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Abstract: The prediction of partial discharges in hydrogenerators depends on data collected by
sensors and prediction models based on artificial intelligence. However, forecasting models are
trained with a set of historical data that is not automatically updated due to the high cost to collect
sensors’ data and insufficient real-time data analysis. This article proposes a method to update
the forecasting model, aiming to improve its accuracy. The method is based on a distributed data
platform with the lambda architecture, which combines real-time and batch processing techniques.
The results show that the proposed system enables real-time updates to be made to the forecasting
model, allowing partial discharge forecasts to be improved with each update with increasing accuracy.

Keywords: autoregressive forecasting model; lambda architecture; partial discharges; power
hydrogenerators; real-time data processing

1. Introduction

There are many recent studies that address the development of forecasting models in the context of
a monitoring system for industrial and electrical equipment, based on the analysis of temporal signals
obtained through sensors [1-5]. In fact, real-time monitoring systems form one of the foundations
of Industry 4.0 and have been developed to monitor various variables in industrial plants, electric
generators/motors, and various other equipment [6]. These systems become more and more popular
with the advances in Internet of Things (IoT) and Cloud technologies, especially in the areas of
manufacturing and maintenance, but mainly aimed at visualizing the data collected due especially to
the difficulties of real-time processing [6,7].

In general, forecast models are trained with historical data and, even with the acquisition of new
data, they are not automatically updated to improve your forecasts. New data are used to assess the
quality of the predictions made by the model and, if necessary, a new training process is started with
the updated historical data set [1].

On the other hand, sensor data represent a significant opportunity for streaming and collecting
from different devices every second, which creates important challenges on how to manipulate that
data and perform data analysis online, given that current approaches are often limited by capacity,
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costs, and resources [8]. In this context, the data platform based on the lambda architecture stands out,
combining traditional batch data processing with a fast, real-time data flow and it represents the state
of the art in online data processing architectures [9].

This article presents a proposal to update a prediction model to improve forecast accuracy in the
context of a distributed data platform based on the lambda architecture that combines real-time and
batch processing techniques. The main contribution of the proposed system is the ability to combine
the real-time and batch processing layers of the lambda architecture to update the forecasting model,
with application in the estimation of partial discharges in power hydrogenerators. Partial discharges
(PDs) are electrical discharges that occur inside or outside the insulation of a high-voltage system
under electrical stress [10,11]. The proposed forecasting model is based on a long short-term memory
(LSTM) recurrent neural network and explores the benefit of such models in allowing an update of
weights as new data become available [12].

We organized the rest of the paper as follows. Section 2 discusses related work and research
regarding online monitoring systems and prediction models. An overview of lambda architecture
and the theory regarding forecasting models are presented in Section 3. The proposed approach to
update the artificial neural network-based prediction model on a lambda architecture for estimating
partial discharges in an hydrogenerator is presented in Section 4. Experimental results are presented in
Sections 5 and 6 concludes the work.

2. Related Work

Autoregressive model is a way to capture autocorrelation and seasonality in a sequence of
observations ordered over time (time series) [13]. The time series analysis has basically three objectives:
to identify the nature of the represented phenomenon looking for a behavior pattern, such as the trend
pattern, the existence of seasonal variation, outliers, structural changes, etc.; use the variation in one
series to explain the variation in another series; and, finally, predict the evolution of the time series’
variable from a mathematical model that describes the behavior of the observations [14].

The literature shows several studies that seek to improve the accuracy of autoregressive forecasting
models, and many of these studies have used techniques that can be categorized into two groups:
statistical approaches, such as regression analysis and time series analysis, and techniques based on
artificial intelligence (AlI), such as multilayer neural network, deep learning neural network, fuzzy
logic, support vector machine (SVM), least squares support vector machine (LS-SVM), random forest,
and deep learning, among others.

In [15] a model was proposed combining advantages of the neural network with random weights
and a support vector machine, which can capture more dynamic characteristics of the multivariate
data of the time series by means of weighting samples. The mutual information is used to determine
time delays, between the value of the variable at time ¢, X(t), and the value of the same variable at time
t-t, X(t-t) with different 7 (time delay), where the first local minimum value of mutual information
corresponds to the time delay for time series.

Other prediction models based upon LS-S5VM have been proposed by [16,17], just to name a
few. These works address problems in different areas, for example, detecting mechanical failures in
induction motors such as [18] and estimating the concentration of gases dissolved in oil in transformers
as in [16], among others.

Regarding partial discharges (PD), the application of prediction models is also widespread. In this
sense, analysis of electrical insulation failures reveal that this kind of failure is the root cause of
more than 60% of the damage to high-voltage equipment [19]. Thus, PD recognition has been a
topic of interest to distinguish different sources of PD failure within energy appliance insulation
systems [11,19-22].

In [11] the authors proposed a new technique to classify PD’s patterns based on the learning
of neural networks by ensemble (ENN). The ENN technique is based on training a series of neural
network models with statistical parameters of partial discharge patterns and combining their predictions.
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By combining the outputs of the constituent neural networks through an aggregation unit using the
dynamically weighted average strategy, a final assessment of partial discharge patterns is provided in
relation to a range of partial discharge failure types. As another example of work on the topic we can
cite [20], addressing a new method for locating PD in transformer windings.

