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Abstract: Controlling the quality of tertiary structures computed for a protein molecule remains a
central challenge in de-novo protein structure prediction. The rule of thumb is to generate as many
structures as can be afforded, effectively acknowledging that having more structures increases the
likelihood that some will reside near the sought biologically-active structure. A major drawback with
this approach is that computing a large number of structures imposes time and space costs. In this
paper, we propose a novel clustering-based approach which we demonstrate to significantly reduce
an ensemble of generated structures without sacrificing quality. Evaluations are related on both
benchmark and CASP target proteins. Structure ensembles subjected to the proposed approach and
the source code of the proposed approach are publicly-available at the links provided in Section 1.
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1. Introduction

The three-dimensional/tertiary structure of a protein molecule is key to determining its array
of activities in the cell, as proteins employ their tertiary structures to interface with other molecular
partners [1]. Though the path to decoding protein function seems to go through its tertiary structure,
determining the biologically-active structure(s) of a protein poses many challenges in both the wet and
dry laboratory [2]. Great progress has been made in wet-laboratory structure determination, but these
advancements nonetheless lag behind the technological advances in gene sequencing; the increasingly
faster and cheaper high-throughput gene sequencing technologies have yielded millions of protein
sequences [3]. In contrast, the number of known biologically-active/native protein structures is an
order of magnitude less. For instance, as of April 2020, the number of experimentally-known structures
deposited in the Protein Data Bank (PDB) [4] is around 160,000.

The above discrepancy continues to motivate protein structure prediction (PSP) in dry laboratories.
One of the most challenging settings is that of de-novo/template-free PSP, where the only direct
information about a target protein at hand is its amino-acid sequence [5]. This is typically the case for
proteins that do not have other, sufficiently-similar protein sequences with known structures that could
otherwise serve as structural templates upon which to thread the target sequence [5]. It is worth noting
that there is some evidence of stagnation in the rate of discovery of new protein folds [6]. This suggests
that reasonable structural templates may soon be found for increasingly many more target proteins
and transferred onto them via homology modeling.
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Prediction in a de-novo setting is carried out in two stages. In the first stage, the focus is on
computing or generating physically-realistic structures. Structure generation algorithms address
an optimization problem; they seek tertiary structures that minimize the interaction energy among
the atoms of a given target protein. It is now well-known that the energy functions designed in
computational laboratories are inherently inaccurate [7–9]. In particular, one cannot infer that a
lower-energy structure is more similar to the sought native structure than a higher-energy structure.
In a blind setting, it is unknown which structures are sufficiently close to the sought native structure
and can be deemed near-native. The objective of the second stage is to determine such structures.
The algorithms put forth for this purpose are known as model assessment, model selection, or decoy
selection; the terms “model” and “decoy” refer to a computed/generated structure in this context.

Great algorithmic advances have been made in structure generation, most remarkably by
Rosetta [10], Quark [11], and others [12–16]. Recent works have investigated incorporating
complementary information like sequence-predicted contacts and constructing new energy functions
based on predicted contacts or distances of pairs of amino acids for structure generation [17–19].
Algorithms utilizing deep neural networks are also becoming increasingly popular [20–24].
Such advances are documented in the Critical Assessment of protein Structure Prediction (CASP),
which is a biennial community experiment/competition that assesses progress in PSP in several
categories, including the template-free category (also referred to as free modeling) [25].

Outstanding challenges concern how to control the quality of generated structures. Despite clever
choices in representing tertiary structures [5,26], the search space that has to be explored by a structure
generation algorithm is vast and high-dimensional. Consider the following back-of-the-envelope
calculation: on a protein not exceeding 100 amino acids, modeling three backbone dihedral angles per
amino acids results in around 300 variables; these constitute the 300 dimensions of the search space.
In addition, the energy function that structure generation algorithms optimize (by seeking structures
that reside in local minima of the energy surface) is noisy.

Currently, when employing popular platforms, such as Rosetta and Quark, the recommendation
from developers is to generate as many structures that can be afforded, with actual numbers
practically varying between 10,000 and 20,000 structures. This recommendation acknowledges that
more structures may translate into higher likelihood that some will reside near the sought native
structure. The recommendation is impractical for various reasons. While generating structures used
to be significantly more expensive than analyzing them, now this relationship is less imbalanced.
Great progress in software and hardware have made it less costly to generate structures. For instance,
algorithms operating under the umbrella of evolutionary computation can generate hundreds of
thousands of structures [12,13,16,17]. Algorithms tasked with analyzing these structures now may
have to additionally deal with a data size issue.

Moreover, in most template-free PSP protocols, the end of the first stage adds back the side-chain
atoms on each structure and carries out local improvements on the resulting all-atom structures prior
to handing them off to the second stage. Adding atomistic detail on a structure is computationally
expensive, as the energy function employed has to handle a large number of atoms per structure
(that includes all side-chain atoms and all hydrogen atoms for each amino acid). This is exacerbated
when the recommendation is to collect large numbers of structures.

In this paper, we propose a novel approach to reduce the size of a structure ensemble. The objective
is to do so while retaining the quality of the original ensemble, as measured via several metrics
described later in the manuscript in Section 2. To the best of our knowledge, the problem of structure
ensemble reduction while preserving quality is unexplored. The problem is also not trivial. In the
de-novo setting, it may be tempting to tackle it by discarding higher-energy structures. Indeed,
early work in [27] does so before proceeding to cluster the remaining structures for the purpose of
model selection. As we show in our evaluation in Section 3, an approach that simply utilizes an energy
threshold, which we employ as a baseline for the purpose of comparison, does a poor job at retaining
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near-native structures. This is not surprising. As the above discussion relates, energy is not a reliable
indicator of nativeness.

