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The Effect of the APOE4 Gene on Accumulation of Ab40 After
Brain Injury Cannot Be Reversed by Increasing apoE4 Protein

Patricia M. Washington, PhD and Mark P. Burns, PhD

Abstract
The apolipoprotein E (apoE) protein is involved in clearance of b-

amyloid (Ab) from the brain; and the APOE4 gene is associated

with Ab plaque formation in humans following traumatic brain in-

jury (TBI). Here, we examined the association between apoE and

Ab40 after experimental TBI and the effects of APOE alleles on this

relationship. We report a biphasic response of soluble apoE protein

after TBI with an acute reduction at 1 day postinjury followed by an

increase at 7 days postinjury. TBI-induced Ab40 levels decreased as

soluble apoE levels increased. In APOE4 mice there was a dimin-

ished apoE response to TBI that corresponded to prolonged accumu-

lation of TBI-induced Ab40 versus that in APOE3 mice. Amyloid

precursor protein processing was similar in APOE3 and APOE4

mice suggesting that impaired clearance was responsible for the ab-

normal accumulation of Ab40 in the latter. Treatment of APOE4

mice with bexarotene for 7 days increased apoE4 protein levels but

was not sufficient to reduce TBI-induced Ab40. Thus, rapid clear-

ance of TBI-induced Ab40 occurs in mice but these pathways are im-

paired in APOE4 carriers. These data may help explain the

deposition of Ab in APOE4 carriers and the increased incidence of

brain Ab plaques following TBI.

Key Words: b-Amyloid, Apolipoprotein E (apoE), Traumatic brain

injury (TBI).

INTRODUCTION
Traumatic brain injury (TBI) increases the likelihood of

developing dementia and Alzheimer disease (AD) later in life
(1). b-Amyloid (Ab) plaques, one of the neuropathological
hallmarks of AD, are detected in approximately 30% of cases
following moderate-to-severe TBI (2–5), suggesting that TBI
can trigger processes associated with amyloid deposition.
However, only a subset of TBI patients develops Ab plaques,

suggesting that other factors can influence Ab accumulation
in the brain after injury.

The APOE gene is known to impact Ab accumulation;
polymorphisms in APOE result in 3 common alleles (E2, E3,
E4) with APOE4 being the strongest known genetic risk factor
for sporadic, late-onset AD (6). APOE4 is also associated
with increased Ab plaque burden in the brains of AD patients
(7, 8), in acute postmortem TBI patients (9), and in patients
with chronic traumatic encephalopathy with concurrent amy-
loid deposition (10).

The APOE gene encodes the 34 kDa protein apolipopro-
tein E (apoE), which is produced primarily by astrocytes and
serves as a major lipid transport molecule in the CNS (11).
ApoE is hypothesized to play a role in a number of postinjury
processes. For example, apoe mouse knockouts have greater
cell death, axonal pathology, and behavioral deficits after
brain injury versus wild type mice (12, 13), and intracerebro-
ventricular infusion of apoE reduces neuronal cell death in an
animal model of global ischemia (14). ApoE is also involved
in clearance of Ab from the brain by impacting the efflux of
soluble Ab across the blood-brain barrier via low-density lipo-
protein receptor-related protein 1 (15–17), and by enhancing
degradation of Ab by enzymes such as neprilysin or insulin-
degrading enzyme (18). Bexarotene, a retinoic acid receptor
(RXR) agonist, can be used to increase brain levels of murine
apoE and apoE4 in mice (19, 20).

We hypothesized that apoE mediates Ab clearance after
TBI, but that this function is impaired in APOE4 carriers. To
test this, we exposed C57Bl/6 and humanized APOE mice to a
controlled cortical impact (CCI) model of TBI and examined
apoE, amyloid precursor processing and Ab40 in the brain
after injury. We report that there is an inverse relationship
between soluble apoE and Ab40 after injury such that TBI-
induced Ab levels decrease as soluble apoE levels increase.
This relationship is abolished in APOE4 mice, leading to pro-
longed accumulation of TBI-induced Ab40 after injury.

