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Abstract: Gene expression dictates fundamental cellular processes and its de-regulation leads
to pathological conditions. A key contributor to the fine-tuning of gene expression is Dicer,
an RNA-binding protein (RBPs) that forms complexes and affects transcription by acting at the
post-transcriptional level via the targeting of mRNAs by Dicer-produced small non-coding RNAs.
This review aims to present the contribution of Dicer protein in a wide spectrum of human pathological
conditions, including cancer, neurological, autoimmune, reproductive and cardiovascular diseases,
as well as viral infections. Germline mutations of Dicer have been linked to Dicer1 syndrome,
a rare genetic disorder that predisposes to the development of both benign and malignant tumors,
but the exact correlation of Dicer protein expression within the different cancer types is unclear,
and there are contradictions in the data. Downregulation of Dicer is related to Geographic atrophy
(GA), a severe eye-disease that is a leading cause of blindness in industrialized countries, as well as
to psychiatric and neurological diseases such as depression and Parkinson’s disease, respectively.
Both loss and upregulation of Dicer protein expression is implicated in severe autoimmune disorders,
including psoriasis, ankylosing spondylitis, rheumatoid arthritis, multiple sclerosis and autoimmune
thyroid diseases. Loss of Dicer contributes to cardiovascular diseases and causes defective germ
cell differentiation and reproductive system abnormalities in both sexes. Dicer can also act as
a strong antiviral with a crucial role in RNA-based antiviral immunity. In conclusion, Dicer is
an essential enzyme for the maintenance of physiology due to its pivotal role in several cellular
processes, and its loss or aberrant expression contributes to the development of severe human diseases.
Further exploitation is required for the development of novel, more effective Dicer-based diagnostic
and therapeutic strategies, with the goal of new clinical benefits and better quality of life for patients.

Keywords: Dicer ribonuclease; post-transcriptional regulation; RNA binding proteins; microRNAs;
RISC; Dicer1 syndrome; human diseases; cancer; neurological disorders; autoimmune diseases; viral
infection; infertility; cardiovascular diseases

1. Introduction

The Dicer enzyme, a well-conserved protein among eukaryotic organisms [1,2], is a large
protein (~200 kDa), initially identified in Drosophila melanogaster [3]. Most of higher metazoa,
including humans, have a unique Dicer gene in their genome [1,4] whose product is an endonuclease
(a member of the ribonuclease III (RNase III) family) [5–8]. Mammalian Dicer structure, although
difficult to crystallize [9], has been inferred via cryo-electron microscopy and biochemical and
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crystallographic studies on individual domains of the protein, which resembles the shape of the
letter L, with a head, a body and a base [1,10,11]. Dicer main domains, ordered from the N- to the
C-terminus, are helicase domain (including DExD/H, TRBP-BD and HELICc), DUF283 domain, PAZ
(Piwi/Argonaute/Zwille) domain, RNase IIIa and RNase IIIb domains and dsRNA-binding domain
(RBD) [9,10,12,13]. Through these domains, Dicer is involved in canonical biogenesis of most small
regulatory RNAs, including microRNAs (miRNAs) (Figure 1) and small interfering RNAs (siRNAs).
Specifically, Dicer cleaves twice the precursor miRNA (pre-miRNA) hairpins at the stem-loop boundary,
generating mature miRNA [14,15], a small non-coding RNA (nc-RNA) of ~22 nucleotides in length
that is characterized by a 2-nucleotide overhang at the 3′-end [16]. In mammals, TAR-binding protein
(TRBP) and PKR activator (PACT) compose, together with Dicer, the RISC loading complex [17–19].
Argonaute proteins (AGOs), and especially AGO2, also constitute RISC loading complex [20] by
binding to the C-terminal region of human Dicer. AGO2, together with the mature miRNA, composes
the miRNA-induced silencing complex (miRISC) [13,21].
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Figure 1. The canonical pathway of microRNA (miRNA) biogenesis. After the transcription of a
miRNA gene by RNA polymerase II, the produced primary miRNA (pri-miRNA) is cleaved by the
microprocessor complex Drosha-DGCR8, generating the precursor miRNA (pre-miRNA). Following the
export of pre-miRNA from the nucleus by Exportin-5-RanGTP, the Dicer ribonuclease, in complex with
TRBP (TAR-binding protein), cleaves the pre-miRNA hairpins to generate the mature miRNA, a small
non-coding RNA (nc-RNA) of ~22 nucleotides in length. The functional strand of the mature miRNA is
loaded together with Argonaute proteins (AGOs) onto the RNA-induced silencing complex (RISC) and
it can then direct post-transcriptional repression via mRNA complementarity. Downregulation of gene
expression can occur through translational repression with or without mRNA cleavage, depending on
whether the miRNA has full or partial complementarity to the target mRNA, respectively.
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Dicer is also involved in generating mature miRNAs from other RNA species, such as non-coding
small nucleolar RNAs (snoRNAs) [22] and transfer RNA (tRNA)-related fragments (tRFs) [23].
Interestingly, while Dicer is localized and functions in the cytoplasm, there is evidence for additional
tasks into the nucleus [24,25] and into the nucleolus, with a potential role as a tumor suppressor [26].
Nuclear Dicer has been associated with transcriptional silencing, RNA post-transcriptional processing,
DNA damage response and dsRNA removal [1,27–30]. Furthermore, other studies have indicated the
involvement of Dicer in autophagy and autophagosome formation [31,32], stabilization of passive-site
RNAs [33], antiviral defense [34–36] and apoptosis [37,38].

