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Abstract

Bushmeat is a major source of protein and income in tropical regions but is often over-har-

vested. A better monitoring of bushmeat stocks could help achieve sustainability. We used

a combination of simulations and transect survey data collected from blue duikers (Philan-

tomba monticola) in the Lomako wildlife reserve, Democratic Republic of the Congo, to

investigate the use of transect-based distance sampling to monitor bushmeat stocks. The

comparison of dung piles and direct observations of duikers evidenced that animals avoided

both the transects in the absence of observers, and the observers themselves. This type of

behavioural response appeared common in a literature survey. It causes a negative bias in

the estimates of population densities from the standard distance sampling methodology.

This negative bias would lead to over-pessimistic predictions of population viability, espe-

cially if the behavioural response is more intense in the locations where the animals are

hunted. In turn, this would lead to excessively conservative management recommendations.

To correct for the effect of the behavioural response of the animals to either the transects or

the observers, we recommend recording both the forward and perpendicular distances to

the observers (2D distance sampling), not just the perpendicular distance. We also recom-

mend multiple-observer protocols. As a cautionary note, we also demonstrate a scenario

where the intensity of the behavioural response is too high to reliably estimate the abun-

dance of the population. As a perspective, we outline the general principles of a local stake-

holder-based program combining distance sampling with less intensive types of ecological

indicators to monitor wildlife populations.

Introduction

Over-harvesting jeopardizes the food safety, livelihood, and cultural identity of people who

consume bushmeat, i.e., meat from wild mammals, birds, and reptiles, typically in tropical, for-

ested environments [1–4]. Local extinctions are regularly reported in exploited forests, espe-

cially for large animal species [5–8]. Management recommendations such as hunting quotas

are typically based on an estimate of the optimal sustainable yield, itself coming from an esti-

mate of the population abundance of the harvested species [5, 9, 10]. Recently, less data-
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hungry approaches have been advocated that are based on “Indicators of ecological change”

[11]. These indicators of sustainability take into account the natural balance between popula-

tions and their environment, for example, density-dependence under a stochastic regime of

variable food abundance [12, 13]. They focus on variation in body condition, in primary pro-

duction, in the intensity of herbivory, and in the relative abundance of different species in a

guild [11, 14, 15]. They are typically much easier to track than the population abundance.

However to validate these indicators in a new system, we still need pilot data about how the

population abundance changes over time and under different harvest rates. Hereafter we focus

on such a pilot study, acknowledging that the objective for wildlife managers is to ultimately

apply less cumbersome monitoring protocols [11].

The main objective is to account for the imperfect detection of individuals during surveys in

the field, i.e. the fact that a fraction of the animals is missed by the observers during the surveys

[16]. That fraction can be quite variable over time, across different sites, observers, survey meth-

odologies, species, and age or sex classes within species [17, 18]. Thereby, when comparing the

number of detected individuals over time for example, the inference can be flawed by temporal

variation in detection probability. This is called a statistical bias or detection bias: the metric

(the number of detected individuals) consistently deviates from the target variable (the popula-

tion abundance). Here the bias would be consistently negative (fewer individuals are detected

than were present) but of an unknown and variable magnitude (we do not know how many

were missed and it could vary from one count to the next). The most widely considered method

to correct for that detection bias is transect-based distance sampling [19, 20]. In distance sam-

pling, the first step is to estimate the shape of the “detection function” that represents how the

probability to detect an individual decreases with the distance from the observer [21]. The sec-

ond step is to compute the average detection probability over the survey area and use that to

correct the raw count and obtain the unbiased population density of the target species [19].

Applying distance sampling in forested environments remains challenging because of the

low visibility, meaning that the rate at which detection probability decline with distance is

much faster than in open environments. In addition, the animals may avoid the transects from

which they are surveyed. They may respond to the change in vegetation around the transects,

meaning that they always avoid the transect even in the absence of observers. Or they may

respond to the presence of an observer, who they usually perceive as a threat especially in

hunted areas [22–25]. They may respond by moving away from the threat or by changing their

behaviour to become less detectable [26–28]. These different types of avoidance behaviour

seem to be widespread among forest-dwelling mammals (Table 1), and perhaps especially so

when the transects are used not only for scientific purposes, but also for hunting [29, 30]. They

all have the same consequence statistically speaking [12, 24, 29]. When any of these behaviours

occurs, the number of detections does not decrease steadily with distance from the transects,

as is assumed to be the case in standard distance sampling. Instead the number of detections

exhibits a peak at intermediate distances [22–25] (Fig 1). We hereafter use the phrase “beha-

vioural response” to refer to this situation in general.

