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Background. Due to the redundant information contained in multichannel electroencephalogram (EEG) signals, the classification
accuracy of brain-computer interface (BCI) systems may deteriorate to a large extent. Channel selection methods can help to
remove task-independent electroencephalogram (EEG) signals and hence improve the performance of BCI systems. However, in
different frequency bands, brain areas associated with motor imagery are not exactly the same, which will result in the inability of
traditional channel selection methods to extract effective EEG features. New Method. To address the above problem, this paper
proposes a novel method based on common spatial pattern- (CSP-) rank channel selection for multifrequency band EEG (CSP-R-
MF). It combines the multiband signal decomposition filtering and the CSP-rank channel selection methods to select significant
channels, and then linear discriminant analysis (LDA) was used to calculate the classification accuracy. Results.+e results showed
that our proposed CSP-R-MFmethod could significantly improve the average classification accuracy compared with the CSP-rank
channel selection method.

1. Introduction

Brain-computer interface (BCI) technology enables the
human brain to communicate directly with the outside
world through electroencephalogram (EEG) signals and has
attracted considerable attention in recent years [1]. BCIs can
translate brain signals into output commands that allow
users to control external auxiliary devices (such as wheel-
chairs, robotic arms, etc.) [2, 3]. Since BCIs provide an
alternative way for people to communicate without use of
peripheral nerves andmuscles, they show a great value of, for
instance, helping patients with severe neuromuscular dis-
orders such as spinal cord injury or amyotrophic lateral
sclerosis to restore their communication pathways and
control their environment [4, 5].

Compared with evoked potential-based BCIs, motor
imagery- (MI-) based BCIs have the advantages of being
independent of external stimuli and easier to operate. MI-
based BCI has been shown to be suitable for mechanical
control and exercise rehabilitation training [6]. However,
the brain signals used to control MI movements suffer from
a number of problems including, but not limited to, low
spatial resolution and low signal-to-noise ratios and are
susceptible to strong artifacts [7, 8]. Researchers have used
many feature extraction methods to address these difficul-
ties, such as wavelet transforms, wavelet packet transforms,
autoregressive (AR) models, and common spatial patterns
(CSP). CSP, in particular, has been widely used for feature
extraction to improve the performance of MI-based BCIs
[9]. +e use of multichannel signals tends to achieve good
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classification performance [10]. Nevertheless, multichannel
signals typically carry a large amount of redundant in-
formation, which introduces additional noise sources and
may decrease EEG-based motor imagery classification ac-
curacy when compared to a small set of optimal EEG
channels [11]. Channel selection can effectively exclude the
redundant channels and select the optimal brain areas for
MI-based BCIs. +erefore, channel selection is an important
method of feature extraction for MI-based BCI [12].

In recent years, researchers have proposed many algo-
rithms for channel selection, such as sequential floating
forward selection (SFFS) [12], the mutual information-based
channel selection method [13], support vector machine
recursive feature elimination (SVM-rfe) [14], and CSP-rank
[15, 16]. Among them, CSP-rank is one of the most fre-
quently used channel selection methods [15, 16]. CSP-rank
uses the projection matrix obtained by the CSP algorithm to
sort and select the channels.

EEG is inherently noisy, and the signal-to-noise ratio is
an important factor affecting the performance of BCIs
[17, 18]. Many algorithms have been proposed to improve
the signal-to-noise ratio of EEG. For example, the spatially
sparsed common spatial pattern (SSCSP) method was
proposed in [19], which has strong weights within the area of
motor cortex and smooth weights elsewhere. +e work in
[20] proposed the spatially regularized common spatial
pattern (SRCSP) method. Selim et al. [21] used root mean
square (RMS) feature as inputs to an LDA classifier. Fur-
thermore, Dai et al. [22] proposed the transfer kernel
common spatial pattern (TKCSP) method to define the
kernel of the domain-invariant by matching the division
among source and target subjects. Park et al. [23] used noise-
assisted multivariate extensions of empirical mode de-
composition (NA-MEMD) to achieve a highly localized
time-frequency representation. In [12], Qiu et al. proposed
the improved sequential floating forward selection (SFFS)
method, which combined the distribution of channels and
an intelligent selection method (SFFS) to select channels for
CSP in MI-based BCI. Finally, Feng et al. [8] designed a
novel correlation-based time window selection (CTWS)
algorithm for MI-based BCIs to address the time latency
variation during an MI period between trials for each
participant. +ese algorithms each worked in different ways
to successfully improve the signal-to-noise ratio of EEG.