Evidence for serious developmental abnormalities and baneful human diseases such as
cardiovascular diseases and cancer [10], caused by loss or aberrant expression of Dicer protein,
has emerged. Deep understanding of the localization patterns, expression alterations and mutations
of Dicer in disease states, as well as its post-translational modifications, will allow precise molecular
targets to be identified for the design of novel, more effective therapeutic approaches. In this review,
the leading Dicer-associated human disorders are presented, demonstrating both the great impact of
the depletion or the overexpression of Dicer in cells and the potential of this molecule to be exploited
as a biomarker or/and therapeutic target for several human diseases.

2. Dicer in Human Diseases

2.1. Dicer1 Syndrome

Dicer1 syndrome—also known as pleuropulmonary blastoma familial susceptibility syndrome—is
a rare genetic disorder that is inherited in an autosomal dominant manner [39] and predisposes the
development of both benign and malignant tumors [37,40]. Pathogenic germline mutations of the
Dicer (also known as Dicer1) gene have been linked to Dicer1 syndrome (Figure 2), whereas mosaic
mutations of this gene have also been associated with this condition [37,41]. Mutations in one gene
allele lead to an increased risk of tumor development, although, in many cases, this is not sufficient to
cause a malignant phenotype. The majority of these mutations are located within regions that encode
the main protein’s domains (Figure 3A,B) and usually result in amino acid alterations and loss of
function [37,39].
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Figure 3. The majority of Dicer1 syndrome-related germline mutations of the Dicer gene are located
within regions that encode the main protein’s domains. (A) The tertiary structure of Dicer with the
protein’s main domains being highlighted (blue: helicase ATP-binding; green: helicase C-terminal;
orange: Dicer dimerization; purple: PAZ; yellow: ribonuclease IIIa/b; pink: double-stranded
RNA-binding). The structural data of the RCSB (Research Collaboratory for Structural Bioinformatics)
PDB (Protein Data Bank) (rcsb.org) entry having the ID 5ZAK in New Cartoon representation, as
displayed by VMD software. The Schrödinger Maestro Suite program (Schrödinger Release 2020-2)
was applied to process the data; existing water molecules and ligands were removed and missing
loops and side chains were filled (Prime). The protonation states were calculated, on physiological pH
7.4 (PROPKA), and the free energy of the resulting structures was minimized with the OPLS3 force
field. (B) Germline mutations (yellow vertical lines) of the Dicer gene related to Dicer1 syndrome are
presented at specific sites of the Dicer protein (� = deletion;
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To date, Dicer1 syndrome has been associated with pleuropulmonary blastomas, cystic nephroma,
rhabdomyosarcoma, multinodular goiter, thyroid cancer, Sertoli–Leydig cell tumor, ovarian sex
cord-stromal tumor, ciliary body medulloepithelioma, pituitary blastoma, pineoblastoma and
other neoplasms [37,42–45]. Furthermore, in rare cases, neuroblastoma, Wilms’ tumor and other
more common childhood cancers have also been reported [39]. Although Dicer1 syndrome is an
autosomal-dominant disease inherited in a haploinsufficient manner, recent studies have indicated
the necessity of a somatic mutation in the second allele of the Dicer gene, in addition to a preexisting
germline mutation in one allele (two-hit hypothesis) [37,46]. These “second-hit” mutations have been
found in the regions encoding the RNase III domains, which are genetic hotspots for somatic mutations
within the Dicer gene [47,48].

Metformin, an oral hypoglycemic agent, was found to reduce tumor growth with a simultaneous
enhancement of Dicer gene expression in mice. The increase of Dicer levels both in human patients and
in mouse models occurred by altering the subcellular localization of AUF1, a Dicer mRNA binding
protein, increasing Dicer mRNA stability and allowing the latter to accumulate [49,50]. Metformin
therapeutic approaches might be more beneficial for patients with a single functional Dicer allele,
but not for patients with biallelic Dicer mutations [37]. However, to improve success regarding the
treatment of Dicer1 syndrome, a functional combination of basic, translational and clinical research
will be required.

2.2. Dicer and Other Cancer Types

Dicer gene expression seems to be significantly associated with several cancer types, such as lung,
ovarian, colorectal and prostate cancer. Although the implication of Dicer in tumorigenesis has been
indicated, the exact correlation of Dicer protein expression with the different cancer types is unclear,
as the existing reports are contradictory and do not necessarily correlate with mRNA and protein
expression of Dicer as presented in the Cancer Genome Atlas (TCGA) (Figure 4A–C). The observed
differences between malignancies are, most likely, due to the deregulation of tissue-specific miRNA
expression, probably according to their susceptibility to Dicer, resulting in defective cell/tissue growth
and function. Reduced Dicer expression has been linked to breast and lung cancer, while lower
levels of this protein have been associated with poor prognosis and higher tumor stage in these
patients [10,51–54].