In the presence of a behavioural response, fitting one of the usual formulae for the distance

sampling detection function would lead to a major underestimation of the population abun-

dance, because the function is ill-fitted to the situation (Fig 1) [23]. The magnitude of the bias

could depend on the intensity of the behavioural response. For instance if the behavioural

response increases with the hunting pressure [31], the population abundance would be more

severely under-estimated by distance sampling in hunted than in non-hunted areas. This

mechanism might be one of the reasons why the optimal yield projections based on transect

data have repeatedly proven unreliable [10]. In other words, researchers, because they rely on

artificially low estimates of population density and artificially high estimates of the effect of
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hunting on population density, have apparently been generating over-pessimistic estimates of

the population viability of bushmeat species. For example, the sustainable harvest rate for dui-

kers (Cephalophus and Monticola sp.) varies by an order of magnitude depending on the sur-

vey method used to estimate it (Table 4 in [10]). Tapirs Tapirus terrestris have been shown to

persist in areas where they should theoretically go extinct within years [32] (but in the case of

tapirs the explanation appears to be biological, not methodological [32]).

Borchers and Cox [33] recently brought to the fore the “2D version” of transect-based dis-

tance sampling. “2D distance sampling” involves recording both the perpendicular distance

from the transect, and the forward distance parallel to the transect (Fig 2). By contrast in stan-

dard distance sampling only the perpendicular distance is recorded [19]. In this study we bring

Table 1. A non-exhaustive review of studies evidencing a behavioural response to the transects in forest- or woodland-dwelling mammals. We only compiled posi-

tive reports of behavioural responses. “Distance histogram” means that the distribution of recorded distances followed a shape like in Fig 1, sometimes with additional evi-

dence from further modelling. “GPS tracking” means that geo-tracked individuals avoided the vicinity of the transects more than expected by chance. “Camera trapping”

means that the frequency of pictures decreased near transects. “Counts” means that population abundance was larger in a block without transect than in a block with

transect.

Species Location Nature of the

evidence

Reference

Ungulates

Cephalophus natalensis harveyi Udzungwa Mountains, Tanzania Distance histogram [37]

Cephalophus ogilbyi, Cephalophus jentinki, Cephalophus sylvicultor and

Cephalophus zebra
Taï National Park, Côte d’Ivoire Counts [63]

Capreolus capreolus North Yorkshire, UK Distance histogram [65]

Capreolus capreolus Central Germany Distance histogram [66]

Dama dama Castelporziano, Italy GPS tracking [67]

Odocoileus virginianus Catoctin and Antietam NP, USA Camera trapping [68]

Odocoileus virginianus Gettysburg Park, USA GPS tracking [69]

Odocoileus virginianus Blue Hills Reservation, USA Distance histogram [70]

Sus scrofa Castelporziano, Italy GPS tracking [67]

Cervus nippon Nikko National Park, Japan Distance histogram [71]

Cervus nippon Yakushima Island, Japan Distance histogram [72]

Cervus elaphus Kaupanger, Norway Camera trapping [73]

Primates

Nycticebus bengalensis Khao Ang Rue Nai Wildlife Sanctuary,

Thailand

Distance histogram [74]

Callithrix penicillata South-east Brazil Counts [75]

Procolobus gordonorum Udzungwa Mountains, Tanzania Distance histogram [76]

Colobus satanas Makandé, Gabon Distance histogram [58]

Colobus angolensis Udzungwa Mountains, Tanzania Distance histogram [76]

Cercopithecus mitis Udzungwa Mountains, Tanzania Distance histogram [76]

Gorilla gorilla Dja Biosphere Reserve, Cameroon Counts [30]

Pan troglodytes Dja Biosphere Reserve, Cameroon Counts [30]

Pan paniscus Salonga, DRC Counts [77]

Others

Macropus giganteus and Macropus rufus Queensland, Australia Distance histogram [24]

Macropus giganteus Canberra, Australia GPS tracking [22]

Cuniculus paca Ilha Grande, Brazil Distance histogram [78]

Dasyprocta prymnolopha Belo Horizonte, Brazil Counts [79]

Vulpes vulpes France Distance histogram [80]