+e cortical locations that are most heavily involved in
motor control vary across EEG frequency bands [24].
+erefore, selecting channels in across different frequency
bands could increase the discriminability of the extracted
features further. However, traditional CSP-rank channel
selection methods and the previous feature extraction al-
gorithms did not consider the difference of channel con-
figuration in different frequency bands [12, 15, 16] and could
not suppress the interference from EEG features of different
frequency bands, resulting in the degradation of their per-
formance. In this paper, a new CSP-rank channel selection
method is proposed, which considers the channel config-
uration in different frequency bands to increase the dis-
criminability of the extracted features. +e CSP-rank
channel selection method was used to select the channels

under a certain frequency band, and then the features are
extracted by CSP using the selected channels. +e extracted
features from all frequency bands were concatenated to form
one feature vector, which was improved further by the least
absolute shrinkage and selection operator (LASSO). Linear
discriminant analysis (LDA) was used as the classifier to
demonstrate the performance of the method in terms of its
impact on classification accuracy.

+e paper is structured as follows: Section 2 describes the
applied datasets and the proposed method. Section 3 shows
the evaluation results. Section 4 presents the discussion
about our method. Finally, concluding remarks are given in
Section 5.

2. Methods

2.1. Description of the Data. Dataset 1 (BCI Competition III
datasets IVa): this dataset was recorded from 5 participants
with 118 EEG channels. Visual cues were displayed for 3.5 s
at a random interval uniformly drawn from the range 1.75 to
2.25 s. In the experiments, participants were instructed to
perform three classes of MI movements: left hand, right
hand, and right foot movements. Only data for the classes
“right hand” and “right foot” were provided for the eval-
uation purpose. Each participant performed 140 trials for
each class, respectively. A time window from 0 and
3.5 seconds, relative to cue presentation time, was used for
feature extraction. +e experiment process is illustrated in
Figure 1(a). More details about the dataset can be found in
the following website: http://www.bbci.de/competition/iii/
desc_IVa.html.

Dataset 2 (BCI Competition IV dataset 1): the dataset
was recorded from 7 participants with 59 EEG channels with
a sampling rate of 100Hz, including four healthy individuals
and three artificially generated “participants.” For the
purpose of the present study, only the calibration data
(consisting of two runs totaling 200 trials) from the four
healthy individuals were used. Each participant selected two
classes of motor imagery from three available classes left
hand, right hand, and foot motor imagery. Each trial started
from a visual cue pointing left, right, or down. +e cue was
displayed for a period of 4 s, during which the participant
was instructed to perform the cued motor imagery task.
+ese periods were interleaved with 2 s of blank screen with
a fixation cross shown in the center of the screen. +e
fixation cross was superimposed on the cues, i.e., it was
shown for 6 s. Time window between 0.5 and 2.5 s was used
for feature extraction. +e experiment process is illustrated
in Figure 1(b). More details can be found in the following
website: http://www.bbci.de/competition/iv/desc_1.html.

2.2. CSP-Rank. CSP-rank was proposed based on the
sorting of the CSP filter [13, 25]. CSP seeks a projection
matrix to maximize the variance for one class andminimize
the variance for another class at the same time in order to
maximize the discriminability of the dataset across classes
to aid classification. +e CSP operation was achieved as
follows:
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arg max
wTC1w

wT C1 + C2( 􏼁w
, (1)

where w represented the projection vector and C1 and C2
represented the spatial covariance matrices of the two
classes, respectively. We could regard it as the problem of
finding generalized eigenvalues:

C1w � C1 + C2( 􏼁wD, (2)

where D denotes the diagonal matrix containing the ei-
genvalues of C1. We select eigenvectors SF1 and SF2 cor-
responding to the largest and smallest eigenvalues,
respectively, from w as the projection matrix. +ese filter
coefficients were used to assign different weights to different
electrodes based on their importance. If the coefficient of a
particular electrode was large, then that means the electrode
was more important.