In some cases of non-small cell lung carcinomas (NSCLC), Dicer expression level has significantly
reduced during stage I, but risen in later stages [53]. Complicating matters further, Dicer is overexpressed
in prostate and colorectal cancer and acute lymphoblastic leukemia (ALL), leading to a shorter survival
rate [55–57]. In ovarian cancer cases, both reduced levels and overexpression of Dicer have been
reported [58,59]. In ovarian tumors, loss of Dicer has been demonstrated to promote cell proliferation
and migration with a simultaneous decreasing sensitivity to cis-platin [60]. Conflicting data also
exist regarding thyroid cancer, as Dicer has been found both upregulated [61] and downregulated in
independent patient cohorts [62]. The alterations of Dicer levels and the consequent aberrant expression
of specific miRNAs, with a prominent role in these tissues, may be driving this phenotype. Particularly,
miR-21 [63] and miR-4661-5p [64] have been found to act as oncogenic miRNAs (onco-miRs) in colorectal
cancer and hepatocellular carcinoma, respectively, whereas miR-124-5p [65] and miR-26b-5p [66] seem
to protect against to colorectal and thyroid cancer, respectively.

Moreover, Dicer is involved in cell responses due to double-strand breaks (DSBs) [28] for the
maintenance of genome integrity and survival, revealing another mechanistic role of this molecule
in cancer. Given this, Dicer probably processes RNAs formed by the transcription of broken DNA
ends [67]. It has been demonstrated in Arabidopsis and in human cells that small RNAs are produced
from sequences flanking DSB sites [68] named diRNAs. The latter function as guide molecules that
mediate chromatin modification or recruit protein complexes facilitating DSB repair [68].

Based on this evidence, the multifactorial role of Dicer in cancer is becoming apparent, although
there is no clear correlation between Dicer expression and cancer type or/and progression. A thorough
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investigation of the implications of Dicer on the different malignancies is necessary to provide an
in-depth knowledge regarding its action in tumorigenesis. Through this process, the ability of Dicer to
act as either a tumor suppressor or an oncogene, according to the cancer type, will be clarified, and its
potential application as a diagnostic/prognostic tool or a therapeutic target will most likely emerge.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 24 
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Figure 4. The Cancer Genome Atlas (TCGA)-derived expression profile of the Dicer gene in
representative human cancers. Dicer expression landscaping is presented in human cancer types based
on the TCGA platform (modified from TCGA). (A) RNA-seq data for Dicer RNA expression in thyroid,
lung, colorectal, prostate, breast and ovarian cancer. The value 0.0 on the vertical axis represents
zero expression of Dicer, while the value 45.0 maximum expression. (B,C) Dicer protein expression in
thyroid, lung, colorectal, prostate, breast and ovarian cancer and lymphoma. The color bars represent
the percentage of patients with medium and high protein expression levels, while the absence of a bar
represents low and zero protein expression levels. The expression of the protein was evaluated with
(B) the HPA000694 antibody (Sigma-Aldrich, St. Louis, MO, USA) and (C) the CAB068185 antibody
(Sigma-Aldrich, St. Louis, MO, USA).
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2.3. Dicer in Geographic Atrophy

Geographic atrophy (GA) is an advanced form of age-related macular degeneration, a severe
eye-disease that is a leading cause of blindness in industrialized countries [69–72]. In GA patients,
Dicer levels have been reduced in the macular retinal pigment epithelium (RPE)—an eye-specific tissue
that is affected in GA—but not in the neural retina [69,71]. The downregulation of Dicer is not a generic
damage response due to the chemical stress caused by dying cells, but is GA specific, as the protein
levels of Dicer have not been reduced in patients with other RPE disorders. Experiments in mice have
shown that Dicer deletion results in RPE cell degeneration. Moreover, Dicer downregulation in mouse
and human RPE cells increases cell death, indicating the involvement of Dicer deregulation in the
pathogenesis of the disease (Kaneko, Dridi et al. 2011).

Given that Dicer plays a key role in the biogenesis of miRNAs, and that these molecules are
abundant and important in mammalian cells, miRNA dysregulation due to Dicer depletion would
be expected in the occurrence of GA. Surprisingly, this is not the case, as the deletion of other
miRNA-processing enzymes does not lead to RPE degeneration. Existence of replicated Alu RNA
sequences—non-coding RNAs expressed by highly abundant Alu retrotransposon [73,74], specifically
in the RPE of examined patients—has been observed as a result of the absence of Dicer enzyme.
Normally, Dicer processes Alu RNAs into shorter, non-toxic molecules, whereas the abundance of
Alu RNAs induces cell death in RPE cells and RPE degeneration [71], possibly via the activation of
the NLRP3 inflammasome [73]. These data support a model according to which GA is likely to be
mechanistically associated with Dicer deregulation and Alu RNAs homeostasis, providing a scaffold
for the development of new therapeutic strategies.