Even in the context of partial discharges, the use of deep learning has received great attention and
several contributions have shown that deep learning-based methods have better accuracy than typical
machine learning methods, providing more efficient automated identification techniques. This kind of
deep learning methods for PD classification was applied in [22,23], for example. In [22], a convolutional
neural network (CNN) of multiple columns was used to incorporate ultra-high-frequency (UHF)
spectra of multiple resolutions and a long-term memory network was used to merge information from
built-in multisensors. Long short-term memory (LSTM) neural networks were also applied by [23] to
classify partial discharges.

However, despite the evolution in the creation and precision of the forecasting model, the works
generally do not describe mechanisms for manipulating and processing sensor data to update these
models. This represents an important gap since improvements regarding the general applicability of
the method can be made in a data acquisition process [21]. Additionally, the adoption of this type
of mechanism for manipulating and processing sensor data is fundamental for the development of
data-driven applications in the context of Industry 4.0. In this sense, some recent studies have presented
proposals to adapt models to the experimental collected data, showing significant improvements in
results. In [24], for example, the data-driven concept was used to adjust, optimize, and experimentally
validate a model to optimize energy consumption on tower crane systems, presenting significantly
superior results. Moreover, the implementation of efficient architectures for data collection, storage, and
processing, possibly in a distributed way, can contribute significantly to mitigating the problems with
limitations of computation abilities and communication channel bandwidth that are often described
as complex tasks in data-driven practical control systems [25]. The severity of these limitations
has motivated numerous researchers for the development and extensions of event-triggered control
schemes such as those presented in [25-28], just to name a few.

According to [7], IoT and real-time, predictive maintenance systems face problems such as
insufficient real-time data analysis, high cost to collect sensors” data, and the configuration of fault
detection rules. Such difficulties mean that the systems are often turned only to visualize the sensor data.
The same authors suggest that the adoption of an architecture for real-time processing of sensor data,
such as the lambda architecture, may favor the adoption of efficient preventive maintenance platforms.

In fact, lambda architecture is the state-of-the-art, real-time data processing technique [29].
However, many works on this topic are dedicated to the theoretical aspects of this architecture [9,30],
with few recent real applications such as in E-Commerce Analytics [31] and intrusion and anomaly
detection framework [32]. Authors in [7], for example, proposed a platform based on lambda
architecture to accelerate automatic machine maintenance, but the application in a real situation
was indicated as a future proposal of the work. Similarly, [6] proposed an industrial IoT system for
monitoring electric motors in real time, in the Industry 4.0 context, and indicated the creation of a
predictive model based on machine learning as a long-term future work.

The analysis of these studies shows the gap in contemporary literature and establishes the
contribution of this paper. By comparing the previous literatures, the main contribution of the
proposed system is the ability to combine the real-time and batch processing layers of the lambda
architecture to update the forecasting model, with application in the estimation of partial discharges
in power hydrogenerators. The proposed system makes it possible to collect, store, and process
data separately in the batch and speed layers. The batch that handles large volumes of data layer is
performed only sporadically while the speed layer is often executed with low data volume, ensuring
model updates and mitigating common limitations of computation and communication channel
bandwidth problems in data-driven, practical control systems [25-28].
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From the point of view of the plant’s operation, the proposed methodology makes it possible to
understand the evolution of the model’s forecasting capacity and to estimate the moment from which
the forecast results of the model can be considered suitable for the application.

3. Theory

This section presents a concise description of the basic concepts used in this work and is necessary
to understand the proposal.

3.1. Recurrent Neural Network

Hinton et al., in [33], published a paper on a neural network with deep learning, by which a
fast learning algorithm was developed for deep belief networks for the first time. A recurrent neural
network takes many forms, each highlighting a specific form of global feedback. However, they all
incorporate a static multilayer perceptron or parts of it and exploit the nonlinear mapping ability of
the multilayer perceptron [34].

Figure 1 shows a simple structure of Recurrent Neural Network (RNN), composed of a hidden
layer, which receives inputs, producing an output and sending that output back to itself. If the RNN is
expanded in a time frame, at each time step ¢, this recurring layer receives inputs X(t), as well as its
own outputs from the previous time step Y(f — 2), Y(t — 1), and so on [21].

Y — Output value

S
T [ .

X = Input value X(t=2) X(t-1) X(#)

Y(1-2) Y(1-1) Y()

Time

Figure 1. Simple structure of recurrent neural network.

3.2. Lambda Architecture

The so-called Lambda architecture introduced by Nathan Marz in [35] is a state-of-the-art
technology for real-time data processing. The architecture defines three layers, aiming at simplicity,
scalability, fault tolerance, and robustness in data processing and information generation [9].

(1) Thebatch layer is designed to create an immutable master table with sensor data for the calculation
of views with this data. This layer handles large volumes of data that are handled in batch and
has high latency.

(2) The speed layer aims to compensate for the high batch layer latency by analyzing the data in real
time. This layer processes the most recent data and updates the views created with the batch layer
data set, solving the problem of data availability between consecutive batch layer calculations.