The proposed approach seeks to retain the inherent organization of the structures in a given
ensemble and does so by utilizing clustering algorithms. While this paper evaluates the impact
of various clustering algorithms, the contribution is not in proposing clustering algorithms; nor is
the focus of this paper in evaluating the vast landscape of existing clustering algorithms. Instead,
the contribution of the proposed approach is in leveraging smart featurization of tertiary structures,
computationally-expedient clustering in the feature space to capture the inherent organization,
and selecting a subset of structures that retain the exposed organization in tandem with additional
properties of interest. The latter here are limited to internal energies, but other properties of interest
may be utilized that may expand the applicability of the proposed approach to structure ensembles
beyond the de-novo setting. The main reason we focus on such ensembles here is due to our ability to
generate many structures and the clear need for the proposed approach in de-novo PSP.

It is also worth noting that the efforts described in this manuscript are not targeting the problem
of model assessment/selection, though the reduced ensembles may be of use downstream to methods
that tackle model assessment/selection. Some of these methods employ clustering, supervised learning,
or a combination of learning techniques [27–33]. A preliminary version of this work has appeared
in [34]. Here we expand the work by adding clustering algorithms, metrics measuring quality,
and detailed evaluations. Rigorous analysis is conducted to determine the optimal settings for the
employed clustering algorithms. Evaluations are carried out on diverse target protein datasets that
include recent hard, free-modeling domains from CASP12 and CASP13 and show that the proposed
approach yields drastic reductions in ensemble size while retaining structure quality.

We note that the proposed approach is publicly-available at https://github.com/psp-codes/
reduced-decoy-ensemble (Code doi:10.5281/zenodo.3758031). All structure ensembles subjected to the
proposed approach are provided freely on IEEEDataPort at https://ieee-dataport.org/open-access/
protein-tertiary-structures-zamanmolecules20 (Data doi:10.21227/gq2v-8k24).

The rest of this paper is organized as follows. We describe the proposed methodology in Section 2.
Evaluation is presented in Section 3. The paper concludes with a summary and discussion of future
work in Section 5.

2. Materials and Methods

We will refer to a given ensemble of structures as Ωgen and to the reduced ensemble (by our
approach) as Ωred. We note that Ωred keeps only a fraction of the structures in the original Ωgen.
To efficiently produce a reduced-size structure ensemble Ωred that retains the quality and diversity
of the original, full-size structure ensemble Ωgen, the method we propose in this paper leverages fast
shape similarity for tertiary structures.

The proposed method consists of three stages. First, a featurizer extracts structure features
that summarize the three-dimensional shape. Second, the features are then utilized by a clustering
algorithm to group structures based on their shape similarity. Third and finally, a selector selects
structures from each cluster/group identified over Ωgen to populate the reduced ensemble Ωred.
In the following, we describe each of these stages in detail. Before doing so, in the interest of clarity,
we provide some more details into how the structures we utilize to evaluate our method are generated
in the first place.

2.1. Generation of Structures for a Target Protein

Many options are available to generate the ensemble Ωgen, Rosetta, Quark, etc. We choose to
utilize an in-house algorithm, the hybrid evolutionary algorithm (HEA) [16], which has been evaluated
against Rosetta and other algorithms [14–16]. HEA leverages evolutionary search techniques to
balance between exploration and exploitation in a vast search space and has been shown to have
higher exploration capability than Rosetta [15,16]. While any structure generation algorithm can be
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used to generate the Ωgen ensemble for our purposes in this paper, we specifically employ HEA due to
its high exploration capability; the algorithm can generate hundreds of thousands of structures for a
target protein (given its amino-acid sequence) in a matter of hours.

In its functional core, the HEA builds over the Rosetta engine and utilizes its representation of
structures, as well its suite of energy functions. In summary, HEA evolves a fixed-size population
of structures over a number of generations. The initial population is constructed by first creating
identical extended chains from the amino-acid sequence of a target protein and then randomizing the
chains by employing repeated molecular fragment replacements of length 9. The molecular fragment
replacement operation in HEA utilizes libraries of fragments of length 9 and 3 generated for a given
amino-acid sequence via the Robetta server [10]. The fragments are excised from known native
structures of proteins in the PDB. To perform molecular fragment replacement on a structure, first an
amino acid index i is chosen at random from the range [1, Lp− L f + 1], where Lp is the number of amino
acids in a given sequence, and L f is the length of fragment. The fragment composed of amino acids
[i, i + L f − 1] in the given structure is then replaced with a fragment configuration selected at random
from the available fragments in the fragment library with the same or similar amino-acid sequence.

In each generation of HEA, the structures in a population are considered parents, and each parent
is subjected to molecular fragment replacement of length 3 to produce an offspring. Each offspring is
improved by repeatedly applying molecular fragment replacement of length 3. Next, the improved
offspring and the top 25% of the parents compete against one another in terms of energy. The top
structures survive to become parents for the next generation. Interested readers can learn more about
HEA in Ref. [16].

2.2. Stage I: Featurizing Generated Structures

We utilize the Ultrafast Shape Recognition (USR) metrics that were originally introduced in [35]
to summarize three-dimensional structures of ligands. USR metrics were used in [35] to expedite
searches for similar structures in molecular databases. These metrics have also been used by us and
others to expedite robotics-inspired algorithms exploring protein structure spaces for structure [36,37]
and motion computation [38,39].

In this paper, we use the USR metrics as features to summarize a tertiary structure. The metrics
allow efficient comparison of molecular shapes. They summarize the distributions of distances of all
atoms in a tertiary structure from four chosen reference points: the molecular centroid (ctd), the closest
atom to ctd (cst), the farthest atom to ctd (fct), and the farthest atom to fct (ftf). Figure 1a shows the
locations of these four reference points, with atoms drawn as spheres in a tertiary structure selected
for illustration. Once the reference points have been calculated, distances of all atoms from each
reference point are calculated next; Figure 1b shows distances of all atoms from one of the reference
points, the ctd, by drawing them as lines. The moments of the calculated distance distributions are
recorded to summarize a given tertiary structure. Specifically, in our work (as originally in [35]),
the resulting distributions are summarized with three momenta, the mean, variance, and skewness.
Hence, each tertiary structure in Ωgen is represented by 12 features.