2.4. Dicer in Psychiatric and Neurological Diseases

2.4.1. Chronic Stress and Depression

Chronic stress, a condition commonly associated with depression, can cause changes in the
endocrine system, as well as alterations in the expression of genes related to stress response [75,76].
Chronic stress is both a psychological and neurobiological phenomenon, and has been shown to
alter the hypothalamo-pituitary-adrenal (HPA) system [75,77]. It may also affect hippocampus and
prefrontal cortex volume, as well as dendritic growth in the amygdala, leading to impairment of
memory and emotional control, and augmentation of anxiety and aggression, respectively [78].
During stress and depression, many biological processes and components undergo changes, with the
serotonergic system, the Wnt signaling pathway and β-catenin expression being typical examples [75].
β-catenin, a fundamental component of the canonical Wnt signaling pathway, is a ubiquitously
expressed protein in the mammalian brain that is involved in both intercellular adhesion and gene
transcription [79,80]. Its dysfunction has been implicated in several neuropsychiatric disorders,
such as depression. Specifically, a downregulation of the transcription output of β-catenin has been
demonstrated in patients with depression, whereas the overexpression of this molecule in mouse
depression models has resulted in the prevention of the social avoidance phenotype [81]. Given that
β-catenin appears to bind and regulate Dicer gene expression, its behavioral effects have also been
investigated experimentally (Figure 5). Dicer knockdown has led to a social avoidance phenotype,
similar to that caused by blocking β-catenin signaling. In addition, β-catenin overexpression has
blocked the development of this phenotype in mice expressing normal Dicer levels, but not in Dicer
downregulated mice, indicating that β-catenin acts—at least in a part—via the Dicer enzyme [81].



Int. J. Mol. Sci. 2020, 21, 7223 8 of 24

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 24 

 

During stress and depression, many biological processes and components undergo changes, with the 
serotonergic system, the Wnt signaling pathway and β-catenin expression being typical examples 
[75]. β-catenin, a fundamental component of the canonical Wnt signaling pathway, is a ubiquitously 
expressed protein in the mammalian brain that is involved in both intercellular adhesion and gene 
transcription [79,80]. Its dysfunction has been implicated in several neuropsychiatric disorders, such 
as depression. Specifically, a downregulation of the transcription output of β-catenin has been 
demonstrated in patients with depression, whereas the overexpression of this molecule in mouse 
depression models has resulted in the prevention of the social avoidance phenotype [81]. Given that 
β-catenin appears to bind and regulate Dicer gene expression, its behavioral effects have also been 
investigated experimentally (Figure 5). Dicer knockdown has led to a social avoidance phenotype, 
similar to that caused by blocking β-catenin signaling. In addition, β-catenin overexpression has 
blocked the development of this phenotype in mice expressing normal Dicer levels, but not in Dicer 
downregulated mice, indicating that β-catenin acts—at least in a part—via the Dicer enzyme [81]. 

 
Figure 5. Dicer involvement in psychiatric and neurological diseases. Diagrammatic representation 
of the Dicer-associated neurological and neuropsychiatric disorders, as well as the typical pathways 
through which Dicer acts. Dicer downregulation can lead to the development of psychiatric and 
neurodegenerative diseases, such as depression and Parkinson’s disease, respectively, while the 
presence of Dicer enzyme may impair health of triplet repeat expansion disease (TRED) patients. 

Figure 5. Dicer involvement in psychiatric and neurological diseases. Diagrammatic representation
of the Dicer-associated neurological and neuropsychiatric disorders, as well as the typical pathways
through which Dicer acts. Dicer downregulation can lead to the development of psychiatric and
neurodegenerative diseases, such as depression and Parkinson’s disease, respectively, while the
presence of Dicer enzyme may impair health of triplet repeat expansion disease (TRED) patients.

Dicer mRNA levels have also been found decreased in post-traumatic stress disorder (PTSD) with
comorbid depression, a distinguished category of chronic stress [82]. Towards the same direction,
a follow-up fMRI study uncovered that lower Dicer blood mRNA levels were significantly associated
with increased amygdala activation to fearful stimuli, a neural response correlated with PTSD [83].
Stress-related regulation of Dicer and miRNAs in the blood and the brain of these patients may occur
simultaneously, as the findings of stress-related Dicer and miRNAs are consistent in blood and into the
nucleus accumbens [83]. This brain region of chronic stress mice is responsible for motivation, pleasure,
addiction and learning [81]. Additionally, Dicer expression quantitative trait locus (eQTL), rs10144436,
located in its 3′ untranslated region (3′ UTR), is significantly associated with PTSD and depression [84],
inferring that Dicer plays a role in the mechanism or/and manifestation of the abovementioned
condition [83]. As the differential expression of many miRNAs has been associated with organisms’
adaptations under stress conditions and depression [85–87], miRNAs probably mediate the behavioral
effects of Dicer. The lack of the latter and the subsequent deregulation of miRNA expression could
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cause severe alterations in neural processes, an increased sensitivity to stress and the development of
depression, as a final result. In any case, the Dicer function seems to be important for the prevention of
depression, as it seems to play a key role in the adaptive responses to cell stress.