MATERIALS AND METHODS

Animals
Male C57BL/6J mice were purchased from Jackson

Laboratories (Bar Harbor, ME) and were 3–6 months old at
the time of injury. Male mice with genetic ablation of Apoe,
Apoetm1Unc/J homozygous (Apoe�/�) mice, were purchased
from Jackson Laboratories and were 3 months old at the time
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of injury. Colonies of human APOE targeted replacement
mice are maintained at Georgetown University. These mice
express human APOE alleles, in place of murine Apoe, under
the control of the endogenous promoter (21). Four- to
6-month-old male mice homozygous for human APOE3 or
human APOE4 were used in this study. All procedures were
carried out in accordance with protocols approved by George-
town University Animal Care and Use Committee.

Controlled Cortical Impact
A moderate injury was induced using an electromag-

netic Leica Impact One device (Leica Microsystems, Rich-
mond, IL) with surgery, as previously described (22). CCI
occurred on the left parietal cortex at a speed of 5.25 m/s, a
depth of 1.5 mm and duration of 0.1 second.

Drug Administration
The RXR agonist bexarotene (Biotang, Inc., Lexington,

MA) was suspended in 0.5% methylcellulose (Sigma-Aldrich,
St. Louis, MO) with 2% Tween-20 (Sigma-Aldrich). For the
pretreatment protocol in wild type and ApoE�/� mice, the
mice received 100 mg/kg of bexarotene (23) or vehicle admin-
istered once daily for 5 days prior to injury or sham injury, and
1 additional dose 15 minutes after injury or sham injury by
oral gavage at a final volume of 5 mL/kg. For the therapeutic
protocol, APOE4 mice received 100 mg/kg of bexarotene (23)
or vehicle by oral gavage at a final volume of 5 mL/kg admin-
istered 15 minutes post-CCI or sham injury and then once
daily for 6 days after injury for daily treatment over the 7 day
survival period.

Sample Preparation and Biochemistry
Extractions, enzyme-linked immunosorbent assay

(ELISA) and Western blotting were conducted as previ-
ously described (22). Mice were perfused with ice-cold
phosphate buffered saline (PBS); the brain was then ex-
tracted and a 5-mm-diameter sample of cortical tissue sur-
rounding the lesion, or tissue corresponding to the area of
lesion in sham mice, was excised by punch extraction and
rapidly frozen on dry ice for storage at �80 �C until pro-
cessing. Proteins were sequentially extracted first in sucrose
buffer containing diethylamine (DEA) (Sigma-Aldrich) and
then in radioimmunoprecipitation assay (RIPA) buffer (Sigma-
Aldrich). The DEA-soluble fraction contains extracellular
and cytosolic proteins whereas the RIPA fraction contains
membrane-bound proteins. Endogenous murine Ab40 was
quantified in the DEA-soluble fractions by ELISA (Wako
Chemicals, Richmond, Virginia).

For Western blotting, proteins were separated by elec-
trophoresis on SDS–PAGE gels. The primary antibodies used
were full-length amyloid precursor protein (APP) and APP C-
terminal fragment (C1/6.1, kind gift from Dr Paul Mathews,
Nathan S. Kline Institute, Orangeburg, NY), BACE1 (ab5940,
Millipore, Billerica, MA), murine apoE (ab20874, Abcam,
Cambridge, MA), and human apoE (Abcam, ab7620).

Quantitative RT-PCR was conducted on the ipsilateral
cortex of a separate cohort of C57Bl/6J mice or the ipsilateral

hippocampus of APOE mice as described in Ref. 24. TaqMan
probes against murine Apoe (Mm01307193_g1), human APOE
(Hs00171168_m1) or GAPDH (4352339E) from Applied Bio-
systems (Foster City, CA) were used.

Statistical Analysis
Data were analyzed using either 1-way ANOVA fol-

lowed by Dunnett post hoc test comparing 1, 3, and 7 days to
sham for time course experiments, 1-way ANOVA followed
by Tukey post hoc test for bexarotene experiments, or a 2-way
ANOVA followed by a Bonferroni posttest for genotype ex-
periments. Tests, including correlations, were performed using
GraphPad Prism (La Jolla, CA). Differences were considered
significant when p< 0.05.