Ursus arctos Alaska (3 parks) Distance histogram [81]

https://doi.org/10.1371/journal.pone.0240049.t001
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some more light on the 2D distance sampling methodology, and we highlight its relevance in

the presence of a behavioural response to the transects and in the specific context of bushmeat

stock assessment in the rainforest. The 2D framework makes it possible to fit more complex dis-

tance functions that separate the behavioural response from the effect of distance on detection

probability. By doing so, we remove the aforementioned negative bias on the population abun-

dance estimate [23, 33, 34]. Recording the forward distance in addition to the perpendicular dis-

tance involves an only minor change in the distance sampling protocol. Since the distance

Fig 1. When the animals avoid the transect or the observer, there can be a peak in sightings at intermediate distances (panel a: theoretical principles; panel b: empirical

observation). This pattern causes a lack of fit of the standard, 1D distance sampling detection function (panel c; the grey histogram is the density of sightings), because that

function wrongly assumes a detection rate of 1 on the transect and a monotonous decline in the frequency of sightings with the distance to the transect.

https://doi.org/10.1371/journal.pone.0240049.g001

Fig 2. Principles of the 2D distance sampling framework [33]. The observer is denoted by a filled circle that progresses along a transect,

taking position li at time ti. The animal is denoted by a crossed circle, surrounded by the “detection kernel” in grey. The distance to the

observer is recorded in two dimensions, with yi the forward distance and xi the perpendicular distance. In the standard, 1D framework,

only xi is recorded. If the observer moves at a constant speed v along the transect (e.g., survey from a vehicle or boat), then yi can be

inferred from the geographical coordinates (Xi,Yi) and the time at the detection ti. The transect half-width w is the cut-off perpendicular

distance beyond which animals are ignored, typically defined a posteriori based on the maximum recorded distance. The effective forward

distance ystart is roughly the maximum forward distance at which an animal that is on the transect can be recorded.

https://doi.org/10.1371/journal.pone.0240049.g002
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sampling protocol has already been successfully applied in the rainforest environment [17, 18,

35], 2D distance sampling appears to represent an adequate solution to monitor bushmeat

stocks when the bushmeat species exhibit a behavioural response to the transects.

Our study is motivated by surveys of blue duiker (Philantomba monticola) in the Democratic

Republic of the Congo. Duikers are an African lineage of small to medium-sized forest ante-

lopes that represent a major source of bushmeat to many people throughout their distribution

[36]. We distinguished between the response of duikers to the transects themselves, without

observers, and the response of duikers to the observers. To do that, we compared the distribu-

tion of dung piles and the distribution of direct observations. The distribution of dung piles

according to the distance to the transects should quantify the response to the transects them-

selves, without observers. The difference between dung piles and direct observations should

document the response to the observers. We expected that the response to the observers would

be larger than the response to the transects alone. We then used simulations to quantify the

effect of these behavioural responses on population density estimates. These simulation results

apply to any species that exhibit a behavioural response to the transects or to the observers, not

just blue duiker. Lastly, we computed the ratio between the estimated number of dung piles and

the estimated number of live animals. This ratio is important in practice because dung piles are

easier to record than live animals; but converting the density of dung piles into a density of ani-

mals requires a precise estimate of the local conversion ratio (see Discussion). We investigated

whether the behavioural response affected the estimate of the conversion ratio.

Lastly, we also aimed to remind researchers of the eventuality that the behavioural response

can be too intense to estimate population abundance, i.e., there is a limit to the amount of

imperfections that statistical routine can correct. The detection rate can be so low that the data

does not contain enough information about the abundance away from the transects [37]. This

demonstration is included in the simulation section.

Material and methods

The field protocol was approved by the Ministry of Environment and Sustainable Develop-

ment of the DRC and by the Institut Congolais pour la Conservation de la Nature. The study

does not involve physical captures.

The 2D distance sampling framework

In the early distance sampling literature, researchers recorded the position of the animals in a

2D referential [34]. In transect-based distance sampling, this means recording both the for-

ward distance y, which is the distance of the observer to the nearest point to the animal on the

transect, and the perpendicular distance x, which is the distance from that point on the tran-

sect to the animal (Fig 2). The simplified protocol currently in widespread use instead requires

only the perpendicular distance x [19]. One of the reasons why the distance sampling protocol

was simplified and researchers stopped recording the forward distance is that Hayes & Buck-

land [34] recognized that “the validation of any particular model using field data would be dif-

ficult” and that “right-angle distances may be difficult to measure accurately (. . .) when the

radial distance is large but the right-angle distance is small”. Therefore, under the assumption

that the detection probability does not depend on the angle of observation, it was much sim-

pler to use only the perpendicular distance.