2.4.2. Parkinson’s Disease

In the human brain, neuronal networks formed by dopaminergic (DA) neurons are responsible for
the regulation of emotions, complex behaviors and voluntary motion [88]. A progressive damage to
DA neurons in the midbrain substantia nigra (SN) can affect motor symptoms in Parkinson’s disease
(PD), an age-related neurodegenerative disorder that affects approximately 1% of the population older
than 65 years old [89].

Experimental data and scientific evidence support a strong implication of Dicer affecting PD
(Figure 5). During aging, Dicer has been found downregulated in different tissues, including
brain [90,91], a reduction observed in DA neurons from PD patients [92]. In vivo studies have shown that
Dicer knockout in DA neurons leads to increased cell death and degeneration of their axonal projections
to the striatum, following a pattern of cell death similar to clinical PD manifestation. Noticeably, the DA
neuron-specific ablation of Dicer in mice has caused balance and motor coordination abnormalities that
worsened with time, leading to a progressive development of a PD-like phenotype [93,94]. Furthermore,
loss of Dicer results in a complex of PD symptoms characterized by profound involuntary resting
tremor, postural and gait impairments and rigidity. However, increasing the activity of Dicer in
these animals via pharmacological intervention with enoxacin—a drug known to stimulate Dicer
activity—was neuroprotective, indicating the crucial role of this protein in the development and
progression of the disease [93]. Loss of Dicer in the brain confers higher levels of pro-inflammatory
factors and hyper-microglial inflammatory responses [95]. Neuroinflammation seems to contribute
to the development of PD [94,96,97], thus this may be a possible mechanism through which Dicer is
involved in disease progression. Hence, Dicer could be a potentially promising target for the treatment
or/and the alleviation of symptoms of PD.

2.4.3. Triplet Repeat Expansion Diseases

Triplet repeat expansion diseases (TREDs) are a class of several genetic disorders, including
Huntington’s disease (HD), myotonic dystrophy type 1 (DM-1) and fragile X syndrome, caused by
triplet repeat expansions in specific genes [98]. They are correlated to elongation of CNG DNA and
RNA repeats, whose length has varied between patients and healthy individuals, encoding for a stretch
of glutamines (polyQ) that are responsible for the toxic effects in the cells [99]. These triplet repeats
form long hairpin structures [100,101], which are recognized and cleaved by Dicer enzyme, resulting
in the generation of short CNG RNAs of approximately 21 nucleotides in length (siCNGs) [99,102,103]
(Figure 5). The relation of siCNGs and HD has been previously reported, due to a CAG expansion within
the first exon of the Huntingtin (HTT) gene. These Dicer-dependent siCAGs from HTT RNA seem to
have neuro-toxic effects [103]. siCNG levels have been increased in brain samples isolated from patients
with HD compared to healthy individuals [103]. Moreover, the toxic activity of Dicer-dependent CNG
biogenesis has been documented in fibroblasts of patients with DM-1 (siCUG) and HD (siCAG) [99].
Also of note, the experimentally measured levels of the TRED-related transcripts in cells with normal
expression of Dicer were lower compared to Dicer-deficient cells [99]. Accordingly, the Dicer-induced
siCNGs can silence the expression of transcripts containing long complementary repeats via the RNA
interference pathway [99,104,105]. This indicates the existence of small molecules in TREDs that can
direct the repression of specific targets, leading to potentially pathogenic gene expression unbalances.
Given that the presence of these siRNAs could cause neuro-toxic effects [103], the discovery of the
Dicer-regulated siCNGs mechanism highlights the potential value of these molecules as promising
therapeutic targets for triplet repeat expansion diseases.
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2.5. Dicer in Autoimmune Disorders

2.5.1. Psoriasis

Psoriasis, a papulosquamous skin disease, is a common immune-mediated disorder [106].
Specifically, psoriasis is a chronic skin inflammatory disease characterized by a vicious circle of
chronic inflammation caused by the interaction between keratinocytes and immune cells [107,108].
The pathogenesis of psoriasis involves both innate and acquired immunity, as well as genomic
background, keratinocytes and environmental factors [109,110]. Transcripts of approximately 1340
genes were found to be deregulated, with potential implications for this disorder [106,107,111]. In a
recent study, the expression level of Dicer was also deregulated in skin biopsies, demonstrating higher
levels of transcription in psoriasis skin tissue than in healthy individuals [106] (Figure 6). Dicer appears
to have a distinct role in psoriasis, and the aberrant expression of this molecule could be related to
disease progression. This may be due to the subsequent deregulation of gene expression and small
RNAs, as several miRNAs have been found to be deregulated in psoriasis skin lesions [112]. miRNAs
are involved in skin development, epidermal differentiation and hair follicle development [113,114],
whereas individual miRNAs control the levels of inflammatory proteins in the skin of patients with
psoriasis [106]. Among others, miR-203 is a typical example of a tissue-specific miRNA, which has a
skin-restricted expression profile and acts as a tumor suppressor regulating the differentiation and
proliferation of keratinocytes. Thus, both miRNAs and RNAi machinery proteins, including Dicer,
seem to be issues of major importance for the occurrence and progression of psoriasis and, consequently,
for the diagnosis, prognosis and treatment of the disease.

