01), empowers the phage to infect OmpC deficient
receptors [230,231]. Similarly, a mutation in orf103, encoding RBP, enables staphylococcal
phage (φSA012) to target phage-resistant S. aureus (SA003) [232]. Superinfection exclusions
are regulated by the ltp gene in temperate phages e.g., Streptococcus thermophiles, encoding



Viruses 2022, 14, 171 16 of 27

the membrane lipoprotein Ltp that interacts with the channel-forming protein to inhibit the
entry of phage DNA into the host cytoplasm [233]. Unlike CRISPR-Cas, DISARM, BREX,
and RM systems, which target any phage DNA regardless of the origin and inhibit its entry
and replication into a phage resistant bacterium, abortive infection encoded by mobile
genetic elements (plasmids and temperate phages) is phage specific and targets the phage
infection cycle at different stages. A detailed review on the phage–host arms race has been
published [196]. To combat these defensive mechanisms, phages have also deployed a
multifaceted array of counter-defense approaches. Phages encode extraordinary proteins,
including RBPs, PGHs, endolysins, and depolymerases, which enable the phage-mediated
biocontrol strategy against wide-ranging antimicrobial-resistant pathogens [190]. For ex-
ample, the application of phages, such as the CMP1 encoding lys and Xop411 encoding
gp21, can kill Clavibacter and Xanthomonas species in plants [215,216]. A resistant pathogen,
X. fastidiosa, causing disease epidemics was effectively controlled by the combination of
four lytic phages [62,69,70]. This can lead to the development of phage cocktails in which
individual members work in synergy to eradicate the target resistant bacterial pathogen.
Moreover, phage cocktails in association with antibiotics and antimicrobial agents have
great potential to eradicate resistant phytobacteria from phytosystem and enhance agricul-
tural production [52]. Therefore, the interaction between phages and resistant phytobacteria
signifies the potential impact of phage cocktails in biocontrol-mediated disease manage-
ment and enables the development of multidimensional cocktails based on phage invaders
that evade the resistant mechanisms of these plant pathogenic bacteria. A schematic model
of phage–phytobacteria interactions demonstrates the comparative efficiency of single vs.
multiple phages (cocktail) as biocontrol agents of bacterial plant diseases (Figure 4).
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still debatable, and further research is required to understand how biodiversity and abi-
otic factors influence phage–bacterium ecological and evolutionary dynamics. Further-
more, it is becoming obvious that phage and bacterial communities may have a significant 
influence on their eukaryotic hosts [234,235]. 

Figure 4. A schematic model comparing the mechanism and efficiency of mono-phage and phage
cocktail therapies for the management of plant pathogenic bacteria (created with BioRender.com,
accessed on 2 December 2021).

8. Knowledge Gaps and Future Directions

Plant phage cocktails have been explored as promising biocontrol therapeutics for the
management of overwhelming bacterial diseases in plants without intimidating fauna and
flora, and for the investigation of evolutionary interactions between phage and resistant
phytobacteria, as highlighted in this communication. There are diversified mechanisms
of phage resistance in bacterial pathogens and emerging strategies that phages employ to
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evade these systems for successful infections [59,196,227,229]. This knowledge is facilitating
synthetic biology in the development of multidimensional phage-mediated therapeutics
and novel biotechnological platforms. Regardless of the significant progress, there is still a
long way to go in exploring pathogenic bacterial defenses and phage counter-adaptations.
Furthermore, the recent discoveries reveal that our understanding of the defense arsenal
is insufficient, mandating additional systematized methodologies for their evaluation. To
advance the phage cocktail therapy, both sides of the arms race, the bacteria and the phages,
must be taken into consideration. In the case of plants, critical gaps exist in molecular
characteristics, formulations, and applications of phage cocktail therapeutics against wide-
ranging resistant bacterial pathogens. However, fundamental questions remain: (i) From
the application perspective, how do phages diffuse systemically in the plant to target spe-
cific bacterial pathogens? (ii) How can phages overcome their self-interaction in a cocktail
to achieve synergistic interaction against broad-spectrum bacterial control? (iii) What are
the consequences and repercussions for prophage–host interaction dynamics and ecosys-
tem function? (iv) How does lysogen abundance change across space, time, and taxa?
(v) The genomes of phages are still relatively underexploited. Which phage-encoded novel
proteins with therapeutic potential will be discovered in the future, and what applications
and functions will they deliver? (vi) Which innovative and exceptional biotechnological
tools will be developed using existing and newly reported phage-encoded proteins, and
what influence will they have on the formulation of phage cocktail therapeutics? The
knowledge of phage–bacterium interactions in natural environments is still debatable, and
further research is required to understand how biodiversity and abiotic factors influence
phage–bacterium ecological and evolutionary dynamics. Furthermore, it is becoming
obvious that phage and bacterial communities may have a significant influence on their
eukaryotic hosts [234,235].

Nowadays, only lytic phages are used in phage cocktail therapy for the management of
plant bacterial diseases, but there is a question mark over the potential impact of temperate
and filamentous phages. Their replication cycle makes them unsuitable as biocontrol
agents for plant disease management, although they can be engineered and manipulated to
become virulent or used as a vector for genetic elements for virulence factor disruptions
or antimicrobial susceptibility restoration [47,59,169,177,183,190]. Moreover, in phage-
mediated pathogen detection, engineered phages are used to insert marker genes into the
genomes of targeted bacteria. Therefore, irrespective of reporter phages, whether lytic or
lysogenic, potentially, they may still detect the target bacterial pathogen [236]. Recently, our
understanding of phages has been advancing with computational genetic programs and
availability of increased sequencing data, enabling the success of bioinformatics platforms
to establish more systemic approaches, which may facilitate phage cocktail therapy against
resistant phytobacteria [237–241]. We can concentrate on the genes that are likely to disrupt
bacterial immunity. For example, prophage-encoded genes regulating phage defense
are located in certain genomic regions, and comparative genomics of phage families has
facilitated their discovery. Additionally, early expressed genes are frequently involved in
anti-defense or bacterial takeover [190]. In order to understand therapeutics, ecological
significance, and the biotechnological repercussions of phages, mechanistic investigations
must be complemented with high-throughput experimentations to elucidate how molecular
events scale to global microbial processes. It is plausible that new information on the
function of phage-mediated biocontrol therapy will emerge, and those gigantic discoveries
will come shortly, some of which will be powerful enough to revolutionize medicinal,
agricultural, and industrial biotechnologies.

9. Conclusions

Phage cocktail therapy has heralded a revolutionary track in the management of vari-
ous plant bacterial diseases, resulting in increased agricultural productions to sustain the
food supply chain. Biotechnological platforms have provided new insights into the develop-
ment of multifaceted phage cocktails, capable of targeting resistant plant pathogenic bacte-
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ria with extremely high efficiency. Several commercial phage-based biocontrol therapeutics
have reached the market to mitigate devastating bacterial diseases, such as Agri-phage
to control fire blight of pear and apple trees and bacterial spot of tomatoes and peppers,
Biolysis to eradicate soft rot disease of potato tubers, and Erwiphage for the management of
fire blight of apple trees [12]. In addition, the ectopic expression of phage-encoded proteins
frequently enhances the plant’s resistance to bacterial pathogens [216]. Although agro-
chemicals, including antibiotics and copper-based microbial compounds, are still applied
in the field to combat bacterial plant diseases, phage cocktail application has the potential
to reduce the number of agrochemicals employed or to replace these agrochemicals for
the management of bacterial plant diseases. Therefore, more phage cocktails for several
bacterial pathogens need to be assembled on the basis of field experiments rather than
controlled conditions.
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