The motivation of encoding each tertiary structure via features is three-fold. First, a lower number
of coordinates required to represent each structure reduces the computational time of any algorithm
expected to process the generated structures. Second, high data dimensionality has a negative impact
on the performance of clustering algorithms [40–42]. Third, unlike representations based on Cartesian
coordinates, the USR-based representation is invariant to rigid-body motions (translation and rotation
in 3D space).
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(a) (b)

Figure 1. (a) The four reference points used to calculate USR metrics on a given tertiary structure are
shown here. (b) Distances of all atoms from a chosen reference point, the ctd, are also shown.

2.3. Stage II: Clustering Featurized Structures

The featurized structures are subjected to a clustering algorithm. We evaluate four clustering
algorithms, three popular, representative clustering algorithms, k-means, Gaussian Mixture Model
(GMM), and hierarchical clustering, and a variant of the gmx-cluster algorithm in the GROningen
MAchine for Chemical Simulations (GROMACS) package [43]. The latter has been shown to be
effective in clustering protein structures [44].

We briefly summarize each algorithm next, paying more attention to describing how we optimize
their parameters and apply them to the featurized structures.

In k-means, the number of clusters k is a hyper-parameter. The structures that can serve as cluster
centroids is another hyper-parameter. We optimize both as follows. For a given value of k, k structures
are initially selected uniformly at random over Ωgen to act as the cluster centroids. This induces a
particular grouping C of the structures, with each structure assigned to the cluster represented by the
structure to which it is closest. To evaluate this particular grouping C, we calculate the within-cluster
scatter loss function: L(C) = 1

2 ∑k
l=1 ∑i∈Cl ∑j∈Cl ,j 6=i D(xi, xj), where D(xi, xj) measures the Euclidean

distance between two points/structures xi 6= xj in the same cluster Cl , where l ∈ {1, . . . , k}. One can
now vary the structures selected to serve as cluster centroids over iterations and record the selection
resulting in the smallest loss. We do so over 10 iterations for a given k, randomly selecting structures
as initial centroids in each iteration, recording the optimal selection (and associated grouping) for
each iteration.

Note that the above is carried out for a given k as k varies in a permissive range. To find the optimal
number of clusters, k, in some considered range, we utilize the popular knee-finding approach [45].
Specifically, after the centroids of clusters are determined (optimally) as above for a given k, the squared
distance of each structure in a cluster from the centroid of the cluster can be recorded, and the sum
of these squared distances can be obtained over the clusters k [46] . This sum of squared distances is
known as the sum of squared errors (SSE) and is shown for a particular structure dataset in Figure 2.
In Figure 2, different values of k are plotted against the corresponding SSE values. The knee (also
referred to as elbow) in the SSE curve indicates the optimal number of clusters. We are interested in a
small value for SSE. Naturally, as one increases k, the SSE approaches 0. It is exactly 0 when k = |Ωgen|
(every structure is the centroid of its own cluster). The goal is to choose a small value of k that results
in a low SSE. The knee or elbow in the curve that tracks SSE as a function of k corresponds to the
region where by increasing k, SSE does not change noticeably; this is annotated in Figure 2.
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Figure 2. The sum-of-squared errors (SSE) is plotted as a function of the number of clusters k identified
via k-means on structures generated via HEA on a target protein. This target is part of our evaluation
dataset related in Section 3. Specifically, it is the target protein with known native structure in the PDB
entry with identifier (id) 1ail. The red arrow points to the knee/elbow region where by increasing k
SSE does not change noticeably; this is the region from where an optimal value of k can be selected.

GMM is a probabilistic model that assumes a mixture of finite number of Gaussian distributions
with unknown parameters as the underling process generation of the data. GMM can be thought of
as generalizing k-means, as it includes both information from the covariance structure of the data
along with the centers of the Gaussian distributions. The main advantage of GMM is the estimation
of uncertainty in data membership to clusters; a conditional probability is assigned to each data
indicating the probability with which a specific point belongs to any cluster. As expected, sum of all
these conditional probabilities for a given point is 1. This uncertainty assignment makes GMM more
informative than k-means [47].

However, as in k-means, one needs to specify the number of clusters/components a priori in GMM.
The optimal value can be determined by minimizing the Bayesian Information Criterion (BIC) [48]
metric which considers both covariance type and the number of components. The BIC is a penalty
term for the possible likelihood increment when adding more parameters into the model. Specifically,
BIC = ln (n)k − 2 ln (L̂), where k is the number of components, L̂ is the maximized value of the
likelihood function, and n is the number of data points. In Figure 3, we plot the BIC value as the
function of the number of components k to demonstrate how one can identify a reasonable value for k
at the lowest BIC value.

Figure 3. The BIC is plotted as a function of the number of components k. Clustering is carried out via
GMM on structures generated via HEA on a target protein (known native structure in the PDB entry
with identifier (id) 2h5nd). The red arrow points to the value for k identified at the lowest BIC value.
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Unlike k-means and GMM, hierarchical clustering does not require a priori specifying the number
of clusters. It refers to a family of clustering algorithms that build a sequence of nested clusters by
merging or splitting them successively [49]. We make use of the bottom-up (agglomerative) approach
for hierarchical clustering; each structure is first in its own clusters, and then clusters are successively
merged until the root of the resulting dendrogram is reached, with a unique cluster containing all
the data. The linkage criterion specifies the merge strategy. We select single linkage, where the
distance between two clusters is defined as the distance between the two closest points across the two
clusters [50].

“Cutting” at different locations of the dendrogram results in different partitions of the
dataset into clusters. To avoid recomputation of the clusters, we make use of a cached
implementation of hierarchical clustering, where cutting the tree at different places does not impose
any further computation. We employ the Davies-Bouldin (DB) index [51] to determine where to cut the
dendrogram. DB is as popular clustering validation technique in the absence of ground truth labels.
It is computed on features inherent to the dataset and gives a measure of the average similarity of each
cluster with its most similar cluster. Specifically, the DB index evaluates the intra-cluster similarity
and inter-cluster differences to provide a non-negative score. A lower DB index corresponds to a
better separation between the clusters. In our application of hierarchical agglomerative clustering
with single linkage, we consider the DB index at every height of the tree, and we select the height that
results in the smallest DB as the optimal partition (and optimal corresponding number of clusters) of a
structure dataset.