RESULTS

Biphasic Response of Soluble apoE After TBI in
C57Bl/6 Mice

Soluble apoE levels were measured in the DEA extract
from the ipsilateral cortex of C57BL/6J mice by Western blot.
Soluble apoE protein was reduced by 39% at 1 day postinjury
(p< 0.05, Fig. 1A). However, levels of soluble apoE recov-
ered by 3 days postinjury, and were significantly elevated
by 52% above sham levels at 7 days postinjury (p< 0.001,
Fig. 1A).

Levels of apoE in the DEA and RIPA extracts were
compared to determine whether a reduction in soluble apoE
levels at 1 day post-TBI was due to a shift in solubility from
the DEA to the RIPA fraction. Prior to injury, the DEA extract
contains approximately twice the amount of apoE compared
with the RIPA extract. However, at 1 day postinjury, levels of
apoE in the DEA extract were decreased by 37% (p< 0.05),
whereas no change in levels of RIPA-soluble apoE was ob-
served (Fig. 1B), indicating that the reduction of apoE protein
is restricted to the soluble pool.

Apoe mRNA levels were measured by quantitative RT-
PCR; apoe expression was increased by 4.3-fold at 7 days
postinjury (Fig. 1C).

Levels of Soluble apoE and Ab are Inversely
Correlated in the Brain After TBI in C57Bl/6
Mice

Ab levels and APP processing in the injured cortex were
assessed. TBI caused an increase in levels of endogenous
murine Ab40 in the ipsilateral cortex of C57BL/6 mice. Ab40

levels peaked at 1 day postinjury with a 53% increase in the
injured cortex compared with sham (p< 0.001). Ab40 levels
decreased slightly from this peak but remained significantly
elevated at 3 days (29% increase vs sham; p< 0.01), before re-
turning to sham Ab40 levels at 7 days postinjury (Fig. 2A).

To assess Ab production, levels of APP, b-secretase
cleaving enzyme-1 (BACE1), and the b-cleaved C-terminal
fragment of APP (b-CTF) generated when APP is cleaved by
BACE1 were measured by Western blot. Because cleavage of
APP by BACE1 is the rate-limiting step in Ab production, in-
creased levels of b-CTF indicate increased processing of APP
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into Ab. BACE1 levels were increased at 1 day (127% in-
crease, p< 0.05) and 3 days (205%, p< 0.01) postinjury com-
pared with sham (Fig. 2B). b-CTF levels were also increased
at 1 day (70%, p< 0.05) and 3 days (92%, p< 0.01) postinjury,
indicating increased cleavage of APP by BACE1 at 1 and 3
days (Fig. 2B).

Levels of soluble apoE and soluble Ab40 from the brains
of individual mice showed a strong inverse correlation such
that as the levels of soluble apoE increased, the levels of TBI-
induced Ab decreased (p< 0.001, Fig. 2C).

Pharmacologically Increasing apoE Levels
Decreases Ab Levels After TBI in C57Bl/6 Mice
But Not in Apoe�/�Mice

To test whether increasing soluble apoE levels in the
brain could decrease the peak in Ab40 observed after injury,
we used the RXR agonist bexarotene to increase levels of
apoE in mice prior to injury. Similar to the previous experi-
ment, TBI caused a 42% reduction in levels of soluble apoE in
the injured cortex at 1 day post-TBI in vehicle-treated mice

versus sham (p< 0.001, Fig. 3A). Bexarotene pretreatment
partially reversed this TBI-induced reduction in soluble apoE
levels at 1 day, that is soluble apoE levels in TBI mice receiv-
ing bexarotene were only reduced by 21% at 1 day postinjury
compared with sham (p< 0.05, Fig. 3A). Compared with in-
jured vehicle-treated mice, bexarotene-treated mice had 38%
more soluble apoE in the injured cortex at 1 day post-TBI.

TBI increased levels of Ab40 in vehicle treated-mice at
1 day postinjury, with Ab40 levels increased by 120% in the in-
jured cortex of vehicle-treated mice compared with sham
(p< 0.001, Fig. 3B). Treatment with bexarotene attenuated
this peak in trauma-induced Ab40, with levels of Ab40 in the
injured cortex only increasing by 78% (p< 0.01 vs vehicle-
treated TBI mice, Fig. 3B). Similar to the previous experi-
ment, there was a strong inverse correlation between levels of
soluble apoE and Ab40 in the brain after injury, with
bexarotene-treated mice having more soluble apoE and less
Ab40 in the brain than vehicle-treated mice (r2¼0.5073,
p¼ 0.0004, Fig. 3C).