+e original EEG data need to be filtered before
selecting the channels. To achieve this, a 5th order But-
terworth bandpass filter from 8Hz to 30Hz was used to
filter EEG data [12]. +e CSP-rank method first found the
two CSP filters SF1 and SF2, then sorted the absolute value
of the filter coefficients in SF1 and SF2, respectively, and
took the electrode with the next largest coefficient in turn
from the two spatial filters. If an electrode was already
taken, then the procedure simply moved on to the next
coefficient in the same spatial filter until a new electrode
was reached. +e search process did not stop until a
stopping criterion was fulfilled. +e stopping criterion
selected was that accuracy no longer increased with the
number of selected channels.

2.3. Channel Selection Method Based on CSP-Rank for Mul-
tiple FrequencyBands. Figure 2 shows the structure diagram
of the proposed method for optimizing EEG channel se-
lection. Multiband signal decomposition filtering [25] was
applied to the EEG signals recorded from all channels.
+ereafter, the proposed CSP-rank method for reducing
redundant channels was applied, and features were extracted
with CSP from each frequency band. All features extracted
from all frequency bands were concatenated to form one
feature vector. +e discriminant features were selected by
LASSO from the feature vector. Finally, LDA was employed
for the model training and accuracy calculation. +e fol-
lowing subsections provide more details about the CSP-R-
MF approach.

2.3.1. Multiband Signal Decomposition Filter. A fixed time
window was extracted from the trials of all the participants
considered from the dataset.+is timewindow began after the
cue (beginning of motion imagination by the participants)
and extended for 3.5 seconds for dataset 1 and 2 seconds for
dataset 2 (the best window lengths for classification of dataset
2 were found to be among 1 s, 1.5 s, or 2 s [26].). +ereafter,
seven frequency bands were considered covering the range
8–30Hz. A fifth-order Butterworth filter was utilized to ex-
tract each band. +e considered bandwidth was 4Hz. +us,
the seven bands were defined as 8–12Hz, 12–16Hz, 16–20Hz,
20–24Hz, 24–28Hz, 28–30Hz, and 8–30Hz.

For each subject, CSP-rank selection was used to remove
several channels on each frequency band of the seven
considered frequency bands. +ereafter, CSP was also ap-
plied on each frequency. Next, the CSP features were con-
catenated to form a high dimensional feature vector, which
suffered from redundancies and irrelevant information.
Such a feature vector might confuse the classifier. +erefore,
an efficient feature selection algorithm was needed to select
only the most relevant features.

2.3.2. Least Absolute Shrinkage and Selection Operator.
LASSO is a filter-based feature selection method and does
not depend on any classifier; instead, they selected features
according to statistical criteria. +is selection method was
on average more time efficient and more resistant to
overfitting compared to wrapper-based feature selection
methods [27]. It has also been shown to be efficient in
feature selection for MI-based BCIs [28]. +e goal of the
algorithm was to minimize the residual sum of squared
errors with a bound on the sum of absolute values of linear
regression coefficients that had to be less than a given
constant. +e features would automatically be discarded
corresponding to coefficients that were exactly 0. LASSO
minimized the function:

1
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where N was the sample of samples, yi was the response
for sample i, xi was the n-dimensional input vector for
sample i, λ was a nonnegative regularization parameter,
and α0 and α were regression parameters (α0 was a scalar;
α was a n-dimensional vector). As λ increased, the number
of nonzero components of α decreased. +e values of
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Figure 1: Illustration of the experimental protocol for a trial in dataset 1 (a) and dataset 2 (b). (b) is replaced from Feng et al. [8] (under the
creative commons attribution license/public domain).
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parameters mentioned were set as default values in MAT-
LAB R2015b built-in LASSO functions.