Unlike the above clustering algorithms, the gmx-cluster algorithm determines clusters based on a
pre-specified distance cutoff. The algorithm first calculates the pairwise distance between all pairs of
structures. For each structure xi, the algorithm then counts the number of other structures (neighbors)
that are within the distance cutoff. The structure with the highest number of neighbors is then chosen
as the central structure and forms a cluster together with all its neighbors. The formed cluster is then
removed from the ensemble of structures and the process is repeated for the remaining structures in
the ensemble until the ensemble contains no more structures.

The computation of pairwise distances can potentially be very demanding on large datasets, if one
were to use the gmx-cluster implementation that uses lRSMD as the distance metric. Our adaptation
of this algorithm transfers all neighbor computations in the USR feature space, using Euclidean
distance in the USR feature space as a proxy for lRMSD. These distances, to which we refer as USR
scores (and analyze in some detail in Section 4), are normalized between 0 and 1, so that we can
set a distance cutoff. We set this cutoff to 0.1; our analysis shows that this is a reasonable value.
From now on, we will refer to the adaptation of gmx-cluster as gmx-cluster-usr.

2.4. Stage III: Selecting Structures to Populate the Reduced Ensemble

After clustering the featurized Ωgen, the structures are grouped in clusters. The selector now selects
a subset of structures from each cluster to populate the reduced ensemble Ωred. The selector makes this
decision by considering both the identified clusters and the Rosetta score4 energy function of structures.
This function evaluates not only Lennard-Jones interactions, but also short- and long-range hydrogen
bonding in a tertiary structure.

The selector we propose organizes the structures in a cluster into levels/bins; the structures placed
in the same bin have identical score4 energies up to two digits after the decimal sign. One structure is
selected at random from each bin and placed in the reduced ensemble Ωred. This process is repeated
for each identified cluster.

We note that the selector can control the size of the reduced ensemble by tuning the width of a
bin/level. This approach indirectly biases the reduced ensemble by cluster size. Larger clusters with
more structures result in more energy levels; therefore, more representative structures are selected
from larger clusters to populate the reduced ensemble. Structure diversity retention is another indirect
property of this approach as demonstrated experimentally in Section 3.2.
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In Section 3, the Ωred ensemble selected as described above is compared against the reduced
ensemble identified using truncation selection which does not employ clustering. To populate the
reduced ensemble from the truncation-based approach, given a target size M, higher-energy structures
are discarded to keep the M lowest-energy structures in an ensemble.

2.5. Datasets for Evaluation

We consider two datasets. The first is a benchmark dataset of 10 proteins of varying lengths
(ranging from 53 to 123 amino acids) and folds (α, β, and α + β) that are widely used for evaluation
by structure generation algorithms [12,16,17,52]. The second dataset contains 10 hard, free-modeling
target domains from CASP12 and CASP13. To account for stochasticity, the HEA structure generation
algorithm is run 5 times for each protein target; the structures generated in each run are aggregated to
populate the Ωgen ensemble of 250,000 structures per target. In the clustering algorithms employed
here to cluster the featurized Ωgen ensemble, determining the number of clusters takes most of the time.
Including the structure generation stage, runtime varies between 7–16 h for a single run on one Intel
Xeon E5- 2670 CPU with 2.6 GHz base processing speed and 100 GB of RAM. We note that all our
implementations and analyses are carried out in Python. The scikit library is utilized to obtain access
to the k-means, GMM, and hierarchical clustering algorithms.

2.6. Experimental Setup

The Ωgen and Ωred ensembles are compared by size, quality, and diversity. First, the evaluation in
Section 3 compares the sizes of Ωgen and Ωred on each target protein. The experiment considers each
of the four clustering algorithms to determine which algorithm is more effective at size reduction.

To evaluate the proposed selector in our approach against truncation selection, an Ωred ensemble
obtained by k-means, GMM, hierarchical clustering, or gmx-cluster-usr is compared to the Ωred
ensemble obtained via truncation selection. We choose the maximum size over Ωred identified by
k-means, GMM, hierarchical clustering, and gmx-cluster-usr to set the target size M for truncation
selection. As the results in Section 3 demonstrate, k-means and GMM result in larger, reduced
ensembles compared to those obtained with the hierarchical clustering or gmx-cluster-usr; therefore,
the size of the reduced ensemble in the truncation based-approach matches the size of the reduced
ensemble obtained via k-means or GMM.

Second, the Ωgen and Ωred ensembles on each target protein are compared in terms of the
distances of the structures in them from a known native structure. As is common practice in de-novo
PSP, we utilize the popular least root-mean-squared-deviation (lRMSD) to measure these distances [53].
We note that lRMSD stands for least RMSD, which refers to a two-step process, first removing the
rigid-body translation and rotation in three-dimensional space (rigid-body motions) between two
structures under comparison and then calculating the weighted/average Euclidean distances of
corresponding atoms in the structures. We report the lRMSD measured over the main carbon atoms
(CA atoms). The evaluation in Section 3 compares the minimum, average, and standard deviation of
lRMSDs of structures from the known native structure in the Ωgen and Ωred ensembles on each target
protein.