Following Borchers and Cox [33], we revive the analysis of 2D distance data. In practice, we

customized the functions from the R-package LT2D [33] (to simplify the interface, resolve a

few typos, and make the framework amenable to extensive simulations). We modelled the

behavioural response of animals as a sigmoid function, i.e. duiker abundance gradually
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increased with distance from the transect (Fig 1A). Importantly, this implies that the animals

always avoid the observers when they are at distance zero (but they may quickly resume nor-

mal abundance and availability to detection as soon as their distance is non-zero). We mod-

elled the detection function in two dimensions using a radial exponential hazard risk (hHB

under the notation of Borchers & Cox [33]), thereby making the same approximation as the

half-normal detection function that is commonly found to describe the detection process in

1D [21]. Importantly, this implies that observers detect all the animals that are at perpendicular

distance zero (but the detection probability may rapidly decline for non-zero distances, and in

addition because of the sigmoid model above the animals are never at distance zero).

In the above-described particular parameterization of the 2D distance sampling model, it is

not possible to record a perpendicular distance of zero (Fig 1). This may require some manipu-

lation of the data to change zeroes into a small non-zero value. Alternatively, and importantly,

we also provide alternative models in the code appendix (S1 Appendix). These alternative

models can accommodate the violation of the above assumptions. For example, if the detection

probability at distance zero is already imperfect, use detection kernel “h.yTRE” instead of “h.

RE” as currently implemented. If the animals do not completely avoid the transect even at dis-

tance zero from the observer, use behavioural response function “pi.sigmoI” (for “sigmoid

with Intercept”) instead of “pi.sigmo” as currently implemented. Note that these two functions

h.yTRE and pi.sigmoI are incompatible with each other (cannot be used simultaneously in the

same model), and that they feature one more parameter than the functions they replace.

The parameters of the two functions (the sigmoid behavioural response function and the

detection function with radial exponential detection hazard) were simultaneously estimated by

fitting the model to the recorded distance data using a maximum-likelihood approach. We

hereafter use the established phrases “effective strip half-width” for the average detection dis-

tance should the animals not exhibit any behavioural response, and “average detection proba-

bility” for the average probability of being both available for detection and detected. The

average detection probability therefore combines the behavioural response and the detection

probability stricto sensu. To compare our results to those from the 1D framework, we used the

Distance package for R [38], more precisely, the ‘ds’ function with default options.

Duiker data collection

We surveyed duikers from 5 transects totalling 31km in the Lomako Yokokala Wildlife Reserve

(0˚ 560 00@N, 21˚ 200 00@ E). The five transects were parallel and separated by 1 km. We walked

each transect twice in March-April 2012 and twice in November 2013, performing one of the sur-

veys by day for dung piles and the other survey by night with a powerful spotlight for direct obser-

vations. We followed the established distance sampling protocol, i.e., we did not record the

forward distance. Upon detection of a duiker or dung pile, we immediately walked to the nearest

point on the transect, and recorded the time, GPS coordinates, and perpendicular distance of the

initial location of the duiker, or of the dung pile, to the transect. When sampling dung piles, we

ignored the piles that were considered older than a day old by experienced trackers upon visual

examination. A preliminary investigation of the recorded perpendicular distance distribution

suggested that the blue duikers avoided the transects or the observers or both (Fig 1B).

Lomako data simulation

Because we did not record the forward distances in the field, and in order to illustrate our

points about 2D distance sampling, we generated artificial forward distances associated to each

Lomako record, following three scenarios (Fig 3; simulation code in S1 Appendix):
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• A pessimistic but likely scenario. We simulated the forward distances to be on average the

same as the observed perpendicular distances. We added to the recorded perpendicular dis-

tance a random Gaussian noise with a mean of 0 and a standard deviation of 1 meter in

order to generate some variability between replicates of the simulation. Any negative dis-

tance value resulting from an excessive negative noise we reset to zero meter.

• A somewhat less pessimistic scenario. In this scenario there is a negative correlation between

the forward and perpendicular distances. In other words, when the duiker is on the transect,

it is easier to detect and is spotted from a greater forward distance than when the duiker is

further from the transect. We used an inverse exponential relationship (Fig 3) with the half

distance parameter a set to half the maximum recorded perpendicular distance. We added

onto that expected distance a random Gaussian noise with a mean of zero and a standard

deviation of 1 meter. Any negative distance value resulting from an excessive negative noise

we reset to zero meter.

• An optimistic (but unlikely) scenario. The forward distances were relatively large in this sce-

nario, meaning easy detection, and they were independent from the perpendicular distance.