2.4. Classification Scheme. We used n-fold cross validation
for performance validation. All samples were divided into n
blocks for each fold cross validation. Nine blocks were used

as training data, and the remaining one block was used as
test data. Finally, the average classification accuracy of n-fold
cross validation was selected as the estimation criteria. For
dataset 1, each participant needs to perform 140 trials for
each class; we selected 20 trials of 140 trials without repe-
tition as the test data and the remaining trials as the training
data for each cross validation. So, 7-fold cross validation was
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Figure 2: Structure diagram of the CSP-R-MF algorithm.
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finally selected as the performance evaluation. However,
each subject needed to perform 100 trials for each class in
dataset 2; we selected 10 trails of 100 trials without repetition
as the test data and the remaining trials as the training data
for each cross validation. So, 10-fold cross validation was
finally selected as the performance evaluation method. LDA
was selected as the classifier. It classified samples by max-
imizing the distance between classes and minimizing
intraclass variance and is often used in research of motor
imagery-based BCI system [5].

2.5. Filter Bank Common Spatial Patterns. Filter bank
common spatial pattern (FBCSP) was proposed by Kai et al.
[29] to perform autonomous selection of key temporal
spatial discriminative EEG characteristics. FBCSP com-
prises four progressive stages of EEG measurements pro-
cessing: frequency filtering (the 5-fold Butterworth was
selected in this paper), spatial filtering (CSP was selected in
this paper), feature selection (LASSO was selected in this
paper), and classification (LDA was selected in this paper).
In the first stage, multiband signal decomposition filter was
applied to the EEG signals. In the second stage, CSP was
used to extract features of the EEG signals from each
frequency band. In addition, all features extracted from all
frequency bands were concatenated to form one feature
vector. In the third stage, the discriminative parts of the
feature vector were automatically selected with LASSO. In
the fourth stage, LDA was selected to classify the dis-
criminative parts of CSP features.

3. Results

+e overall accuracy behavior averaged from all the subjects
in each dataset is shown in Figure 3. It may be observed that
the CSP-R-MF achieves better performance in terms of
classification accuracy. In the beginning, the classification
accuracy increasingly corresponds to the increase in the
number of selected channels. +e classification accuracy
would not increase further or would decrease a little, when
more and more channels were selected. +e peak point was
30 out of 118 channels for dataset 1, and the peak point was
24 out of 59 channels for dataset 2. So, we selected, re-
spectively, 24 out of 59 channels for dataset 1 and 30 out of
118 channels for dataset 2 for later EEG analysis in each
frequency band. Group level statistics are not reported as we
do not have sufficient participants in this paper.

Figure 4 shows ROC curves for the twomethods.+e red
line represents the accuracy achieved by the CSP-R-MF
method proposed in this paper, and the blue line repre-
sents accuracy achieved by the CSP-rank method. Obvi-
ously, compared with the blue line, the red line generally
tends to be in the upper left corner of the graph. +is means
that the model obtained by the method proposed in this
paper has better performance than the model obtained by
CSP-rank.

Figure 5 shows the classification accuracies achieved
with each of the two methods. +e horizontal axis indicates
the subject, and the vertical axis indicates the classification

accuracy. +e red bar represents CSP-R-MF results, and the
blue bar represents CSP-rank results. Compared to CSP-
rank, the classification accuracy of CSP-R-MF improved by
7.05% (75.43% VS 82.48%) for dataset 1 and 7% (70.75% VS
77.75%) for dataset 2. P value expresses the significance level.
+e smaller the P value, the higher the significance. In
dataset 1, compared to CSP-rank, the classification accuracy
of subjects aa, al, av, aw, and ay was, respectively, improved
by 15.36%, 0.62%, 6.07%, 8.57%, and 4.64% with CSP-R-MF.
In dataset 2, compared to CSP-rank, the classification ac-
curacy of subjects S1, S2, S3, and S4 was, respectively, im-
proved by 5%, 5.5%, 14.5%, and 3% with CSP-R-MF.