Third, the Ωgen and Ωred ensembles on each target protein are compared in terms of their energetic
profiles. While the native structure is a reliable reference structure for an lRMSD-based comparison
between two ensembles, the same is not true for energy. The native structure, as obtained from the
PDB, has higher energy than many computed structures, as it has not been refined for a particular
energy function. Refining it until a local optimum of the energy function under consideration has
been obtained will change the native structure, often in significant ways. Therefore, the evaluation
in Section 3 compares the energy distributions of the Ωgen and Ωred ensembles directly, and relates
observations regarding the minimum and average energies of the ensembles, as well as the maximum
energy difference between two structures in an ensemble.
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Finally, the lRMSD and energy distributions are related jointly. Each structure is visualized based
on its lRMSD from the known native structure serving as one coordinate and its Rosetta score4 energy
serving as the other coordinate. The so-called energy landscapes associated with the Ωgen and Ωred
ensembles of a target protein are visualized, and superimpositions are utilized to identify possible
regions of the landscape that the proposed approach may have discarded.

3. Results

3.1. Comparing Ensemble Sizes Pre- and Post Reduction

In Table 1, Ωgen and Ωred are first compared in terms of size over the benchmark dataset.

The reduction percentage (1− |Ωred|
|Ωgen| ) · 100% is also reported for each target. The reductions obtained

by k-means range from 54% to 71%. The GMM reductions vary from 53% to 71%. Gmx-cluster-usr and
hierarchical clustering result in more dramatic reductions of more than 72% and 77% on all targets
respectively, and over 80% on 5/10 and 9/10 of the targets, respectively. Similar results are obtained
over the CASP dataset, as shown in Table 2. Reductions of 59% and higher are obtained via k-means.
Reductions obtained via GMM are comparable to those obtained via k-means. Reductions of 72%
and higher are achieved via gmx-cluster-usr. Reductions of around 80% and higher are obtained via
hierarchical clustering.

Table 1. Ωgen and Ωred are compared in terms of size over the benchmark dataset. The PDB ids,
lengths, and folds of the dataset are shown in Columns 1–3. Column 4 shows the size of Ωgen. The size
of Ωred and the reduction of Ωred over Ωgen are shown in Columns 5–12 for all clustering algorithms.

K-Means GMM Hierarchical Gmx-Cluster-Usr

PDB Id Length Fold |Ωgen| |Ωred| Red. (%) |Ωred| Red. (%) |Ωred| Red. (%) |Ωred| Red. (%)

1ail 70 α 250 K 94,867 62.05 99,707 60.12 32,432 87.03 48,450 80.62
1bq9 53 β 250 K 79,181 68.33 77,873 68.85 24,705 90.12 39,716 84.11
1c8ca 64 β 250 K 87,209 65.12 88,437 64.63 29,795 88.08 46,817 81.27
1cc5 83 α 250 K 97,878 60.85 101,589 59.36 36,630 85.35 55,673 77.73
1dtja 76 α+ β 250 K 75, 421 69.83 79,134 68.35 29,506 88.2 41,456 83.42
1hhp 99 β 250 K 71,926 71.23 71,390 71.44 27,208 89.12 42,226 83.11
1tig 88 α+ β 250 K 94,656 62.14 97,010 61.2 40,145 83.94 57,033 77.19
2ezk 93 α 250 K 114,244 54.3 115,929 53.63 49,509 80.2 62,439 75.02
2h5nd 123 α 250 K 110,196 55.92 111,353 55.46 55,153 77.94 67,671 72.93
3gwl 106 α 250 K 101,827 59.27 105,214 57.91 46,480 81.41 63,116 74.75

Table 2. Ωgen and Ωred are compared in terms of size over the CASP dataset. The CASP ids and lengths
are shown in Columns 1–2. Column 3 shows the size of Ωgen. The size of Ωred and the reduction of
Ωred over Ωgen are shown in Columns 4–11 for all clustering algorithms.

K-Means GMM Hierarchical Gmx-Cluster-Usr

CASP Id Length |Ωgen| |Ωred| Red. (%) |Ωred| Red. (%) |Ωred| Red. (%) |Ωred| Red. (%)

T0859-D1 129 250 K 91,236 63.51 94,014 62.39 32,060 87.18 50,903 79.64
T0886-D1 69 250 K 72,351 71.06 88,986 64.41 27,328 89.07 42,397 83.04
T0892-D2 110 250 K 89,943 64.02 92,200 63.12 39,669 84.13 55,482 77.81
T0897-D1 138 250 K 98,262 60.7 101,119 59.55 50,352 79.86 68,703 72.52
T0898-D2 55 250 K 67,046 73.18 67,283 73.09 21,332 91.47 35,053 85.98
T0953s1-D1 67 250 K 51,078 79.57 50,509 79.8 16, 417 93.43 29,690 88.12
T0953s2-D3 93 250 K 73,191 70.72 74,974 70.01 22,143 91.14 38,372 84.65
T0957s1-D1 108 250 K 92,028 63.19 93,872 62.45 38,665 84.53 54,951 78.02
T0960-D2 84 250 K 53,388 78.64 52,136 79.15 22,171 91.13 32,548 86.98
T1008-D1 77 250 K 101,433 59.43 105,360 57.86 51,809 79.28 68,428 72.63

3.2. Comparing Distributions of lRMSDs from the Native Structure Pre- and Post Reduction

Table 3 compares the minimum, average, and standard deviation of lRMSDs of structures in
the Ωred and Ωgen ensembles to the known native structure on each target in the benchmark dataset.
The top panel of the table compares the minimum lRMSDs of the ensembles including the ensemble
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generated by truncation-based selection; the middle panel compares the average lRMSDs of the
ensembles, and the bottom one compares the standard deviation of lRMSDs of structures in each
ensemble to the known native structure per target protein. The minimum, average, and standard
deviations over the generated ensembles are provided as reference in Column 2 (top, middle,
and bottom panels, respectively). The difference of the (lRMSD) minimum, average, or standard
deviation in Ωred over the corresponding quantity in Ωgen is reported in each setting.

Table 3. Comparison of minimum, average, and standard deviation of lRMSDs (to the known native
structure) of structures in the Ωgen and Ωred ensembles of each target in the benchmark dataset.
Comparison of minimum lRMSDs includes the ensemble reduced via truncation selection. Differences
between the minimum, average, and standard deviation obtained over Ωred from those obtained over
Ωgen are also related.