(3) Serving layer is responsible for merging the batch layer and speed layer information, to produce
complete views. In general, the serving layer implies visions produced by the batch layer plus
information produced by the speed layer in real time.
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After each recalculation of the views in the batch layer, the redundant speed layer data are erased
and the online processing of the most recent data resumes. Thus, the speed layer data are stored in
temporary tables in small volumes and with low latency.

4. Proposed Approach

In this section, the steps in the development of the proposed system are presented and described,
from obtaining data of sensor readings to automatically updating the predictive model. The steps are
described in the context of the lambda architecture and, therefore, consider the integration between the
batch layer and the speed layer through the tools of the Hadoop ecosystem as well as the integration
of this architecture with the prediction model. An illustration of the proposed system is shown in
Figure 2.

Bats:h Layer Serving Layer
* Monthly calculations (tg, ty, tyn,.-) . Outout to
* Model created in the first data ingestion. # das:board
* Immutable and append-only data in a

and/or control
Data Sources master table charts
(structured database)

Speed Layer
* Ingestion of the most recent data to
I update the model and views
Real-time update #
From tyto t; update
Fromt, tot, update

update
From ty, to ty

Figure 2. Structure of the proposed system with creation and update of the forecast model based on
the lambda architecture. Weekly or monthly data ingestion in the batch layer and minute-wise or
hour-wise in the speed layer.

4.1. Generation of Typical Partial Discharge Values

The partial discharge monitoring system that includes sensors, data architecture, and the
autoregressive forecasting model is being implemented at the plant and, therefore, does not have
enough data for a conclusive analysis of the hydrogenerator condition based on these variables and
not even for the creation and evaluation of a forecasting model.

Thus, the methodology proposed here was evaluated based on a system simulation. Three
scenarios were simulated for different hydrogenerator conditions in relation to the severity of partial
discharges observed, defined according to [36]. In addition to evaluating the proposed methodology,
the simulation performed is important to understand the evolution of the model’s forecasting capacity
and to estimate the moment from which the forecast results of the model can be considered suitable for
the application.

The simulated scenarios considered the temporal evolution of the Normalized Quantity Number
NQN+ in three operating conditions in relation to the severity of partial discharges, called normal, severe,
and critical condition. The NQN+ values were obtained from the three conditions, as shown in Figure 3.
The NQN+ values were extracted from the graphics in Figure 3 using a web-based plot digitizing
tool for extracting data from a time series including XY coordinates, called WebPlotDigitizer [37].
In the WebPlotDigitizer tool, after loading the image and calibrating the axes, assuming that axes are
perfectly aligned with image coordinates, the data were extracted automatically using the ‘X step with
interpolation algorithm’ available in the tool, with the parameters adjusted as described in Table 1 in
order to get equivalent to a daily sample. The NOQN values generated are available with this work as
Supplementary Material.
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Figure 3. Data for different hydrogenerator conditions in relation to the severity of partial discharges.

Table 1. Parameters’ values used in WebPlotDigitizer tool.

Parameters Normal Severe Critical
X_min 0 0 0
AX Step 16/480 16/480 16/480
X_max 16 16 16
Y_min 90 200 490
Y_max 150 600 1600

Smoothing 0 0 0

The reading of the sensor data was done in 30 s, but the reading frequency usually occurs in a
week-wise manner. However, for the start of the system’s operation, a daily frequency was established
to speed up the generation of a database for future application of the proposed methodology. Thus,
the three scenarios considered simulated daily measurements of NQN + values.

The extracted values were used to represent NQN+ over a 16-month monitoring and analysis
horizon, resulting in 480 samples, of which 360 samples were used to simulate the operation of the
model over a 12-month period.

The three scenarios are described as follows.

e  Scenario 1—normal: coils in relatively good condition since there is no general increase over time
in the NQN values, with these values in the range between 100 and 200 as shown in Figure 3 (blue
line). In this scenario, ingestion of data in the batch layer occurs every six months, ingestion of
data in the speed layer is carried out every two weeks, and the frequency of reading the data is
daily. Therefore, the model was created from a sample of approximately 180 observations and
received 10 consecutive updates with samples of 18 values each.

e  Scenario 2—severe: significant thermal deterioration or thermal cycling, resulting in delamination
of the insulation. There is a fixed increase in NQN over time, with values ranging from 200 to
600, as shown in Figure 3 (orange line). Here the batch layer is executed every six months with
around 180 values and the speed layer every 10 days. In this case, model updates occurred more
frequently due to the severity of partial discharges.

e  Scenario 3—critical: high NQN values indicating critical thermal deterioration and resulting
in delamination and severely deteriorated coils. NQN values start around 500 and can reach a
maximum value close to 1500 at which they tend to stabilize, although the winding continues to
deteriorate, as shown in Figure 3 (green line). For this scenario, the model was created with data
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from six months of measurements (180 samples) and received weekly updates due to the critical
state of partial discharges.

4.2. Data Ingestion into Hadoop Distributed File System

The first step in the development of the proposed system concerns the data ingestion in Hadoop’s
HDFS system from the data source. This ingestion task was performed using the Apache Sqoop tool,
which is designed to transfer data between structured datastores and the HDFS file system. The tool
used in this data ingestion task can vary depending on how the data collected by the sensors are stored.
In this stage, two different types of sqoop jobs were created, one job to collect data in batches on a
monthly basis, which may vary depending on the application, and another job for online collection as
new data were generated.