We simulated this scenario using a half-normal distribution function with half-detection dis-

tance set to 5 meters.

Artificial data simulation

We simulated 150 completely artificial datasets to quantify the bias in population density esti-

mates induced by the behavioural response. We generated the datasets according to the above-

described sigmoid-radial exponential model. Our simulations featured 100 animals, which is the

order of magnitude of the surveyed population sizes in many real-life applications. We consid-

ered 4 scenarios with low or high detectability, and strong or weak behavioural response to the

transect. More precisely, the b vector that controls the shape of the detection function (notation

as in [33]) could be [0.25,0.25] or [1.75, 1.75]. The log(φ) vector that controls the location and

aspect of the sigmoid behavioural response function could be [−4, −1] or [−4, −6]. We applied

the standard 1D distance sampling and the 2D distance sampling routines to the 150 datasets.

We computed the bias of the estimates relative to the known simulated abundance, which quan-

tifies the presence and magnitude of a systematic error in the estimate of population abundance,

and the root-mean squared error (RMSE), which measures the variability of the error across sim-

ulations and therefore the expected precision of the estimate of population abundance.

Results

Bias in abundance estimates

In Lomako, there was almost no direct detection less than 2 meters from the transect and a

peak in sightings occurred at 5 meters from the transect (Fig 1B). These patterns are exactly

those we expect when the animals avoid the transects or the observers (Fig 1A). Using the 1D

distance sampling methodology, we estimated a density of 119 blue duikers per km2 (95% CI:

53–180) on average over the two years. The ratio of dung piles per live animal estimated from

the 1D distance sampling framework was 1.8 (95% CI: 0.7–2.7).

In all three scenarios, the fitted model indicated a behavioural response both in the dung

pile data and in the direct observation data (Fig 3). The behavioural response was consistently

more intense in the direct observation data than in the dung data (Fig 3: bold black lines).

Therefore, the animals responded both to the transects and to the observers. The response to
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the observers was almost an order of magnitude stronger than the response to the transects

alone (Fig 3).

Fig 3. Estimated detection probability p(x), behavioural response π(x), and expected density of sightings f(x), as a function of the

perpendicular distance x, for blue duikers in the Lomako study area, with three ways to simulate the forward distance y. The binned

detection data are provided for comparison (histogram).

https://doi.org/10.1371/journal.pone.0240049.g003
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In the artificial datasets that did not use the Lomako data, the 1D framework over-estimated

the detection rate (for example: Fig 1C, solid black line vs. other lines). This over-estimation of

the detection rate propagated into an under-estimation of the abundance by 20 to 70%

(Table 2: “bias 1D”). Applying the 2D method to the same simulated datasets solved the prob-

lem for the most part (Table 2: “bias 2D”). However, some bias remained in the most challeng-

ing scenario that combined low detectability and strong behavioural response (Table 2). This

is because in this scenario the sample size of recorded detections was small compared to other

scenarios, especially at short distances which are the ones the model uses to estimate the beha-

vioural response. In addition, when detection probability was high, the 2D framework tended

to slightly over-estimate abundance (Table 2). This is likely because, even if the simulating

model was a sigmoid-radial exponential model like the fitted model, some idiosyncrasies in

the realized distance distribution caused a lack of fit of the sigmoid-radial exponential model

to the simulated data. Lastly, because the 2D model has more parameters than the 1D model,

the precision of the estimates was often lower with the 2D than with the 1D model (Table 2:

“RMSE 1D” vs. “RMSE 2D”), as expected from the bias-precision trade-off.

Sometimes the animals are just too shy

In the pessimistic scenario, the estimated behavioural response to the transect was very strong

(Fig 3A, bold black line). The estimated distance at which duikers started to be abundant was

beyond twice the effective strip half-width, which means that almost all the duikers remained

out of view. The estimated average detection probability was below 5% (95% CI: 0–100).

Therefore, the study system under the pessimistic scenario was too challenging to apply dis-

tance sampling, and the 2D results made that situation obvious.

In the less pessimistic scenario, the estimated behavioural response to the transect was less

marked than in the more pessimistic scenario (Fig 3B, bold black line). However, there was

evidence of lack of fit in the form of a lack of predicted detections in the 2–4 meter bin (Fig 3B,

histogram vs. grey line). The estimated average detection probability was 34% (95% CI: 20–

49%), the abundance estimate was 251 duikers per km2 (95% CI: 178–458), of which 29% were

estimated to be unavailable because of the behavioural response to the transect, and the ratio

of dung piles per live animal was 0.6 (95% CI: 0.4–0.9).