2.5.2. Ankylosing Spondylitis

The class of immune-mediated rheumatic diseases includes several and heterogenous disorders
in which the systemic inflammation constitutes a common hallmark. Similarly, ankylosing spondylitis
(AS), a type of arthritis, is characterized by chronic inflammation that primarily affects the spine
and sacroiliac joints [115]. This inflammation gradually spreads and results in a progressive bony
fusion called ankylosis, causing pain and stiffness at the spine and other peripheral joints [116,117].
Although the exact etiology of AS is thus far unknown, this condition is likely caused by a combination
of environmental and genetic factors [118,119]. Intriguing studies have shown the involvement
of miRNAs in the pathology of AS [120], and the expression profile of the major components of
miRNA biosynthesis machinery have been examined. The results show a significant reduction
in Dicer expression level in patients with AS (Figure 6) and a downregulation of DGCR8 mRNA,
but no effect regarding Drosha mRNA. Nevertheless, all three components seem to have no casual
correlation with disease progression [115]. Dicer may have an impact on AS occurrence via either
the miRNA functions or other underlying mechanisms. Several miRNAs have been found to be
involved in processes from the regulation of immune cells and inflammatory response to ossification
and osteoblasts differentiation, thus the deregulation of their expression due to the lack of Dicer
could lead to an immune-associated disorder. In accordance, Treg cell function has been found to be
safeguarded by a Dicer-dependent miRNA pathway [121] and miRNA aid to the maintenance of Treg
cell functional program. This observation was corroborated by the fact that Dicer-deficient Treg cells
lacked repression activity in vivo, and that Dicer-lacking mice rapidly progressed a lethal systemic
autoimmune disorder [122]. Additional functions of Dicer enzyme that have recently been discovered,
such as the involvement of the protein in autophagy [31,32,123], could also be responsible for the
disease development or/and progression, as autophagy has been linked to several rheumatic diseases,
including AS [124].
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2.5.3. Rheumatoid Arthritis

Dicer enzyme is also involved in other immune-mediated rheumatic diseases such as rheumatoid
arthritis (RA), an autoimmune disorder affecting many people worldwide. In particular, RA is a
systemic inflammatory disease characterized by progressive joint inflammation, leading to systemic
complications and disability, as well as high morbidity and mortality rates [125,126]. This condition
occurs as a result of the interaction between genetic and environmental cues, as genetic variants and
epigenetic alterations increase the risk of developing the disease [127–129]. Dicer mRNA expression
has been found to be significantly reduced in fibroblast-like synoviocytes (FLSs) of patients but not in
isolated peripheral blood mononuclear cells (PBMCs) [130], a fact that indicates that differential Dicer
expression in patients is located in specific cells (Figure 6). The latter observations are supported by a
study on another group of RA patients that also revealed no statistically significant Dicer expression
difference in PBMCs when compared to that of healthy individuals [131]. Thus, Dicer might contribute
to the pathogenesis by controlling the differential expression of several miRNAs in RA patients, leading
to the regulation of immune response, cell cycle and apoptosis [132,133]. Experimental data from
mouse models with limited expression of Dicer did not demonstrate an inflammatory phenotype at
first, but a significant increase of joint inflammation was observed after the injection of K/BxN sera,
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which can induce arthritis in normal mice [130]. Thus, it seems that the absence of Dicer may not be
responsible for the occurrence of the disease but for its progression, as the patients may fail to recover
from a severe inflammation. Furthermore, the increased expression level of IL-6, a pro-inflammatory
cytokine, was observed in human synoviocytes upon Dicer downregulation, as well as resistance of
these cells to apoptotic phenomena [130], contributing to the development of the pathological condition.

2.5.4. Multiple Sclerosis

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system that
can lead to long-term disability [134,135]. Given that Dicer expression is required for the normal
development of oligodendrocytes and Schwann cells [136,137], and it is a subject of acute regulation
in vitro and developmental regulation in vivo [138–142], many studies have focused on its implications
in MS (Figure 6). Dicer also has an involvement in the development of MS, due to its crucial role in
immune regulation [143]. Dicer protein levels have been found to be significantly lower in leucocytes
isolated from MS patients, while there has been an inverse correlation between the protein levels
and disability status of these patients [142,144]. The observed differential Dicer protein expression is
not always accompanied by a corresponding reduction in mRNA levels [142], probably suggesting a
post-transcriptional regulation of Dicer in these patients. Noticeably, Dicer expression is selectively
decreased in the B-cells (a cell type with a fundamental role in MS) of patients with this condition,
as there is no significant alteration of protein levels in other cell types [144]. Loss of Dicer leads to
alterations in antibody repertoire and augmentation of self-reactive auto-antibodies in mice [145,146],
which can trigger MS. In addition, Dicer may act via the molecule CD80, which is increased in a lack of
Dicer [144]. CD80 is expressed by B-cells and other antigen-presenting cells and promotes the activation
of T cell immune response, which is crucial in MS pathogenesis. Finally, Dicer is likely associated
with the response to therapy and clinical course of MS. The treatment of patients with IFNβ1a has
shown that the drug can reverse the low protein levels in some of them—probably targeting protein’s
post-transcriptional modifications—which is directly related to good clinical response [142]. Hence,
Dicer seems to be strongly correlated to both disease development and clinical response; consequently,
it could be exploited as either a diagnostic and prognostic biomarker and/or therapeutic target for the
management of MS.