4.3. Batch Layer and Speed Layer Creation in Hive

The ingestion of batch data was used in the creation of the so-called batch layer, which consolidates
all the data collected immutably in a master table, to ensure the historical reliability of the data, and
was used for the creation and training of the forecast model. The ingestion of data in the batch layer
was carried out incrementally, usually on a monthly or weekly basis, but the forecasting model was
created and training only in the first ingestion.

In the speed layer, on the other hand, data ingestion occurred in real time, collecting the data that
was generated since the last batch layer update. In this case, the periodicity can be minute-wise also
depending on the application and defined by the user.

The data collected in real time in the speed layer were used to update the training of the forecast
model, as well as to provide the user with views of the current situation of the monitored equipment,
together with the data of the batch layer, and views of the future situation of the equipment, together
with the values estimated by the autoregressive forecasting model. Whenever the batch layer was
updated, the speed layer data were deleted and the last-value parameter that indicates the starting
point to restart the data reading for the new speed layer was also updated.

The structures for creating the batch layer as well as for the speed layer were tables created in
the Hive data warehouse, developed for Apache Hadoop. As Hive is automatically connected to
HDFEFS, views were updated whenever new data ingestion occurred in the speed layer, which also
automatically updated the forecasting model. The automatic update can be managed with a workflow
scheduler tool like Oozie, for example.

4.4. Forecast Model Creation

The proposed forecasting model was based on a LSTM recurrent neural network and it explored
the possibility of updating the model as new data were generated. The creation and update of the
model were carried out in the context of the lambda architecture, as illustrated in Figure 2.

The batch layer can be updated weekly or monthly and, therefore, ingested a large volume of data.
These data can be used to present views to the user and other purposes, but only the first intake was
used to create the forecast model. The model was created in the Python environment using the machine
learning scikit-learn keras and tensorflow libraries with Apache Spark’s in-memory primitives.

In this paper we used Keras framework for presenting the structure of the deep neural network
prediction model because it is currently one of the most used libraries for this purpose. The Keras2DML
framework can be used later to the parallel model training on Apache Spark.

4.5. Updating the Forecast Model

The forecast model was updated in the context of the lambda architecture after each speed layer
new ingestion. The user can define exactly what frequency of update is desired, depending on the type
of data collected by the sensors.
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In this work, we dealt with variables related to partial discharges, in addition to generator vibration
and temperature. These values can be correlated so that a condition (or event) can be evidenced that
allows guiding operators on probable failures in progress and, thus, assisting them in decision making
and strategic planning of stops and preventive maintenance.

4.6. Monitoring of Partial Discharges

The partial discharge monitoring system was composed of power partial discharge epoxy mica
capacitive sensors from Iris Power that were connected to the GuardIl monitoring system for collecting
of partial discharge pulse data through the sensors. Figures 4 and 5 present, respectively, an illustration
of this equipment and the installation panel for this system at the plant. Detailed information of
the sensor including partial discharge pulse measurement, operating conditions, and testing and
certification can be obtained in the Iris Power manual [38].

Figure 4. Power partial discharge epoxy mica capacitive sensors and GuardIl monitoring system from
Iris Power.

Figure 5. Installation panel for this system at the plant.

The monitoring of partial discharges provides information about small electrical sparks that occur
in the insulation due to its aging or deterioration. In this case, two important criteria were used to assess
the operating conditions of the generator: The Normalized Quantity Number (NQN+ and NQN-) and
the Maximum Amplitude Number (Qm+ and Qm-). The first data were obtained through the Holding
Register on the condition-based monitoring instrument Guardll using the ModBus Transmission
Control Protocol (TCP). The acquisition parameters were configured in the partial discharge sensors’
interface available in the system, according to Figure 6.



Sensors 2020, 20, 7242 9 of 22

Asset Information| Acq Measurement [lview Measurement

—E Measurement Acquisition Control

Step 1: Define Your Measurement Criteria Status Information
Sensor BUS )
Set Ref. Delay Scaling No instrument.
Use Input Sensitivity Sensor Set Phase Angle (ns) k-Factor PDA Mode.

M1 x||2zomv-3s0my x| [a-c1, Ac2 ~|[a [0 -] =]
M |2 =|[20mv-zaomy ¥|[az-c1, a2-c2 ~[[A [0 =]  =]| 1.000
M |3 =|[|20mv-320mv -] [B-C1, B-C2 ~|[B [so |

Save & Restore Measurement Settings

I Y y N
|4 ~||20mv-330m\v~|[B2-C1,B2-c2  ~|[B [so - = ol 22 =l 20 e
V|5 ~||2omv-340mv ~||c-c1, cc2 ~|lc [s0
¥ s lfom-somc]crct e sle [0 ] e
saved setup, or enable or disable a
1 Second/Window {+ 5 Second/Window pre-defined setup.

Step 2: Select Measurement Mode, Run Measurements

PDA Mode | | [ SSC Mode_| | [ BUSMode | ‘ [ LF Mode | | Current Settings Only

=] Check Connection To Instrument

Figure 6. Holding register in the condition-based monitoring instrument GuardII for hydrogenerator.

