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Abstract
Adult aging is associated with differences in structure, function, and connectivity of brain areas. Age-based brain comparisons
have typically rested on the assumption that brain areas exhibit a similar spatial organization across age; we evaluate this
hypothesis directly. Area parcellation methods that identify locations where resting-state functional correlations (RSFC)
exhibit abrupt transitions (boundary-mapping) are used to define cortical areas in cohorts of individuals sampled across a
large range of the human adult lifespan (20–93 years). Most of the strongest areal boundaries are spatially consistent across
age. Differences in parcellation boundaries are largely explained by differences in cortical thickness and anatomical alignment
in older relative to younger adults. Despite the parcellation similarities, age-specific parcellations exhibit better internal
validity relative to a young-adult parcellation applied to older adults’ data, and age-specific parcels are better able to capture
variability in task-evoked functional activity. Incorporating age-specific parcels as nodes in RSFC network analysis reveals that
the spatial topography of the brain’s large-scale system organization is comparable throughout aging, but confirms that the
segregation of systems declines with increasing age. These observations demonstrate that many features of areal organization
are consistent across adulthood, and reveal sources of age-related brain variation that contribute to the differences.
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Brain anatomy and function differ with age; these differences can
be observed across the brain’s spatial scales, and from birth
through older adulthood (Johnson 2001; Hedden and Gabrieli 2004).
At a macroscopic level, the brain is organized into distinct cortical
areas and subdivisions of subcortical structures (Sejnowski and
Churchland 1989), a spatial organization revealed by the conver-
gence of regional differences divided by local transitions in pat-
terns of function, architectonics, connectivity and/or topography
(Van Essen et al. 1981; Felleman and Van Essen 1991). Efforts to
directly evaluate age-related differences in the anatomy and func-
tion of brain areas and subcortical structures have greatly

benefited from the development of sophisticated image processing
techniques. These methods typically align subjects to one-
another, and to a common reference space using each individual’s
neuroanatomical features (Fischl et al. 1999; Buckner et al. 2004;
Van Essen et al. 2012). An underlying assumption across studies
evaluating age-related differences in brain organization and func-
tion following anatomical alignment is that the spatial organiza-
tion of functional areas remains relatively consistent across
individuals and across age. However, while there is evidence that
areal divisions are established early in development (for review
see Gilmore et al. 2018), the boundaries of areas have also been
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shown to exhibit experience-dependent alterations in animal
models (Seelke et al. 2016). A few additional points are also worth
considering: 1) brain areas do not respect morphometric land-
marks (Van Essen et al. 1981; for review see Wig et al. 2011); 2) in
adulthood, increasing age is associated with increasing anatomi-
cal change and variability (Magnotta et al. 1999; Sowell et al. 2003;
Raz et al. 2005); and 3) even among similarly aged individuals,
there can be substantial variation in area localization (Caspers
et al. 2006; Glasser et al. 2016). As such, it is important to evaluate
whether and how the spatial arrangement of functional areas dif-
fers across age in order to accurately understand age-related
changes in brain organization and function. Here, we perform this
area parcellation evaluation, examining age-defined cohorts sam-
pled from a broad segment of the adult lifespan (20–93 years).

How and why might adult aging be associated with differ-
ences in the spatial arrangement (topography) of functional
areas? Healthy aging is accompanied by the progressive thinning
of the cerebral cortex and reductions in volume and surface area,
particularly in prefrontal, temporal, and parietal cortex (Resnick
et al. 2003; Raz et al. 2005; Fjell et al. 2009; Storsve et al. 2014).
These differences in macro-anatomy exhibit greater variability
with increasing age (Sowell et al. 2003), thus, compromising ana-
tomical alignment for older age groups (Fischl and Dale 2000;
Good et al. 2001). As such, it is likely that area alignment may dif-
fer across individuals from different age segments even when
their brains have been aligned to a common reference space.
However, it is also important to acknowledge that the differences
in gray-matter cortical thickness are caused by cellular changes
(including shrinkage and loss of neurons (Kril et al. 2004), loss of
dendritic spines of cells observed in both rats (Markham and
Juraska 2002) and humans (Uylings and de Brabander 2002; for
review see Burke and Barnes 2006)), and that these changes
impact neural function (Barnes et al. 1983; Chang et al. 2005) and
synaptic connectivity (Barnes and McNaughton 1980; for review
see Morrison and Baxter 2012). Accordingly, it is possible that
age-related changes in function and anatomy may result in addi-
tional functional distinctions within areas resulting in increased-
partitioning of the area (or increased “differentiation”), or
between areas at their transition zones resulting in decreased
partitioning of areas (greater “blurriness” of boundaries).

Area parcellation has a long history and has largely required
invasive measurement of brain features including direct neural
recording (Penfield and Jasper 1954), cortical stimulation
(Penfield and Boldrey 1937; Lee et al. 2000), and postmortem
analysis of anatomy (Brodmann 1909; Hof et al. 1995; Öngür
et al. 2003; Scheperjans et al. 2008). Advances in the acquisition
and analysis of noninvasive imaging have provided methods to
differentiate area function and organization with greater ease
(Petersen et al. 1988; Johansen-Berg et al. 2004; Amunts and
Zilles 2015). More recently, parcellation procedures have been

developed that identify locations where patterns of resting-state
functional correlations (RSFC) (Biswal et al. 1995) exhibit abrupt
transitions (i.e., putative areal boundaries) (Cohen et al. 2008;
Wig, Laumann and Petersen 2014; Laumann et al. 2015; Gordon
et al. 2016; Xu et al. 2016). Boundary mapping of resting-state
signals has been shown to exhibit correspondence with areal
divisions that have been defined by patterns of cyto- and myelo-
architectonics (Wig, Laumann and Petersen 2014; Glasser et al.
2016; Gordon et al. 2016) and functional activity (Wig, Laumann
and Petersen 2014; Laumann et al. 2015). Importantly, the proce-
dures can be rapidly deployed across the entire cerebral cortex
without the need of dissociating task-related activation patterns.
To date, resting-state boundary mapping techniques have pre-
dominantly been applied to young adult brains. It remains
unclear whether and where area boundaries differ with increas-
ing age; the application of these methods towards parcellating
the brains of groups of individuals from across the adult lifespan
provides an unprecedented opportunity to examine whether the
RSFC-defined cortical organization of brain areas differs with
increasing age.