We also compared the performance of CSP-R-MF and
FBCSP. +e comparison results are shown in Table 1.
Compared to FBCSP, the classification accuracy of CSP-R-
MF improved by 2.91% for dataset 1 and 7% for dataset 2.
Table 2 shows the correspondence between electrodes and
numbers.

4. Discussion

It is well established that motor imagery produces an event-
related de\synchronization (ERD\S) over the sensorimotor
areas within the mu rhythm (8–13Hz) and the beta band
(13–30Hz) [7]. +erefore, the bandpass filter used for
measuring the ERD/S was between 8 to 30Hz [8, 12]. +is
frequency band may be further divided into 7 subbands
(4–8Hz, 8–12Hz, 12–16Hz, 16–20Hz, 20–24Hz, 24–28Hz,
28–32Hz, 32–36Hz, and 36–40Hz) to study the effect of
frequency band selection on motor imagery-based BCI
control, as proposed in work on subband common spatial
pattern (SBCSP) [30] and FBCSP. It was found that the
performance of the MI-based BCI correlated with these
frequency bands. However, the best frequency band was not
exactly the same for all subjects. In this paper, we selected 7
bands (8–12Hz, 12–16Hz, 16–20Hz, 20–24Hz, 24–28Hz,
28–30Hz, and 8–30Hz) to study movement-related brain
activity during motor imagery in different frequency bands.

Feature extraction is one of the most important steps for
the classification of motor imagery EEG [31]. In particular,
CSP, a spatial feature extraction method, has become the
most commonly used method in MI-based BCI systems
[12, 32]. However, the performance of the CSP is susceptible
to interference signals. +e channel selection algorithm
selects the channels associated with motor imagery and
removes the channels that do not contribute significantly to
classification of motor imagery activity. +is improves the
signal-to-noise ratio of the EEG signals. Brain areas asso-
ciated with motor imagery are not exactly the same in
different frequency bands [17]. +erefore, the channels se-
lected will not be the same in different frequency bands.

In this study, the proposed CSP-R-MF algorithm con-
sidered variations of brain areas involved in motor imagery
in different frequency bands and automatically selected
channels for each frequency band via the CSP-rank method.
Figure 6 shows the topographic maps of channels selected by
CSP-R-MF in different frequency bands. +e selected
channels were marked with different colors according to the
number of times each channel was selected.

Computational Intelligence and Neuroscience 5



As shown in Figure 6, the distributions of selected
channels were different under different frequency bands.
However, they were basically distributed in the motor areas
of the cerebral cortex. +is reflects the frequently observed
fact that motor imagery involves EEG activity in relevant
areas of the motor cortex [31, 33]. Channels selected under a
few frequency bands were not mainly distributed in the
motion areas. For example, the selected channels in the
16–20Hz and 28–30Hz bands were not mainly distributed

in the motor areas for dataset 1, However, most of the se-
lected channels under these two bands for dataset 2 were
located in the motor area.

+e ROC curve is a tool for evaluating the generalization
performance of models. We compared the performance of
twomodels based on CSP-rank and CSP-R-MF, respectively.
Figures 3 and 5 showed that the performance of the model
obtained by CSP-R-MF was better than the model obtained
by CSP-rank. Figure 3 shows the accuracy behavior of CSP-
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R-MF and CSP-rank with the varying numbers of channel.
+e classification accuracy would increase corresponding to
the increase in the number of selected channels in the be-
ginning. +e classification accuracy would decrease when
more and more channels were selected. It proved the ac-
curacy of the model has a globally optimal global region
instead of falling into local optimum because of overfitting.

5. Conclusion

+e brain areas associated with motor imagery are not
exactly the same in different frequency bands [17]. Current
state-of-the-art channel selection methods do not consider

this problem. In this study, we proposed a novel method
based on common spatial pattern- (CSP-) rank channel
selection method for multifrequency band (CSP-R-MF)
selection. In our approach, a 5th order Butterworth filter
was used to achieve multiband signal decomposition fil-
tering. After that, CSP-rank and CSP were used to extract
features of filtered EEG samples. +e discriminant charac-
teristics were selected with LASSO. Finally, classification
algorithms were employed to calculate the classification
accuracy. Experimental results showed that the CSP-R-MF
algorithm could improve performance of MI-based BCIs
compared to the CSP-rank algorithm. More specifically, the
average classification accuracy improved 7.05% on dataset 1
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Figure 5: Performance comparison of the proposed algorithm CSP-R-MF with CSP-rank in dataset 1 (a) and dataset 2 (b).