To test whether apoE is required for the reduction
of Ab40 levels after TBI by bexarotene we repeated our

FIGURE 1. Experimental traumatic brain injury (TBI) causes a biphasic response in apolipoprotein E (apoE) protein levels. (A)
Soluble apoE protein levels from the ipsilateral cortex of sham and TBI-injured C57BL/6 mice. Representative blots are shown.
(B) Comparison of diethylamine-soluble apoE (DEA) and radioimmunoprecipitation assay-soluble apoE (RIPA) from ipsilateral
cortex of C57BL/6 mice. (C) Apoe mRNA quantified by RT-PCR from the ipsilateral cortex of a separate cohort of C57BL/6 mice.
One-way ANOVA with Dunnett post hoc analysis comparing 1, 3, and 7 days to sham for all panels, except 1-way ANOVA with
Tukey post hoc analysis for panel B). *p < 0.05; **p < 0.01; ***p < 0.001.
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experiment in mice with genetic ablation of the Apoe gene
(Apoe�/� mice). TBI increased levels of Ab40 in Apoe�/�

mice by 98% at 1 day postinjury (p< 0.01, vehicle-treated
mice compared with sham, Fig. 3D). However, bexarotene
treatment had no effect on the trauma-induced peak in Ab40

levels in Apoe�/�mice, with levels of Ab40 in the injured cor-
tex increasing by 85% (p< 0.01 compared with sham; n.s. be-
tween treatments, Fig. 3D), indicating that apoE may play a
role in the rapid reduction of Ab after TBI.

APOE4 Mice Have Prolonged Accumulation of
Ab40 After TBI

To investigate if the accumulation of TBI-induced Ab40

is influenced by polymorphisms in the human APOE gene, we
compared soluble apoE and soluble Ab40 levels in humanized
APOE3 or APOE4 mice after injury.

The response of soluble apoE protein in APOE3 mice
was similar to that of C57Bl/6 mice, with a decrease at 1 day
(25% decrease) followed by a 138% increase at 3 days and a

311% increase at 7 days. This response did not occur in
APOE4 mice (Fig. 4A). As previously reported, basal levels of
apoE4 were 26% lower than basal levels of apoE3 (24). The
differences in the apoE protein response between APOE3 and
APOE4 mice after injury were not due to differences in APOE
expression because analysis of APOE mRNA levels showed
identical patterns between genotypes (Fig. 4B).

Prior to injury, sham levels of Ab40 in APOE mice were
similar between genotypes. Following injury, analysis of Ab40

levels by 2-way ANOVA revealed a significant effect of geno-
type (F1,40¼15.89, p< 0.001), of time after injury
(F3,40¼11.92, p< 0.0001), and an interaction between the
2 variables (F3,40¼3.265, p< 0.05) (Fig. 4C). Post hoc analy-
sis revealed TBI increased levels of Ab40 in both APOE3
(71% increase over sham, p< 0.01) and APOE4 mice (101%
increase over sham, p< 0.001) at 1 day, with no significant
difference between genotypes. However, while TBI-induced
Ab40 was rapidly cleared in APOE3 mice, TBI-induced Ab40

levels remained elevated in APOE4 mice at both 3 days (64%
increase over sham, p< 0.05) and 7 days (48% increase over

FIGURE 2. Levels of DEA-soluble apoE and DEA-soluble Ab are inversely correlated in the ipsilateral cortex after TBI. (A) Soluble
Ab40 in the sham and injured cortex of C57BL/6 mice measured by ELISA. (B) Quantification of amyloid precursor protein (APP),
b-site APP cleaving enzyme-1 (BACE1) and APP C-terminal fragments (APP-CTF) from RIPA-extracted ipsilateral cortex.
Representative blots are shown. (C) Correlation curve of soluble apoE versus soluble Ab40 in the sham and injured C57BL/6
mouse brain up to 7 days postinjury. One-way ANOVA with Dunnett post hoc analysis comparing 1, 3, and 7 days, to sham.
*p<0.05; **p<0.01; ***p<0.001. ELISA, enzyme-linked immunosorbent assay.
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sham, p< 0.05) postinjury. Levels of Ab40 in APOE4 mice
were significantly higher than in APOE3 mice at both 3 days
(p< 0.01) and 7 days (p< 0.05) postinjury (Fig. 4C). There
was a significant inverse correlation between soluble apoE
and soluble Ab40 in APOE3 mice (p< 0.01) (Fig. 4D), but not
in APOE4 mice (Fig. 4E).