Minimum lRMSD (Å)

K-Means GMM Hierarchical Gmx-Cluster-Usr Truncation

PDB Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

1ail 3.64 3.64 0 3.64 0 3.64 0 3.64 0 4.37 0.73
1bq9 5.42 5.42 0 5.42 0 5.47 0.05 5.47 0.05 7.31 1.89
1c8ca 4.43 4.43 0 4.43 0 4.43 0 4.43 0 7.86 3.43
1cc5 5.4 5.4 0 5.4 0 6.52 1.12 5.4 0 7.85 2.45
1dtja 4.19 4.19 0 4.19 0 4.19 0 4.19 0 9.31 5.12
1hhp 11 11 0 11 0 11.29 0.29 11.02 0.02 12.88 1.88
1tig 5.34 5.34 0 5.34 0 5.45 0.11 5.45 0.11 6.59 1.25
2ezk 3.41 3.41 0 3.41 0 3.41 0 3.41 0 5.09 1.68
2h5nd 10.32 10.32 0 10.32 0 10.32 0 10.32 0 11.9 1.58
3gwl 4.85 4.85 0 4.85 0 4.85 0 4.85 0 7.81 2.96

Average lRMSD (Å)

K-Means GMM Hierarchical Gmx-Cluster-Usr

PDB Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

1ail 10.42 10.89 0.47 10.85 0.43 10.19 0.23 11.17 0.75
1bq9 9.76 10.18 0.42 10.17 0.41 9.74 0.02 10.39 0.63
1c8ca 12.29 12.75 0.46 12.72 0.43 12.25 0.04 12.96 0.67
1cc5 12.53 12.94 0.41 12.89 0.36 12.5 0.03 13.12 0.59
1dtja 11.87 12.35 0.48 12.29 0.42 11.95 0.08 12.5 0.63
1hhp 15.56 16.06 0.5 16.03 0.47 15.85 0.29 16.31 0.75
1tig 12.85 13.36 0.51 13.31 0.46 12.81 0.04 13.81 0.96
2ezk 10.17 10.77 0.6 10.72 0.55 10.78 0.61 11.21 1.04
2h5nd 15.79 16.24 0.45 16.2 0.41 16.16 0.37 16.51 0.72
3gwl 12.44 13.02 0.58 12.94 0.5 12.68 0.24 13.34 0.9

Standard Deviation lRMSD (Å)

K-Means GMM Hierarchical Gmx-Cluster-Usr

PDB Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

1ail 3.11 3.2 0.09 3.17 0.06 3.11 0 3.49 0.38
1bq9 1.78 1.76 0.02 1.89 0.11 1.89 0.11 2.11 0.33
1c8ca 2.18 2.23 0.05 2.22 0.04 2.15 0.03 2.45 0.27
1cc5 2.31 2.34 0.03 2.34 0.03 2.35 0.04 2.54 0.23
1dtja 2.08 2.31 0.23 2.27 0.19 2.15 0.07 2.44 0.36
1hhp 1.82 1.94 0.12 1.93 0.11 1.9 0.08 2.08 0.26
1tig 3.22 3.34 0.12 3.34 0.12 3.21 0.01 3.72 0.5
2ezk 2.41 2.67 0.26 2.66 0.25 2.77 0.36 2.94 0.53
2h5nd 2.03 2.22 0.19 2.21 0.18 2.3 0.27 2.46 0.43
3gwl 2.9 3.02 0.12 3.01 0.11 2.99 0.09 3.22 0.32

Focusing on the Diff. columns listing differences in minimum lRMSDs, it is clear that truncation
selection performs the worst in this regard; differences in minimum lRMSD range from 0.73 Å to
5.12 Å (see Column 12 of the top panel in Table 3). This means in the worst case, the best structure
kept by truncation selection is 5.12 Å further away from the native structure than the best structure in
the original ensemble. Truncation-based selection cannot maintain the quality of original ensemble.
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In contrast, in the case of GMM and k-means, differences in minimum lRMSD (see Columns 4
and 6) are all 0 Å. The differences in minimum lRMSD for gmx-cluster-usr range from 0 Å to
0.11 Å (see Column 10); for hierarchical clustering, the range is from 0 Å to 1.12 Å (see Column 8).
This means that the structures closest to the native structure are always retained in the ensembles
reduced by k-means and GMM. Not surprisingly, the slight increase in the differences when using
gmx-cluster-usr and hierarchical clustering is the consequence of more drastic reduction in size of the
reduced ensemble when using these two clustering algorithms over k-means or GMM.

The comparison shown in the middle panel of Table 3 indicates very little difference between the
generated and reduced ensembles in terms of average lRMSDs. Column 4 shows the differences in
average lRMSDs for k-means, which range from 0.41 Å to 0.60 Å. Column 6 shows an overall similar
range for GMM (0.36 Å to 0.50 Å). Average lRMSD differences for hierarchical clustering range from
0.02 Å to 0.61 Å, as shown in Column 8. Column 10 shows that the differences in average lRMSD for
gmx-cluster-usr range from 0.59 Å to 1.04 Å.

The comparison of differences on lRMSDs standard deviation for k-means is shown in Column
4 on the bottom panel and vary from 0.02 Å to 0.26 Å. These values are slightly different for GMM,
ranging from 0.03 Å to 0.25 Å(see Column 6). As in the minimum lRMSD comparison, the differences
obtained by gmx-cluster-usr and hierarchical clustering are slightly larger. Differences in standard
deviation range from 0.23 Å to 0.53 Å for gmx-cluster-usr (shown in Column 10) and from 0 Å to
0.36 Å (with less than 0.1 Å on 7/10 targets; shown in Column 8) for hierarchical clustering.

Similar observations can be extracted from Table 4, which shows the performance over the
CASP dataset. Table 4 confirms again that truncation selection loses the quality of the original ensemble
in the reduced one. The quality of the reduced ensemble is preserved by all clustering algorithms,
and the best results belong to k-means and GMM. All four clustering algorithms produce ensembles
that have small differences in average lRMSDs and perform comparably in terms of standard deviation.