After configuring the acquisition control parameters, the values were collected and stored in
structured databases, as shown in the diagram in Figure 7, for partial discharges, temperature, and
vibration. The temperature values were read from an open platform communications server, PCL
Siemens S7, which specified the communication of real-time sensor data.

Structured database

Read Holding Register - PD (FO3)

! 1
{ |
T i
E M~— — H 12014-12029 A-C1 & A-C2
! ! <:| 12314-12329 B-C1 & B-C2
| | 12614-12629 C-C1 & C-C2
— '
! 1
! 1
| : .
I
| . .
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v .
! | <:| 30111 Overall Sensor 1 — 30116 Radial Sensor 1
| | 30172 Overall Sensor 2 — 30177 Radial Sensor 2
i B —— | 30233 Overall Sensor 3 — 30238 Radial Sensor 3
! |
! 1
: ; !
! 1
! 1
1 '
I
‘[ ' <:| Read OPC Server
I : Temperature sensor
! i
! 1

End

Figure 7. Diagram of sensor data acquisition. Three different sensor sets for partial discharges (A-C1 &
A-C2, B-C1 & B-C2, C-C1 & C-C2), three sets of vibration sensors, and one set of temperature sensors.

The stator end-winding vibration caused by the loosening of the windings, together with the
thermal cycling that deteriorates the condition of the insulators, can cause the rupture of the copper
conductors or even failures due to the wear of the insulation.

5. Experimental Results

This section presents the results of a simulation of an application of the proposed approach for
updating a model for forecasting future values of partial discharges in the stator insulation system of
an hydrogenerator.
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First, we created two sqoop jobs to get the collected sensor data from a structured mysql
database to the Hadoop HDEFS. The partial discharge data were in a table called pddata from the
hydrogenerator_db database, which has the structure illustrated in Figure 8, as an example for the set
of sensors A-C1 & A-C2 and the variables NQN+, NOQN-, Qm+, and Qm-.

Fommmmmmm - e +------ R R e F------- +
| Field | Type | Null | Key | Default | Extra |
Fommmm - e +------ e R Fo-mmmm - +
| date | datetime | NO | PRI | ©600-80-00 £0:00:00 | I
| aclngnp | float(9,6) | NO | | MULL | |
| aclngnn | float(9,6) | NO | | NULL | |
| aclgmp | float(9,6) | NO | | NULL | |
| aclgmn | float(9,6) | NO | | MNULL | |
| acZngnp | float(9,6) | NO | | MNULL | |
| acZngnn | float(9,6) | NO | | MNULL | |
| acZgmp | float(9,6) | NO | | MNULL | |
| aczgmn | float(9,6) | NO | | MULL | |
Fommmm - e +------ e R Fo-mmmm - +

Figure 8. Structure of the table pddata in hydrogenerator_db database for values of partial discharge
from the set of sensors A-C1 & A-C2 (variables NQN+, NON-, Qm-+, and Qm-).

The next step of the process was to ingest data into Hadoop’s HDFS from hydrogenerator_db
database to create the batch and the speed layers. We created two sqoop jobs to connect to the database
and import data to the HDFS, according to the script in Figure 9 for batch layer, for example.

Data ingestion was performed incrementally in HDFS according to the date parameter (primary
key) and controlled by the last-value parameter that represented the last value read and, therefore,
the starting point for the next import. In this simulation we considered a local database and the creation
of a single process for the data ingestion task (m = 1). Sqoop imported the data to a directory in the
default HDFS user directory created automatically with the same name as the source table.

sqoop job -D
sqoop.metastore.client.record.password=true --create
batchlayer -- import --connect
jdbc:mysqgl://localhost/hydrogenerator db --table
pddata --username root --password userpass —--check-
column date --incremental append --last-value 0 -m 1

Figure 9. Script for creating the Sqoop batchlayer job to connect to the database and import data
to the Hadoop Distributed File System (HDFS). Access password configured in the job itself for
illustration purposes.

Once the job was created it could be easily and repeatedly executed using the sqoop job -exec
batchlayer command, with the job automatically saving the 1ast-value parameter value for the next
executions, ensuring that only the new data would be imported with each execution. It means the
sqoop detected new registers in the database and updated the files in HDFS. In fact, the imported
values were kept in HDFS in files in the comma-separated values (csv) format.

After data ingestion on HDFS, the next step was to create the master immutable table on
Hive for the batch layer, batch views, and model training. Here we used the Beeline version
1.1.0-cdh5.13.0 as a wizard to run Hive queries [39]. The connection to Hive was accomplished using
the following command:

!connect jdbc:hive2://

By default, Hive uses map reduce as a processing engine, which uses batch processing of large
amounts of data. For our application, it was convenient to change the Hive processing engine to spark
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that works in memory and promotes a significant gain in relation to the processing time. The change
of the execution engine can be made using the command

set hive.execution.engine = spark

Then, we created on Hive a database to store the structures for master table in batch layer. The
database was created exactly with the same name as the table inserted into HDFS, pddata, and was
linked to the file csv in HDFS. It means that the master table was updated whenever a new data
ingestion occurred in HDFS by executing the sqoop job. The master table was created in Hive database
using a simple SQL-like query language, as the script presented in Figure 10.

create table

pddata master (date timestamp, aclngnp float,
aclngnn float, aclgmp float, aclgmn float,
ac2ngnp float, ac2ngnn float, ac2gmp float,
ac2gmn float)

row format delimited

fields terminated by ','

location '/user/username/pddata/’';

Figure 10. Script for creating master table in Hive, using a simple SQL-like query language. The
location attribute must indicate the absolute path of the csv file in HDFS. The master table fields in Hive
need not have the same names used in the file, but they must be created in the same original order.