To assess Ab production, levels of APP, BACE1, and b-
CTF were measured by Western blot. APP processing was in-
creased in both genotypes after TBI, but profiles of increased
BACE1 and CTF levels did not differ between genotypes with
both peaking at 3 days post-TBI (Fig. 5).

Increasing apoE4 Protein With Bexarotene Does
Not Impact TBI-Induced Ab40 Levels in APOE4
Mice

Basal apoE4 protein levels were lower than basal apoE3
protein levels, and apoE4 levels did not respond to TBI to the
same extent as apoE3. To determine if stimulating apoE levels
in APOE4 mice could enhance clearance of TBI-induced Ab

and prevent the abnormal accumulation of Ab in these mice
after injury, APOE4 mice were given either vehicle or bexaro-
tene starting 15 minutes post-TBI and then daily for 6 days.

Similar to our earlier findings, we observed no increase
in soluble apoE levels in vehicle-treated APOE4 mice at 7
days post-TBI (Fig. 6A). However, 7 days treatment with bex-
arotene caused a 81% increase in apoE in injured APOE4 mice
compared with sham mice (p< 0.05; Fig. 6A).

Also similar to earlier results, TBI caused an increase in
Ab40 levels in APOE4 TBI mice that remained elevated at 7
days postinjury (34%; p< 0.05; Fig. 6B). However, despite
the increase in apoE4 levels, bexarotene treatment did not re-
duce Ab40 levels in APOE4 TBI mice (27% elevation com-
pared with sham control; p< 0.05; Fig. 6B).

DISCUSSION
In this study, we determined how TBI alters soluble

apoE protein levels and apoe mRNA, studied the relationship
between soluble apoE and Ab40, and examined how APOE ge-
notypes impact Ab40 accumulation after TBI. We found that

FIGURE 3. Bexarotene (bex) attenuates apoE loss after TBI and reduces Ab levels. (A) Soluble apoE protein from ipsilateral cortex
of vehicle and bexarotene pretreated C57BL/6 mice at 1 day postinjury. (B) Soluble Ab40 from ipsilateral cortex of vehicle and
bexarotene pretreated C57BL/6 mice, measured by ELISA. (C) Correlation between DEA-soluble apoE and DEA-soluble Ab40

from sham vehicle (white circles), TBI vehicle (black circles) and TBI bexarotene (grey circles) pretreated mice. (D) Soluble Ab40

from ipsilateral cortex of vehicle and bexarotene pretreated Apoe�/� mice at 1 day postinjury, measured by ELISA. Representative
blots shown. One-way ANOVA with Tukey post hoc analysis comparing all columns. *p < 0.05; **p < 0.01; ***p < 0.001. ELISA,
enzyme-linked immunosorbent assay.
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TBI caused a biphasic response in soluble apoE levels, with an
acute depletion of the soluble pool of apoE that rebounded as
apoe mRNA expression increased in the subacute phase. We
also found a strong inverse correlation between soluble apoE
protein levels and soluble Ab40 levels in the 7-day period after
TBI, with levels of TBI-induced Ab40 decreasing in the brain
as soluble apoE levels recovered and increased. Further, we

determined this was a causal relationship using pharmacologi-
cal and genetic tools. Finally, we report that expression of the
APOE4 allele results in an aberrant apoE response to TBI, and
a prolonged accumulation of Ab40 that is resistant to pharma-
cologic manipulation of apoE4 protein levels.