Greater detail can be inferred from Figure 4, which shows results over a selected target protein
(with native structure under PDB id 1ail). Figure 4 shows the actual distribution of structure lRMSDs
from the native structure for the Ωgen ensemble along with the ensembles Ωred reduced via k-means,
GMM, gmx-cluster-usr, and hierarchical clustering. Figure 4 shows that structures with similar
relative frequencies of lRMSDs as in Ωgen are included in the reduced ensembles identified by each
clustering algorithm.

Figure 4. The distribution of structure lRMSDs from the native structure is shown for the Ωgen ensemble
(in red) and the reduced Ωred ensembles obtained via k-means (purple), GMM (brown), hierarchical
clustering (green), and gmx-cluster-usr (in blue). Results are shown for a representative target protein
with native structure under PDB id 1ail.
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Table 4. Comparison of minimum, average, and standard deviation of distribution of lRMSDs (to the
known native structure) of structures in the Ωgen and Ωred ensembles of each target in the CASP
dataset. Comparison of minimum lRMSDs includes the ensemble reduced via truncation selection.
Differences between the minimum, average, and standard deviation obtained over Ωred from those
obtained over Ωgen are also related.

Minimum lRMSD (Å)

K-Means GMM Hierarchical Gmx-Cluster-Usr Truncation

CASP Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

T0859-D1 11.37 11.37 0 11.37 0 11.96 0.59 11.96 0.59 13.12 1.75
T0886-D1 7.96 7.96 0 7.96 0 8.73 0.77 8.73 0.77 11.24 3.28
T0892-D2 7.71 7.71 0 7.71 0 8.28 0.57 7.71 0 9.11 1.4
T0897-D1 10.18 10.18 0 10.18 0 10.64 0.46 10.64 0.46 11.62 1.44
T0898-D2 7.51 7.51 0 7.51 0 7.51 0 7.51 0 8.68 1.17
T0953s1-D1 6.14 6.14 0 6.14 0 6.29 0.15 6.29 0.15 8.18 2.04
T0953s2-D3 7.13 7.13 0 7.13 0 7.24 0.11 7.24 0.11 8.17 1.04
T0957s1-D1 7.65 7.65 0 7.65 0 7.76 0.11 7.76 0.11 9.39 1.74
T0960-D2 7.26 7.26 0 7.26 0 7.26 0 7.26 0 8.12 0.86
T1008-D1 3.85 3.85 0 3.85 0 3.85 0 3.85 0 5.67 1.82

Minimum lRMSD (Å)

K-Means GMM Hierarchical Gmx-Cluster-Usr

CASP Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

T0859-D1 17.47 17.64 0.17 17.63 0.16 17.49 0.02 17.78 0.31
T0886-D1 13.16 13.66 0.5 13.67 0.51 13.31 0.15 13.82 0.66
T0892-D2 14.81 15.49 0.68 15.43 0.62 15.02 0.21 15.71 0.9
T0897-D1 17.3 17.84 0.54 17.81 0.51 17.54 0.24 18.04 0.74
T0898-D2 11.56 11.72 0.16 11.71 0.15 11.63 0.07 11.86 0.3
T0953s1-D1 11.98 11.74 0.24 11.73 0.25 11.81 0.17 11.66 0.32
T0953s2-D3 13.28 13.89 0.61 13.88 0.6 13.48 0.2 14.06 0.78
T0957s1-D1 14.96 15.49 0.53 15.44 0.48 15.13 0.17 15.74 0.78
T0960-D2 12.63 13.07 0.44 13.07 0.44 12.93 0.3 13.27 0.64
T1008-D1 11.77 12.36 0.59 12.46 0.69 11.9 0.13 12.67 0.9

Minimum lRMSD (Å)

K-Means GMM Hierarchical Gmx-Cluster-Usr

CASP Id Ωgen Ωred Diff. Ωred Diff. Ωred Diff. Ωred Diff.

T0859-D1 1.83 1.84 0.01 1.9 0.07 1.91 0.08 1.99 0.16
T0886-D1 1.67 1.82 0.15 1.79 0.12 1.69 0.02 1.98 0.31
T0892-D2 3.02 2.98 0.04 2.97 0.05 3.04 0.02 3.25 0.23
T0897-D1 2.75 2.74 0.01 2.73 0.02 2.76 0.01 2.92 0.17
T0898-D2 1.03 1.17 0.14 1.16 0.13 1.14 0.11 1.26 0.23
T0953s1-D1 1.51 1.51 0 1.51 0 1.5 0.01 1.49 0.02
T0953s2-D3 1.9 1.84 0.06 1.83 0.07 1.86 0.04 2.06 0.16
T0957s1-D1 3.04 3.04 0 3.03 0.01 3.04 0 3.23 0.19
T0960-D2 1.85 1.94 0.09 1.95 0.1 1.92 0.07 2.05 0.2
T1008-D1 3.7 3.72 0.02 3.69 0.01 3.74 0.04 3.94 0.24

3.3. Comparing Distributions of Energies Pre- and Post Reduction

Comparison of the minimum energy in an ensemble prior to and after reduction reveals some
expected results. Since the proposed approach selects structures from each energy level, differences in
the minimum energy in the Ωred and Ωgen ensembles of any target protein are negligible (less than
10−2). Since truncation selection retains the lowest-energy structure, as well, such differences are 0.
Similar observations hold when comparing the energy diameters (the difference between the highest
and lowest energy in an ensemble) of the Ωred and Ωgen ensembles on each target protein for the



Molecules 2020, 25, 2228 13 of 18

proposed approach. The differences are negligible (less than 10−2), as the proposed approach selects
structures from all energy levels. The same is not true of truncation selection. The original ensemble
contains many higher-energy structures, which truncation selection discards. As expected, for the
same reasons, comparing the average energy yields small differences for the proposed approach while
truncation selection results in large differences.