Again, it is important to note that the master table was automatically updated from any new
importing data into HDFS. These data were used to create the forecast model, which can happen only
once on first ingestion.

Model training can be performed using all or only part of the master table data set. It is possible,
for example, to carry out the future forecast for all variables or for only one of the variables indicated
in Figure 6. As it is batch processing, the data are transferred to the forecast model by means of a file.
In this case, we used the beeline tool to save a hive query output to a file using command:

beeline -u ‘jdbc:hive2://’ -outputformat=csv2 -showHeader=false -e
“hive.hgl” > output_batchlayer_file.csv

in which “hive.hql” is a sequence of commands in the Hive SQL-like query language as, for an
example, for variable A-C1 NQN+, “use pddata; select aclngnp from pddata_master;”.

In addition to training the forecasting model, data from the master table can be used to create
views for the user as, for example, min and max values, first and third quartiles, and median values for
box plot graphics.

A similar approach was applied to create the speed layer in Hive, with real-time processing.
So, a sqoop job was created and executed to ingest the most recent data into Hadoop’s HDFS from
hydrogenerator_db. In this case, however, two important points had to be considered: (1) As the
Sqoop speedlayer job must acquire only the data generated since the last batch layer update, the
last-value parameter must be updated whenever the batchlayer job is executed, at which point
the speed layer data must be reset. This is done to ensure that there will be no duplicate data
between the two layers. The value of the last-value parameter is defined after each execution
of the batchlayer job using: var=$(mysql -user=root -password=userpass hydrogenerator _db
-s -e “select max(date) from pddata;”) and the speed layer deleted by sqoop job -delete
speedlayer. (2) When the sqoop speedlayer job ingests the data into HDFS a file with the same name
as the batch layer is created. Therefore, to prevent the data collected online from overwriting the data
in batch, a new directory must be created for speed layer, through the command: -target-dir.
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The script for creating the Sqoop speedlayer job is presented in Figure 11. Unlike the batch layer,
in the speed layer a temporary table was created in Hive, just for updating the forecast model and for
creating views with data from the master table in the batch layer. The temporary table in the speed
layer was created similarly to the master table, as shown in Figure 10.

Finally, we applied the speed layer data saved in the local file output_speedlayer_file.csv to
update the model’s training and improve its forecasting capacity, as discussed below.

sqgqoop job -D
sqgqoop.metastore.client.record.password=true
--create speedlayer -- import —--connect
jdbc:mysqgl://localhost/hydrogenerator db
-—-table pddata ——username root
—-—-password userpass —--check-column date
—--incremental append --last-value $var -m 1
--target-dir /user/cloudera/pddataspeed/

Figure 11. Script for creating the Sqoop speedlayer job to connect to the database and import data to
the HDFS. Password configured in the job itself for illustration purposes.

Creating and Updating the Forecast Model

This section presents the results for creating and updating the forecast model using data from the
batch and speed layers, respectively, as an example for variable A-C1 NQN+. The first phase was to
divide the data into training and test samples and turn them into a supervised learning problem, in
which previous time step samples were used as explanatory variables for the current time step sample.
Also, in this phase we rescaled data to have values between -1 and 1.

Thereafter, in each scenario the model was updated as new data became available in the speed
layer. The model’s precision results before and after the updates were then presented and compared.
In this simulation, a new sample was generated once a day, the batch layer job ran every six months,
collecting 180 NQN+ values in each execution, and the speed layer was executed according to the
severity of partial discharges.

The prediction model was based on a recurrent long short-term memory network (LSTM) with a
backpropagation algorithm and the default sigmoid activation function. The model had an input layer
with 1 neuron, a hidden layer with 10 LSTM blocks or neurons, and a single prediction output layer.
The model was fit for 1000 epochs with online training (batch size of 1), Adaptive moment estimation
(ADAM) optimization algorithm, and the root mean squared error (RMSE) loss function. A summary
of the model is illustrated in Figure 12.

Layer (type) Output Shape Param #
1stm_5@ (LSTM) (1, 18) 480
dense_5@ (Dense) (1, 1) 11

Total params: 491
Trainable params: 491
Non-trainable params: ©

Figure 12. Summary of the proposed model.

The values of the model parameters were defined experimentally and results of the precision of
predictions as well as the computational time as a function of the number of neurons in the hidden
layer are shown in Table 2, as an example for the third scenario. It is possible to see from the average
values in the last row of the table that the use of 10 neurons in the hidden layer of the network produced
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the best results both in terms of RMSE and in relation to the computational cost in the training stage.
This value was adopted in the following experiments. Other parameters did not produce significant
changes in the results.