Table 1: Classification accuracy of the proposed approach and FBCSP.

Dataset 1 Dataset 2
Subject FBCSP CSP-R-MF Subject FBCSP CSP-R-MF
aa 79.64 81.43
al 96.79 92.41 S1 75 81.5
av 51.79 70 S2 54 63
aw 90.71 83.57 S3 61.5 79
ay 78.93 85 S4 92.5 87.5
Average 79.57 82.48 Average 70.75 77.75

Table 2: Correspondence table between electrodes and numbers.

Mark : electrode
1 : PO3 2 : PO1 3 : POZ 4 : PO2 5 : PO4 6 : OPO1 7 :OPO2 8 :O1 9 :O2 10 : l1
11 : Ol1 12 :OZ 13 : Ol2 14 : l2 15 : PO7 16 : PO8 17 : AF7 18 : Fp1 19 : Fp2 20 : AF8
21 : AFP1 22 : AFP2 23 : AF3 24 : AF4 25 : FAF5 26 : FAF1 27 : FAF2 28 : FAF6 29 : F7 30 : F5
31 : F3 32 : F1 33 : Fz 34 : F2 35 : F4 36 : F6 37 : F8 38 : FFC7 39 : FFC5 40 : FFC3
41 : FFC1 42 : FFC2 43 : FFC4 44 : FFC6 45 : FFC8 46 : FT9 47 : FT7 48 : FC5 49 : FC3 50 : FC1
51 : FCz 52 : FC2 53 : FC4 54 : FC6 55 : FT8 56 : FT10 57 : CFC7 58 : CFC5 59 : CFC3 60 : CFC1
61 : CFC2 62 : CFC4 63 : CFC8 64 : CFC8 65 : T7 66 : C5 67 : C3 68 : C1 69 : Cz 70 : C2
71 : C4 72 : C6 73 : T8 74 : CCP7 75 : CCP5 76 : CCP3 77 : CCP1 78 : CCP2 79 : CCP4 80 : CCP6
81 : CCP8 82 : TP9 83 : TP7 84 : CP5 85 : CP3 86 : CP1 87 : CPz 88 : CP2 89 : CP4 90 : CP6
91 : TP8 92 : TP10 93 : PCP7 94 : PCP5 95 : PCP3 96 : PCP1 97 : PCP2 98 : PCP4 99 : PCP6 100 : PCP8
101 : P9 102 : P7 103 : P5 104 : P3 105 : P1 106 : Pz 107 : P2 108 : P4 109 : P6 110 : P8
111 : P10 112 : PPO1 113 : PPO5 114 : PPO1 115 : PPO2 116 : PPO6 117 : PPO8 118 : FPz —
Mark: electrode denotes electrode and its corresponding number. Mark: the number corresponding to the electrode.
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(BCI Competition III datasets IVa) and 7% on dataset 2 (BCI
Competition IV dataset 1), when using the proposed method
compared to using CSP-rank. In this paper, we set the same
stopping criterion for all searching processes based on CSP-
rank. However, the stopping criterion may be not exactly the
same for different frequency bands and subjects. In future
work, to further improve the performance of the CSP-R-MF

algorithm, we will consider setting different stopping criteria
for different frequency bands and subjects.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

8–12Hz 12–16Hz 16–20Hz 20–24Hz

24–28Hz 28–30Hz 8–30Hz

CSP-rank

CSP-R-MF

α = 3
α = 4
α = 5

Figure 6: +e topographic maps of the selected channels for two datasets under different frequency bands. Channels selected more than
three times out of all subjects were marked. +e channels selected by CSP-R-MF algorithm in 8–30Hz frequency band were the same as
those selected by CSP-rank algorithm. +e electrode could be found in Table 2 with the number in topographic maps.
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