In the optimistic scenario, the estimated detection probability was unrealistically high (e.g.,

40% detection rate at 10 m from the transects; Fig 3C, dashed line). The model exhibited lack

of fit in the form of an excess of predicted detections in the furthest distance bins (Fig 3C, his-

togram vs. grey line). The estimated average detection probability was 61% (95% CI: 43–74%),

the abundance estimate was 138 duikers per km2 (95% CI: 114–212), of which 30% were esti-

mated to be unavailable because of the behavioural response to the transect, and the ratio of

dung piles per live animal was 1.6 (95% CI: 1.5–1.6).

Table 2. Quantifying the bias and Root Mean Squared Error (RMSE) of the abundance estimated using 1D (where only the perpendicular distance to transect is

recorded) and 2D (where both the perpendicular and forward distances are recorded) distance sampling, in four scenarios of detectability and intensity of the beha-

vioural response to the transect. Low detectability means that the detection probability declines quickly with distance to the transect. Strong behavioural response means

that the increase in animal abundance with distance from the transect is slow, meaning that they rarely occur near the transect. Results are given in %. A bias of -50%

means that the abundance was under-estimated by 50% on average over 150 replicates.

Detectability Behavioural response Bias 1D Bias 2D RMSE 1D RMSE 2D

High Weak -21 10 23 26

High Strong -39 7 39 47

Low Weak -33 -19 35 29

Low Strong -71 -34 71 72

https://doi.org/10.1371/journal.pone.0240049.t002
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Discussion

Based on the distribution of dung piles, blue duikers appeared to permanently avoid the

2-meter strip on each side of the transects in the forest. Their response when an observer was

present, although stronger than their response to the transect alone, appeared to also wane

after just 5 meters (Fig 3: direct detections by night). Nevertheless, this response was sufficient

to have a major effect on the estimates of population abundance (Table 2) [22–25, 33]. This is

because the probability of detection declined rapidly within mere meters of the transect (Fig

2), meaning that the behavioural response, although small, was significant in comparison to

the effective strip width.

Our report that duikers responded behaviourally to both the transects and the observers is

congruent with other studies on duikers [37, 39]. The literature (Table 1) suggests that these

patterns are common among other forest- and savannah-dwelling mammals, including carni-

vores, large herbivores, and primates. The behavioural response is actually probably even

stronger in environments with more visibility than our study area [40]. Overall, our results

suggest a tactic of keeping still in a concealed spot to avoid detection, and fleeing only when

very close to the perceived threat. This reliance on inconspicuousness might be efficient

enough to avoid most detections by hunters, in the dark and often dense undergrowth of the

rainforest.

Nevertheless, we acknowledge the limitations of our simulation exercise and do not claim

the above estimates have any biological realism. Instead they should be taken for their peda-

gogical value only. Our estimate of blue duiker density at Lomako from the 1D distance sam-

pling methodology was one order of magnitude larger than previous estimates elsewhere [17,

18, 41, 42]. This suggests that previous studies had even lower detection probability and stron-

ger behavioural responses than us (Table 2). We would need to follow up on our surveys to

confirm that this is effectively the case, i.e., actually implement the 2D method in the field. We

also recommend that future users consider more complex behavioural response functions

than we did, starting with the “sigmoid with intercept” function (“pi.sigmoI” in S1 Appendix).

We did not find this function to yield qualitatively better results than the sigmoid in our simu-

lations, but in a real case this model should be considered among the plausible ones.

In addition, because we recorded both dung piles (by day) and direct observations (by

night), we could estimate the conversion rate of dung pile density to population density. The

estimate of this conversion rate was sensitive to the behavioural response, meaning that the 2D

framework should be very useful for this purpose too. Previous authors derived the conversion

rate indirectly using the defecation rate of animals, as recorded in captivity or during short

periods in the wild, and/or the decay rate of dung piles until they disappeared in controlled

conditions [43–47]. However, this approximation is not considered reliable because the defe-

cation and decay rates vary over time, across individuals and habitats. The conversion rate

must be estimated in the same context where it will be applied, not under controlled condi-

tions. Our 2D distance sampling protocol makes this possible: we first estimate dung pile den-

sity and animal density separately, which opens the possibility to only monitor the dung piles

for the rest of the season or in similar study areas. We recommend future authors publish as

much metadata as possible along with their conversion rate estimates, in order for the pub-

lished conversion rates to be used by others who work in the same context, and for a meta-

analysis to uncover why and how the conversion rate varies.