In each update the new data collected by the speed layer were added to the database, divided
into training and test sets (80-20%), and the model evolved for an additional 50 epochs. The effects of
the variation in the number of epochs for the model updating were also evaluated and are shown in
Table 3 for scenario critical. Results in the table show that this parameter had a great influence on the
computational cost of the model without, however, promoting a significant performance gain. All
experiments were performed on a Dell Inspiron 14 series 5000, Intel Core i7, 16 GB of RAN (Random
Access Memory) computer from Dell Technologies Inc., Round Rock, Texas, United States of America,
using IDE Spyder (Python 3.7).

Table 2. Precision and computational cost of the model as a function of the number of neurons.

5 Neurons 10 Neurons 15 Neurons
RMSE Time (s) RMSE Time (s) RMSE Time (s)
0.163 180.51 0.159 165.54 0.146 206.19
0.173 180.14 0.144 183.05 0.151 211.07
0.167 196.40 0.127 189.83 0.186 215.06
0.312 230.22 0.260 182.78 0.139 235.90
0.167 252.68 0.311 176.38 0.175 259.87
0.149 193.86 0.111 180.52 0.140 181.97
0.804 190.24 0.292 182.36 0.147 190.76
0.371 238.93 0.150 183.14 0.152 192.31
0.137 207.85 0.137 175.30 0.157 203.90
0.271 207.87 0.188 179.88 0.155 210.78

Performance of the prediction model evaluated by the RMSE is presented using a boxplot from 10
runs. Results from the original model, which was created with batch layer data, and from all consecutive
model updates are presented in Figures 13 and 14 for scenarios normal and severe, respectively.

05 13

04 4

03 4

A0l | nP
: |

A
9 8 8 0 30 ot

Figure 13. Performance based on the root mean squared error (RMSE) from original model and from

roct mean squared error

consecutive updates. Results from 10 model runs for scenario normal.
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Table 3. Computational performance of the model as a function of the number of epochs in the update
steps: example for scenario 3—critical. The last line illustrates the average values.

Epochs = 50 Epochs =100 Epochs =150
RMSE Time (s) RMSE Time (s) RMSE Time (s)
2.825 19.98 1.261 41.07 1.727 75.56
1.518 21.60 2.304 42.71 3.854 67.02
1.690 26.99 1.788 43.32 2.039 72.63
2.208 23.65 2.224 55.91 1.588 75.95
1.477 28.95 2.566 51.55 1.662 80.29
2.070 30.19 1.762 50.96 1.707 90.69
1.202 26.28 1.667 50.73 1.193 102.08
2.036 26.29 1.696 54.86 2.133 102.57
2.061 27.17 1.295 55.05 2.619 105.59
2.012 27.97 2.582 59.75 3.698 115.04
2.304 30.36 3.937 62.70 2.983 112.46
2.103 31.63 3.284 61.56 1.223 106.85
1.559 3291 3.857 63.28 1.779 108.95
1.104 31.09 2.659 65.16 1.124 111.84
1.150 31.99 1.381 68.30 1.619 122.18
1.025 32.53 1.647 64.81 1.065 137.84
1.822 33.47 3.721 68.70 1.632 113.87
0.845 34.42 1.416 72.69 1.881 130.62
1.773 34.74 2.229 74.75 1.905 125.92
2.244 36.93 5.092 83.97 1.815 141.41
1.846 36.47 2.185 82.38 1.914 158.58
2.284 37.39 2.418 84.95 2.313 152.34
1.577 38.29 2.849 87.68 1.767 146.24
1.376 38.56 2.294 91.50 2.495 156.98
1.588 40.16 2.411 95.36 1.553 160.46
1.298 40.40 3.861 82.23 2.207 155.15
1.731 31.55 2.476 66.00 1.981 116.51

It is important to note that the mean error obtained in model training for scenario normal, which
was 0.222, represents a forecast accuracy of 99.7%, with a maximum error of 0.514 and an accuracy of
99.4%. The updates promoted a further small improvement in the model reaching 99.8% accuracy
in relation to the RMSE in update 10. However, the reduction of the standard deviation of the error
after the model updates stood out. The error of the original model had a deviation of 0.146, which was
reduced to 0.055 after the 10th update, creating a more robust model.

For scenario 2—severe, the average error was reduced from 0.986 to 0.475, which represents an
increase in model accuracy from 99.6% to 99.8%. This accuracy here was calculated as 1—nRMSE in
which the nRMSE is the normalized RMSE defined according Equation (1).

nRMSE = RMSE/mean(Y;) @

in which mean(Y/) is the average of the target values in the test set.
Also, in this case, the reduction of the standard deviation of the error was the most significant,
reducing from 0.444 in the original model to 0.104 in the last update.



Sensors 2020, 20, 7242 15 of 22

14 -
12 -
10 -
0.8 @

0.6 o E & é
0.4 = s &

o

rect mean squared error

0.2 1

T T T T T T T T T T T T T T T T T T T
R

Figure 14. Performance based on RMSE from original model and from consecutive updates. Results

from 10 model runs for scenario severe.

It is worth noting that the RMSE did not consider variations in the data collected in the speed layer
and that this variation interfered with the accuracy of the model. Thus, even if an update improves the
forecasting capacity of the model, the RMSE value may be higher than the previous error due to the
variance of the new data used to evaluate this update. Figures 15 and 16 show the model’s validation
results with plots for target versus prediction data for training and test data for scenario 1— normal.
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93.5 - /

93.0 1 |
92.5 1 ﬁ-a._,-\/
T T T T

0 5 10 15 20 25 30 35
samples

HON+

Figure 15. Target versus prediction for scenario 1—normal training data.