2.5.5. Autoimmune Thyroid Diseases

Autoimmune thyroid diseases (AITDs) are organ-specific disorders that affect approximately 5% of
the general population. Such disorders include Graves and Hashimoto diseases that are characterized
by the development of hyperthyroidism and hypothyroidism, respectively [147,148]. The etiology
of these conditions seems to be multifactorial, as both environmental exposure and specific genes
have a strong impact on it. Polymorphisms in genes involved in miRNA biogenesis, including Dicer,
increase risk of AITDs (Figure 6). In particular, two polymorphisms in the Dicer gene, Dicer SNP1
(rs3742330 A/G) and Dicer SNP2 (rs1057035 C/T), which are located in the 3′UTR, have been examined in
the context of AITDs. Significantly lower frequency of the TT genotype and T allele of Dicer SNP2—but
not Dicer SNP1—were reported in Graves disease patients compared to healthy individuals [149].
Dicer SNP2 most likely affects the binding of the evolutionarily conserved hsa-miR-574-3p, resulting
in a decreased expression of Dicer in the absence of the T allele [150]. The correlation of lower Dicer
expression levels to AITDs has also been confirmed experimentally in animal models, as Dicer-deficient
mice developed uncontrollable autoimmune diseases [122]. Therefore, correcting the expression levels
of Dicer might provide a crucial contributor to AITD treatment.

2.6. Dicer in Cardiovascular Diseases

Various studies have revealed the involvement of Dicer in a wide range of cardiovascular diseases,
as it is vital for endothelial cell function [151,152] and angiogenesis [153,154]. Its absence results in
the manifestation of several features of heart failure, often leading to a significant decline in cardiac



Int. J. Mol. Sci. 2020, 21, 7223 13 of 24

function. Previous experiments in mice have shown an increased mortality rate and a decreased
spontaneous activity of Dicer-deficient mice, whereas Dicer depletion has provoked geometric and
functional deteriorations of the heart. Typical examples of these aberrations are increased cardiac
size, thrombin conduction defects, alterations in myocardial structure and the decreased integrity of
cardiomyocytes, all features that significantly reduce cardiac function [155,156]. Accordingly, a large
reduction of Dicer protein levels was recorded in failing human heart tissue, indicating a role of Dicer
in heart failure in human patients [156].

Importantly, Dicer enzyme affects the progression and severity of atherosclerosis and ischemia in
mouse models. Downregulation of Dicer in lesional microphages induces the severity of atherosclerosis
in aortas. The condition was characterized by increased inflammation, apoptosis and the presence of
foam cells and large necrotic core areas, suggesting an atheroprotective role of Dicer. Furthermore, Dicer
affects mitochondrial energy metabolism in macrophages, promoting the mitochondrial respiration
and oxidative metabolism of fatty acids, thereby providing metabolic adaptation and preventing the
progression of atherosclerosis [157]. Nevertheless, Dicer downregulation is beneficial in the case of
renal ischemic injury, as Dicer-deficient mice were more resistant to ischemic acute kidney injury (AKI).
In these animals, there was less tissue damage, fewer injured tubules and apoptotic cells and, generally,
less severe injury [158]. It is noteworthy that SNPs in miRNAs and miRNA biogenesis pathway genes,
such as Dicer, can increase coronary artery disease (CAD) risk. Dicer rs1057035 T > C polymorphism,
located within 3′ UTR of Dicer, affects the probability of developing the disease, as Dicer rs1057035 CC
genotype confers a 50% reduced CAD risk compared to individuals with TC or TT genotype [159].
The contribution of Dicer can be direct or indirect via miRNA regulation, whose expression has been
found to be altered in these conditions [157,159]. Concluding, Dicer appears to have a crucial role in
proper heart function, as its aberrant expression can lead to severe heart failure and the development
of various cardiovascular diseases.

2.7. Dicer in Female and Male Fertility

The regulation of fertility is under strict gene control and includes the establishment of a
suitable environment and the adaptation to changes in hormones and other external cues in order
to produce fertilizable gametes and achieve fertilization and fetal development [160–162]. Several
studies have demonstrated the importance of Dicer in both female and male germ cell maturation and
fertility [163,164].

Loss of Dicer causes defective germ cell differentiation and reproductive system abnormalities in
both sexes [165–168]. In mice, downregulation of Dicer in oocytes—a cell type containing 10–15 fold
higher levels of Dicer mRNA than other cells and tissues—has resulted in the formation of multiple
spindles and chromatin condensation defects [163,169], whereas Dicer-deficient female mice proved to
be infertile [170]. Loss of Dicer also has several effects in oviduct and uteri phenotype and function in
mouse models. In the absence of the protein, a shortened oviduct tubule length, loss of oviductal coils,
loss of the smooth muscle layer and disorganization of the epithelium, as well as a smaller uterus in
length, diameter and weight have been observed, among other responses [171–174]. In these cases,
embryos were developmentally delayed and unable to enter the uterus, whereas the uterus itself
was unable to sustain pregnancy following embryo transfer [171,172,174]. In Caenorhabditis elegans,
Dicer function must be inhibited for successful oogenesis, and Dicer function must be reinitiated for
embryogenesis to occur normally. An interesting explanation for this phenomenon is that specific
maternal RNAs are protected in germ cells during development and degraded upon requirements via
the production of certain classes of endo-siRNAs in a Dicer-dependent manner [175].