Studies in experimental TBI models have reported in-
creased apoE protein in the brain after experimental TBI (25),

FIGURE 4. APOE4 mice have an abnormal apoE response and impaired clearance of Ab after TBI. (A) Soluble apoE from
ipsilateral cortex of sham and TBI injured APOE3 and APOE4 mice. (B) APOE mRNA from ipsilateral hippocampus of APOE3 and
APOE4 mice quantified by RT-PCR. (C) DEA-soluble Ab40 levels from the ipsilateral cortex of sham and TBI-injured APOE3
and APOE4 mice, measured by ELISA. (D, E) Correlation curve of soluble apoE versus soluble Ab40 in sham and injured APOE3
and APOE4 mouse brain up to 7 days postinjury. Representative blots shown. Two-way ANOVA with Bonferroni posttest.
*p<0.05; **p<0.01; ***p<0.001.
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but here we found a biphasic response with an acute decrease
in soluble apoE protein levels at 1 day, followed by an increase
in apoE at 7 days. Our findings are consistent with studies of
severe human TBI patients who show a 70% decrease in cere-
brospinal fluid apoE acutely postinjury (26). The major differ-
ence between our study and previous animal studies is that we
selectively extracted soluble apoE, and not the total apoE
pool, which explains why we see a different effect. We do not
know what causes the decrease of soluble apoE after injury,
but we have established that it is not explained by a shift from
soluble to membrane-bound pools of apoE. Thus, we hypothe-
size that the initial decrease in apoE protein is reflective of
degradation or efflux of apoE following injury. The degrada-
tion of apoE in the extracellular space can occur via secreted
chymotrypsin-like serine protease (27), and the activity of this
protease is increased by over 50% in the ipsilateral cortex in
the first 24 hours after experimental TBI (28).

The later increase in apoE protein was primarily driven
by increased apoe mRNA expression, which is regulated by
the ligand-activated liver X receptor (LXR)/RXR transcription
factor. LXR/RXR is activated by endogenous substrates in-
cluding the cholesterol metabolite 24S-hydroxycholesterol.
We have previously reported that TBI causes an increase in
the cortical levels of the CYP46 enzyme responsible for pro-
duction of 24S-hydroxycholesterol, beginning at 3 days
postinjury (29), potentially providing the endogenous signal
for increased apoE production.

TBI is known to cause an increase in Ab levels in both
humans and animals. In humans, intra-axonal accumulation of
Ab occurs in almost all cases of fatal TBI (30, 31); increased
intracellular staining of Ab occurs in 80% of severe TBI cases
(4); and acute amyloid plaques are found in 30% of acute

moderate-to-severe postmortem TBI brains (3). The published
data suggest that Ab production is a common event after TBI,
but the events controlling aggregation and deposition can vary
among TBI cases. Indeed, while multiple groups have reported
increased levels of soluble Ab in the brain after experimental
TBI in animals (32–39), the data on whether TBI increases
amyloid deposition in animals remain controversial. In the
present study, we again confirmed that TBI causes an acute in-
crease in Ab40 production; however we also observed that
Ab40 levels return rapidly to baseline, even while BACE1 and
b-CTF levels remain elevated. It should be noted that the pri-
mary pathological species of Ab in TBI is Ab42 (4, 40), but in
this study, we focused on the Ab40 species, primarily because
of the low levels of Ab42 in C57Bl/6 mice. The prolonged in-
crease in BACE1 and CTF, we observed in this study could
contribute to the continued production of Ab42 after TBI. We
do not believe this to be the case because we have previously
shown that TBI-induced changes in Ab42 follow an identical
time course to that of Ab40 in C57Bl/6 mice (41) and APP
transgenic mice (39). On the other hand, others have reported
a prolonged increase in Ab42 in humanized APP mice follow-
ing cortical impact injury (33).

One factor that can influence Ab clearance is the apoE
protein (17, 18), and the clearance of Ab by apoE can be modi-
fied by APOE genotype (42). This relationship is also found in
TBI patient brains, in which only 10% of non-APOE4 carriers
have amyloid plaques after TBI, whereas 35% of APOE4 het-
erozygotes and 100% of APOE4 homozygotes have brain Ab
deposits following injury (9). A strong relationship between
APOE4 and Ab after TBI is also reported in surgically resected
cortical tissue from TBI patients (43), where 50% of the Ab
plaque-forming TBI patients have APOE4 genes.