As a side note, the small size of the dung pellets of blue duikers is what makes it possible to

assign the dung piles to that species; similar assignments are more difficult in larger species of

duikers. Our field protocol also entailed a somewhat subjective assessment of the freshness of

the dung piles in order to record the most recent dung piles only. Instead, one may record all
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the dung piles along with a qualitative score of their state, and apply the principles described in

the rich literature about how to account for the variation in dung pile age, the rate at which

dung piles decay, and the number of defecation events per day [43–50].

What our study clearly demonstrates is that the bias caused by the improper treatment of

the behavioural response of the animals to the transects or the observers may cause the esti-

mates of population density to artificially vary by a factor 2 to 3. This can severely flaw the

comparison of duiker abundance from one site to another, or from hunted locations to hunt-

ing-free areas.

Implications for conservation

Many bushmeat species have been observed to persist much longer than expected from theo-

retical models (reviewed by [10]). This might be because the theoretical models were parame-

terized with estimates of population density that were biased (e.g., Table 4 in [10]). Indeed, the

negative bias that we illustrated in this study increases with the behavioural response; and the

behavioural response expectedly increases with the hunting pressure [27, 31]. Therefore, the

effect of the hunting pressure on the population density would be over-estimated, probably

severely. Using a more adequate sampling protocol and statistical approach, such as the ones

we recommend in this study, could thereby benefit all the involved parties. Conservationists

would be able to recommend less stringent reductions in hunting pressure, that are less likely

to generate compliance issues among hunters. Hunters would find it easier to adopt the rec-

ommendations of conservationists and thereby obtain the sustainability benefits.

Another potentially important implication of our findings is that estimating the behavioural

response to the transects would also document the surface of habitat effectively lost by duikers

due to the presence of hunting trails. This information could be incorporated into models of

habitat availability and human footprint. One could maybe use the response to the observers

to represent the effect of heavily used tracks, and the response to the transects to represent the

effect of smaller paths. In our case, we estimated that the effect of the transect was mostly non-

existent beyond 5–8 meters from the transects, but that within that strip duikers were c.30%

less abundant. We could theoretically use a map of all the transects and trails in the Lomako

reserve to extrapolate the overall loss in duiker habitat. As a side note, some species might be

attracted, not repelled, by the transects, because the transects represent an ecotone and a

change in vegetation structure [15, 29, 51].

Brief overview of the alternatives to distance sampling

Now that we have discussed the benefits but also the challenges of distance sampling for dui-

kers in the rainforest, we are providing a brief overview of the alternative methodologies that

could be used instead of transect-based distance sampling, for the same objective of monitor-

ing duiker abundance. This should serve as an argument as to why we are advocating the 2D

distance sampling methodology. Namely, the alternatives are in our opinion unlikely to per-

form better.

The N-mixture model [52] is a classical methodology that relies on repeated counts of the

same population. In the case of duikers, this would entail walking the transects multiple times

and recording the number of duikers per transect or per kilometre (not necessarily recording

the distance). Barker et al. [53] however warn that the estimates from this model are unreliable

when the number of transects is low (<20) or when the average detection probability is low

(<20%; see also [54]). Duiker studies typically fall below these thresholds, suggesting that the

N-mixture framework may be too ambitious for duiker studies.
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The frequency of animal pictures taken by automatic “camera traps” has also been proposed

as an index of abundance [55], including in a context very similar to ours [56, 57]. However,

the camera-trapping approach may be jeopardized by camera failures and high maintenance

costs in the rainforest environment, by poachers, and remains relatively imprecise in the

absence of information about the individual identity of the photographed animals, and their

local fine-scale microhabitat selection and daily range [40, 41, 55]. Interestingly, Howe et al.

[57] used distance sampling on camera trapping data, by placing distance markers in the field

of view of the cameras. They and others report a behavioural response to the cameras similar

to the one we describe [56, 57]. This strongly suggests that the 2D methodology is necessary to

apply distance sampling to camera trapping data. As a side note, for camera trapping data, the

radial data format (radial distance plus observation angle) is more appropriate than the (x,y)

data format that we used in the present study.

Another alternative is to quantify the home range size and home range overlaps using

movement data, and in a second step compute the population density as the number of home

ranges per unit of space [42, 58]. However, it can be challenging to catch and release a large

number of GPS-fitted duikers, and, because duikers live in shady undergrowth and groom

themselves quite vigorously, the GPS devices would need to be battery-powered (vs. solar pow-

ered). Given the small weight of duikers, and therefore the small allowable weight of the bat-

tery, the tracking duration would therefore be severely limited, which is a known factor of bias

in home range studies [59].