Dicer deficiency also affects the male reproductive system, as its loss leads to a severe disruption
of spermatogenesis, with a typical failure of its occurrence during haploid differentiation. Chromatin
condensation, abnormal head shape and disrupted organization of tail accessory structures in late
spermatids, as well as defects in acrosomes and a reduction in the size of the testes by about half have
been reported [165]. All the aforementioned lead to the production of abnormal gametes and failed
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germ cell maturation, resulting in both female and male infertility. Nevertheless, by gaining a better
understanding of the role and function of Dicer in these biological pathways, this molecule could
emerge as a novel tool for exploitation in the handling of infertility and other reproductive diseases.

2.8. Dicer-Dependent Antiviral Defense Mechanism

Viral infection in diverse eukaryotic hosts triggers the production of virus-derived small RNAs
(vsiRNAs) capable of silencing mRNAs via the RNAi mechanism [176]. Such vsiRNAs have been found
in fungi, plants, nematodes, insects and invertebrate animals [177,178]. The first experimental evidence
of RNA-based antiviral immunity in animals was provided by the accumulation of Flock House
virus (FHV) siRNAs in infected D. melanogaster cells [176,179]. vsiRNAs are produced specifically
by the Dicer family of class-3 RNase III enzymes [180]. In particular, following transcription from
the virus genome, the viral pre-siRNAs are exported from the nucleus into the cytosol, where Dicer
further processes them into virus-derived small RNAs of approximately 21–23 nucleotides in length.
These are assembled into effector complexes to guide the suppression of virus genes necessary for virus
survival [34,178,181]. Thus, the Dicer-dependent vsiRNAs determine the specificity of RNA-based
antiviral immunity and, in some cases, these molecules are the dominant species of the small RNA
population in an infected cell [176]. Mammalian viruses that produce vsiRNAs are the Nodamura virus
(NoV), encephalomyocarditis virus (EMCV) [180,182], hepatitis C virus (HCV) and poliovirus [176],
while vsiRNAs were also detected in human 293 cells as a response to either influenza A virus (IAV) or
human enterovirus 71 (HEV71) [183,184]. In case of human immunodeficiency virus 1 (HIV-1), Dicer
expression and function were found suppressed in macrophages [185]. Moreover, downregulation of
Dicer promoted adenovirus (Ad) replication in infected cells [34], indicating that Dicer acts as a strong
antiviral with a crucial role in the RNA-based antiviral immunity.

3. Conclusions

In conclusion, Dicer is an essential enzyme for the maintenance of physiology due to its pivotal
role in several cellular processes such as regulation of gene expression, DNA damage response,
cell growth and differentiation. Loss or aberrant expression of Dicer contributes to the development
of severe human diseases (Table 1), with Dicer1 syndrome being a typical example. Among other
Dicer-associated disorders, some autoimmune, neurological, reproductive and cardiovascular diseases
have been identified, indicating the universal action of this protein in the human body. The most
obvious cascade of events through which Dicer is responsible for the development of such disorders is
probably in the deregulation of miRNA expression. However, other functions of Dicer should not be
overlooked, as the involvement of the protein in processes such as apoptosis, transcriptional regulation
and autophagy could result in the development and progression of the disease. Notwithstanding the
wealth of information already generated within this field, several open avenues for future investigation
remain. The identification of new regulatory domains (including binding partners), SNPs and
mutations, as well as characterizing the tissue- and cell-specific Dicer functions will likely typify future
studies regarding Dicer’s biological actions. An in-depth investigation of the molecular mechanisms
underlying the aforementioned pathologies could highlight promising diagnostic/prognostic tools and
therapeutic targets and lead to the development of more effective, novel, Dicer-based diagnostic and
therapeutic strategies, resulting in several clinical benefits and better quality of life for patients.
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Table 1. The deregulated Dicer expression in associated human pathologies.

Disease Association

Dicer1 syndrome germline mutations

Cancer downregulation/upregulation

Geographic atrophy (GA) downregulation

Psychiatric and
Neurological Diseases

Chronic stress and depression downregulation

Parkinson’s disease (PD) downregulation

Triplet repeat expansion diseases (TREDs) normal expression/overexpression

Autoimmune Disorders

Psoriasis upregulation

Ankylosing spondylitis (AS) downregulation

Rheumatoid arthritis (RA) downregulation

Multiple sclerosis (MS) downregulation

Autoimmune thyroid diseases (AITDs) downregulation

Cardiovascular diseases downregulation/polymorphism

Infertility downregulation

Viral infections vsiRNAs generation
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