Similar results for scenario severe and critical are presented in Figures 17, 18 and 19, 20, respectively.
As in these two scenarios, the number of updates was greater than in scenario 1. Only a few updates
are shown in the Figures 18 and 20.
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Figure 17. Target versus prediction for scenario 2—severe training data.

For scenario 3, the initial updates promoted an improvement in the RMSE obtained by the model,
reducing the original model average error from 1708 to 1044 in update 17. This reduction in the average

error represents a change in accuracy from 99.7% to 99.8%, which shows that there was little margin
for improvements in the model. The standard deviation of RMSE was practically stable in this case.
It is important to note that the values for scenario 3 had a greater standard deviation in relation

to the other two scenarios, as illustrated in Figure 21 as a boxplot format. But despite this greater
variation, the accuracy of the model for this scenario was greater than 99% as well in the two other
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scenarios. This result indicates that the model presented low sensitivity in relation to variations in
the severity of the partial discharge, presenting a competitive performance with the related literature
regardless of the scenario tested: normal, severe, or critical conditions.
In addition, despite variations observed in the RMSE values, and a greater variation in the data
for scenario 3, the model tended to increase in accuracy, as illustrated in the scatter plot of Figure 22.
Table 4 shows a comparison of the proposed approach with some works that used partial discharge,
type of partial discharge, and recognition accuracy.
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Figure 21. Illustration of the behavior of the datasets in the three scenarios.
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Table 4. Comparison of approaches for partial discharge recognition.

19 of 22

Authors

Approach

Type of Partial Discharge

Recognition Accuracy

Barrios et al. 2019 [21]

Li et al. 2018 [22]
Adam et al. 2018 [23]
Khan et al. 2016 [40]

Nguyen et al. 2018 [41]
Darabad et al. 2015 [42]
Karimi et al. 2019 [43]
Yang et al. 2020 [44]
Peng et al. 2019 [45]

This approach

Deep Learning Methods

Multi-Resolution Convolutional Neural Network
Multiple PD Sources by Signal Features and LSTM
PCA and artificial neural network

Recurrent Neural Network

Data mining method for power transformer defect
models using SOM and PCA

Deep Belief Networks

Spherical CNN, DCNN, SVM and BPNN

A Convolutional Neural Network-Based Deep
Learning Methodology
Recurrent Neural Network and lambda
architecture

Protrusion defect, particle defect,
contamination defect and gap defect
Artificial PDs in GIS tank
Corona, Surface, Needle-Plane and Void
Ten defects related to partial discharge.
Overall, Corona, Floating, Particle, Void,
Noise

Ten defects related to partial discharge.

Corona, Surface, 1 Void, 2 Voids, 3 Voids,
4 Voids
Protrusion, Particle, and Void discharge,
Surface discharge, Overall

Five different types of defects

PD in transformer windings

95.6%

98.2%
97.04% for the test and97.38% on the training
88%
96.74%, 97.04%, 79.54%,93.18%, 99.94%,
98.26%

Grouped data visualization

96.6% t0 99.8%

92.25% Spherical CNN, 62.25% DCNN,
90.25% SVM, 85.5% BPNN

92.57%

99.4% t0 99.8%
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6. Conclusions and Future Work

This paper proposed a method to update the forecasting model aiming to improve its accuracy,
based on a distributed data platform with the lambda architecture, which combines real-time and batch
processing techniques. The architecture allows the creation of a prediction model for partial discharges
in hydrogenerators using historical data from batch layer processing. In addition, real-time data in the
speed layer were used to update the model, gradually increasing the accuracy of its predictions. After
updates, the model evolved in its ability to estimate partial discharges, promoting an increase in the
accuracy of the forecast. In addition, the robustness of the model’s prediction stood out, which showed
low variation in all forecasts, with a low standard deviation in RMSE values.

The model presented low sensitivity in relation to variations in the severity of the partial discharge,
presenting a competitive performance with the related literature regardless of the scenario tested:
normal, severe, or critical conditions. The use of a batch processing layer and a real-time processing
layer made it possible to handle large volumes of data (batch layer) while ensuring that the model
was updated by frequent execution of the speed layer. This approach allowed us to mitigate common
limitations of computation and communication channel bandwidth problems in data-driven practical
control systems.

A disadvantage of the proposed approach is the use of RMSE since this absolute error measure has
a high influence of outliers in data on the forecast performance evaluation. In addition, RMSE has low
reliability as the results could be different in different fraction of data. The use of a relative measure
can result in greater accuracy of the model, especially in the latest model updates in scenario 3.

Future work includes the application of a technique based on the wavelet transform to determine
the optimal delay in the autoregressive forecasting model and the application of the proposed
architecture for forecasting future values for the other partial discharge variables, as well as for
vibration and temperature. The coupling of the model forecast results with the equations for calculating
the remaining life can also be considered.

Supplementary Materials: Supplementary files available at http://www.mdpi.com/1424-8220/20/24/7242/s1.
DatasetCritical excel file; DatasetNormal excel file and DatasetSevere excel file.
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