Figure 5 shows the distribution of structure energies for the Ωgen ensemble along with the Ωred
ensembles reduced via k-means, GMM, gmx-cluster-usr, and hierarchical clustering for a selected
target protein (with native structure under PDB id 1ail). Figure 5 shows that the relative frequencies of
energies of the structures in the reduced ensembles are close to that of the structures in Ωgen.

Figure 5. The distribution of Rosetta score4 energies is shown for the Ωgen ensemble (in red) and
the reduced Ωred ensembles obtained via k-means (purple), GMM (brown), hierarchical (green),
and gmx-cluster-usr clustering (in blue). Results are shown for the target protein with native structure
under PDB id 1ail.

3.4. Visually Comparing Distributions of lRMSDs and Energies Pre- and Post Reduction

We now compare the Ωgen and Ωred ensembles on each target protein in terms of Rosetta score4
energies and lRMSDs to the native structure. While the Supplementary Material shows these landscape
figures for each target, here we show one representative landscape on each dataset (benchmark and
CASP) that illustrates the behavior of each of the clsutering algorithms. Structures in Ωgen are drawn
in purple, while those in the Ωred ensemble are drawn in green. Figure 6 does so for the benchmark
dataset, and Figure 7 does so for the CASP dataset.

Figures 6 and 7 (and those shown for each target protein in the Supplementary Material) show that
the reduced ensemble Ωred includes structures from all the regions in the structure space populated
by the original ensemble Ωgen. All the purple dots being occluded by the superimposition in the
k-means and GMM case visually makes the case that these two clustering algorithms perform better
than gmx-cluster-usr and hierarchical clustering. This is not surprising, as k-means and GMM preserve
more of the original ensemble.
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K-means GMM

Hierarchical gmx-cluster-usr

Figure 6. Benchmark Dataset: A representative target (with known native structure under PDB id 1ail)
is selected. Structures in the Ωgen ensemble are plotted in purple in terms of their lRMSD (Å) from the
native structure (X-axis) versus their Rosetta score4 energies (Y-axis) measured in Rosetta Energy Units
(REUs). Structures in the Ωred ensemble are superimposed in green.

K-means GMM

Hierarchical gmx-cluster-usr

Figure 7. CASP Dataset: A representative protein (T1008-D1) is selected. Structures in the Ωgen

ensemble are plotted in purple in terms of their lRMSD (Å) from the native structure (X-axis)versus
their Rosetta score4 energies (Y-axis) measured in Rosetta Energy Units (REUs). Structures in the Ωred

ensemble are superimposed in green.
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4. Discussion

In summary, the presented results make the case that all four clustering algorithms are able to
drastically decrease the structure ensemble size while preserving the quality and diversity of the
original ensemble. GMM and k-means behave equally well in this regard, while gmx-cluster-usr and
hierarchical clustering reduces the size of the ensembles more significantly and in response is also
more prone to sacrificing quality.

Experience in molecular structure modeling informs that the choice of representation is often key
to the success of a method. Here we provide further analysis into what the USR features are capturing.
We do via a simple correlation analysis, where we compare the distribution of the lRMSDs versus USR
scores of computed tertiary structures to the native structure. USR score is calculated as the Euclidean
distance in the 12-dimensional USR feature space for two structures. The Supplementary Material
(Table S5) lists the Pearson’s correlation coefficient between the two distributions for each protein
target (in both the benchmark and CASP datasets).

Figure 8 plots the distributions against each-other for two targets that are representatives of
the Pearson’s correlation coefficients obtained over targets in the benchmark and CASP datasets.
Specifically, Figure 8a shows a correlation of 0.80 that is representative of what is observed over the
benchmark dataset; Figure 8b shows a correlation of 0.74 that is representative of what is observed
over the CASP dataset.

(a) (b)

Figure 8. Correlation between USR scores and lRMSDs to the native structure of all tertiary structures
computed on a target protein in the (a) benchmark dataset (with native structure under PDB id 1cc5)
and (b) CASP dataset (with native structure under CASP id T0953s2-D3.)

The median correlation over the benchmark dataset is 0.80, and the median correlation over
the CASP dataset is 0.755. The correlations (representing what is observed over each of the datasets,
with few outliers) show that the USR score is informative and a good proxy for lRMSD; we recall that
the USR representation is also invariant to rigid-body motions, unlike Cartesian coordinate-based
representations. Altogether, these results inform that the choice of the USR-based representation of
tertiary structures is advantageous, allowing clustering algorithms to capture important structural
differences that are then retained in the reduced ensemble by the selector.

5. Conclusions

The findings presented in this paper suggest that it is possible to significantly reduce the number
of generated decoys without sacrificing quality and diversity. A three-stage approach relying on
featurization, clustering, and selection is shown effective at doing so independent of the particular
clustering algorithm employed. Various clustering algorithms are evaluated in the proposed approach.

The presented work opens up many venues of further research. An interesting application of this
work can be in preparing data for model assessment methods, particularly in cases where datasets are
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expected to be highly imbalanced and so affect the performance of these methods. Other directions
concern evaluating more clustering algorithms, including, for instance, clique finding algorithms.
As often the case in molecular structure modeling and analysis literature, an important direction
remains the choice of representation. Other future work can therefore investigate the utility and
effectiveness of different features to represent structures, as well as consider advances in subspace
clustering to address the high-dimensionality of molecular structure spaces.

Supplementary Materials: Supplementary Materials are available online.
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The following abbreviations are used in this manuscript:

BIC Bayesian Information Criterion
CASP Critical Assessment of protein Structure Prediction
DB Davies-Bouldin
GMM Gaussian Mixture Model
HEA Hybrid Evolutionary Algorithm
lRMSD least Root-Mean-Squared-Deviation
PDB Protein Data Bank
PSP Protein Structure Prediction
SSE Sum of Squared Errors
USR Ultrafast Shape Recognition
GROMACS GROningen MAchine for Chemical Simulations
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