Technical recommendations for future distance sampling studies

We strongly recommend recording both the forward and perpendicular distances, or alterna-

tively the radial distance and the observation angle. Currently, in studies of rainforest mam-

mals, researchers record only the perpendicular distance, or only the radial distance [17, 18,

56, 57]. We acknowledge that we did not actually test the feasibility of that recommendation in

the field, but recording the forward distance does not seem to incur much more effort, nor

require more skills, than recording the perpendicular distance, especially if using a hand-held

GPS in transect-based distance sampling.

We recommend a close inspection of perpendicular distance sampling data collected from

forest mammals to assess whether the patterns that we describe in Fig 1 occur or not. Impor-

tantly, the diagnosis may be flawed if binning the data at a too coarse level in the distance his-

tograms. For forest-dwelling mammals, we recommend bins of 1 or 2 meters, not more, to

limit the risk of overlooking the behavioural response.

Wherever possible, we also recommend having two observers perform the same protocol,

keep separate logs, and then compare observations within a formal algorithm [54, 60, 61].

For the most challenging cases, when the behavioural response is extreme, we further rec-

ommend a replicated sampling approach, i.e. surveying the same transects multiple times per

season. These last two recommendations aim at allowing a switch to index-based approaches

instead of distance analysis (see below for more discussion of index-based approaches).

Perspective into the use of other indicators of ecological change

When the populations of large herbivores such as duikers fluctuate around the carrying capac-

ity, which itself may vary through time, various density-dependent processes are triggered or

suppressed [12]. Typically, when the population is above carrying capacity, individuals and

especially young individuals struggle to acquire resources and they become leaner and grow

slower than when the population is below carrying capacity [13, 14, 62]. By contrast, when the

population is below carrying capacity, either because the ecosystem has been more productive
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than usual or because hunting has reduced the population size too much, young animals

should develop faster and grow larger. It is thus theoretically possible to use various biometric

data collected from harvested individuals, such as the dressed (gutted) body mass or the hind

leg length, as indicator of the status of the population-environment relationships [11, 14].

These data could be collected either locally by the hunters themselves, or at selling points by

researchers. However, at least until the functioning of the population is completely under-

stood, these indicators of body condition are best combined with an indicator of population

abundance, with an indicator of food availability, and an indicator of the intensity of herbivory

[11]. For duikers, the population abundance would be tracked through distance sampling as

described in this article. The food resource to monitor would be fallen fruit on the forest floor.

Lastly, changes in community composition can also be used as an ecological indicator. For

example, it has been demonstrated several times that the ratio of blue duikers to larger species

of duiker increases along gradients of hunting pressure [15, 63], probably under the combined

influence of hunter selectivity and of the faster pace of life of the blue duiker relative to larger

species. The change over time in the ratio of large to small species [8] or the ratio of long-lived

to short-lived species [64] could therefore constitute an efficient indicator of the defaunation

process.

Supporting information

S1 Appendix. Code appendix including the functions to specify our model and its variants,

including some that accommodate the violation of the working hypotheses in this article,

and the script to reproduce the simulations.
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59. Péron G. The time frame of home-range studies: from function to utilization. Biol Rev. 2019; 94: 1974–

1982. https://doi.org/10.1111/brv.12545 PMID: 31347250

60. Nichols J, Hines J, Sauer J, Fallon F. A double-observer approach for estimating detection probability

and abundance from point counts. Auk. 2000; 117: 393–408. Available: http://www.bioone.org/doi/abs/

10.1642/0004-8038(2000)117%5B0393:ADOAFE%5D2.0.CO%3B2

61. Alldredge MW, Pacifici K, Simons TR, Pollock KH. A novel field evaluation of the effectiveness of dis-

tance and independent observer sampling to estimate aural avian detection probabilities. J Appl Ecol.

2008; 45: 1349–1356. https://doi.org/10.1111/j.1365-2664.2008.01517.x

62. Bonenfant C, Gaillard JM, Coulson T, Festa-Bianchet M, Loison A, Garel M, et al. Empirical evidence of

density-dependence in populations of large herbivores. Adv Ecol Res. 2009; 41: 313–357. https://doi.

org/10.1016/S0065-2504(09)00405-X

63. Diarrassouba A, Gnagbo A, Célestin Kouakou Y, Campbell G, Tiedoué MR, Tondossama A, et al. Dif-
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