FIGURE 5. APP-processing after TBI is similar between APOE3 and APOE4 targeted replacement mice. (A–C) Representative
Western blots (A) and quantification of amyloid precursor protein (APP), b-site APP cleaving enzyme-1 (BACE1) and APP C-
terminal fragments (APP-CTF) from RIPA-extracted ipsilateral cortex of sham and TBI injured APOE3 and APOE4 mice (B, C).
One-way ANOVA with Tukey post hoc test. *p<0.05; **p<0.01; ***p<0.001 versus sham.
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The Ab40 peptide is associated with cerebral amyloid
angiopathy (CAA), and previous studies on human postmor-
tem tissue report CAA in acute TBI postmortem brains, with
an 8.4-fold preference for APOE4 carriers compared with
non-APOE4 carriers (44).

In animal studies, human APP/APOE4 mice have in-
creased intracellular Ab staining after TBI 1–12 weeks postin-
jury compared with APP/APOE3 mice (37), and a separate
study demonstrated that TBI resulted in increased fibrillar pla-
que deposition in APP/APOE4 mice at 3 months post-TBI ver-
sus APP/APOE3 mice (45). In our study, we find that APOE3
and APOE4 mice have similar rates of APP processing, and
Ab40 accumulation peaks at 1 day post-TBI with no difference
between genotypes at this time point, as has been reported by
other groups using CCI in APOE mice at this time point (46).
However, as we extended our observations past 1 day, we
found that APOE4 mice had aberrant accumulation of Ab40 in
the TBI brain compared with APOE3 mice up to 7 days postin-
jury. This prolonged accumulation does not appear to be due

to increased production in the APOE4 mice because APP and
APP-CTF levels are similar at all time points. Indeed, BACE1
protein levels in the APOE4 mice peak at less than 50% of
BACE1 levels in APOE3 mice, again suggesting that the pro-
longed Ab accumulation is not due to increased production.
Given the known role of apoE in Ab clearance, it appears that
the apoE4 protein cannot mediate the rapid clearance of TBI-
induced Ab after injury.

APOE4 mice have lower basal levels of brain apoE com-
pared with APOE3 (47), and we also found lower levels of sol-
uble apoE4 protein in our studies. In addition, APOE4 mice
have an abnormal response to TBI with respect to soluble apoE
levels. Our mRNA data show that APOE mRNA is expressed
at similar levels in APOE3 and APOE4 mice after TBI, which
is expected as both are driven by the endogenous mouse Apoe
promoter. We did find that apoE protein is being produced in
the APOE4 mice after injury, with large increases in RIPA-
soluble apoE in both APOE3 (761% above APOE3 sham) and
APOE4 mice (956% above APOE4 sham) at 7 days postinjury
(not shown). However, APOE4 mice are unable to significantly
increase soluble apoE protein levels in the subacute phase
post-trauma. Because our data in C57Bl/6 mice suggest that in-
creased levels of soluble apoE are important for the rapid re-
turn of Ab40 to baseline levels after TBI, we tested if increasing
apoE4 protein levels could prevent the prolonged accumulation
of Ab40 after TBI in APOE4 mice using bexarotene, which in-
creases apoE protein levels in mice carrying the murine apoe
and human APOE4 genes (19, 20). We found that 6 days of pe-
ripheral bexarotene administration greatly increased levels of
soluble apoE4 after TBI. Despite this increase, it did not medi-
ate a reduction in TBI-induced Ab, which remained signifi-
cantly elevated at 7 days postinjury. The inability of APOE4
mice to resolve increased levels of Ab40 in the brain 7 days af-
ter injury even with pharmacological enhancement of apoE4
levels further supports the hypothesis that apoE4 protein is dys-
functional at mediating Ab clearance.

In conclusion, we report that there is an inverse relation-
ship between soluble apoE and Ab40 after injury such that
TBI-induced Ab40 levels decrease as soluble apoE levels in-
crease. This relationship is abolished in APOE4 mice, leading
to a prolonged accumulation of TBI-induced Ab40 after injury
in these animals. These data may help explain the deposition
of Ab in APOE4 carriers after TBI (3), and increased inci-
dence of Ab plaque in APOE4 postmortem TBI brains (9).
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