Here, we utilize and refine RSFC-based boundary mapping
methods (Wig, Laumann and Petersen 2014; Gordon et al. 2016)
to create functional parcellations for 5 independent age cohorts
that were evenly sampled across the adult lifespan (20–93
years; Table 1). The parcellations across the 5 cohorts are evalu-
ated and validated in a series of tests that probe RSFC consis-
tency in parcels using 2 separate datasets. While the majority
of the prominent features of area parcellation are consistent
across the adult lifespan, differences in area parcellation exist
and are more pronounced with increasing age. Our analyses
reveal that many of these differences are mediated by age-
related differences in brain structure and anatomical align-
ment. We demonstrate how cohort-specific parcellations serve
as more accurate representations to understand patterns of
task-related activity and functional connectivity. Importantly,
we apply these parcellations to analyses of large-scale net-
works across age. Using cohort-specific parcellations to define
cohort-specific brain network nodes reveals that the spatial
organization of large-scale resting-state brain networks is
largely unaltered with increasing age, while the previously
reported differences in network organization across age (sys-
tem segregation; Chan et al. 2014; Wig 2017) are still evident
when using nodes defined from cohort-specific parcellation.

Materials and Methods
Participants

Two separate datasets were used. Initially, these datasets were
analyzed separately: Dataset 1 was used to generate cohort-

Table 1 Participant demographics. Sex distribution was compared across cohorts using χ2 tests; MMSE scores were compared using F tests
(FDataset1(4, 131) = 4.805, P < 0.001; FDataset2(4, 217) = 9.318, P < 0.001). MMSE, Mini-Mental State Examination; NA, not available; ns, not significant

Cohorts Age range N Female (%) MMSE score

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

Younger adults (YA) 20–34 y 26 62 69 60 29.48 (0.77) 28.66 (1.19)
Middle early adults (ME) 35–49 y 29 49 69 65 29.45 (0.95) 28.77 (1.12)
Middle late adults (ML) 50–64 y 34 43 71 67 29.56 (0.66) 28.42 (1.14)
Older early adults (OE) 65–79 y 32 38 66 58 28.91 (1.30) 27.84 (1.22)
Older late adults (OL) 80–93 y 16 30 81 57 28.44 (1.41) 27.43 (1.10)
P NA NA NA ns ns <0.001 <0.001
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specific parcellations, and Dataset 2 served as a separate repli-
cation sample for purposes of evaluating parcellation quality.
In the final analysis, the datasets were combined to generate
cohort-specific parcellation maps using all of the available
data. Participants were recruited from the Dallas–Fort Worth
community and provided written consent before participating.
All study procedures were reviewed and approved by the
Institutional Review Boards at The University of Texas at Dallas
and The University of Texas Southwestern Medical Center. All
subjects were neurologically normal, right-handed, native
English speaking healthy adults from the Dallas Lifespan Brain
Study (DLBS). In the study recruitment, individuals were
excluded due to 1) chemotherapy in the past 5 years, 2) coro-
nary bypass surgeries, 3) major substance abuse, 4) disorders of
the immune system, 5) loss of consciousness for more than
10min, 6) Mini-Mental State Examination (MMSE) scores less
than 26, and 7) any MRI safety contraindications.

The cohorts defined by the 2 datasets were different in sev-
eral respects, including the amount of data per subject, subjects
constituting each cohort, and cohort sample size. While
Dataset 2 contains more subjects, there is less data available
per subject (see Imaging Data Acquisition). As RSFC parcellation
quality relates to the amount of available data (Laumann et al.
2015), the dataset with less subjects but more data per subject
(Dataset 1) was used for cohort-specific parcellation generation
and this second dataset (Dataset 2) was used for cross-sectional
validation on the parcellation results from Dataset 1.

(1) Dataset 1 comprised of data from 206 subjects (age range:
24–93 y). Those with high quality data (see RSFC Preprocessing)
were included in the final sample (N = 137) and categorized into
5 age cohorts based on their age at the time of data collection
(i.e., younger adults [YA], middle early adults [ME], middle late
adults [ML], older early adults [OE], older late adults [OL]; for
the age ranges of the cohorts, see Table 1).

(2) Dataset 2 included data collected from 222 subjects (age
range: 20–89 y; Table 1). The subjects in this dataset include
both the subjects in Dataset 1 (Dataset 2 was collected roughly
3.5 years prior to the collection of Dataset 1) and a number of
additional subjects. Subjects from Dataset 2 were categorized
into 5 cohorts based on their age at time of data collection. In
total there were 105 subjects overlapping across Datasets 1 and
2 (percentage of overlapping subjects in Dataset 2: YA = 43%,
ME = 39%, ML = 51%, OE = 63%, OL = 47%).

Imaging Data Acquisition

Brain images were acquired with a Philips Achieva 3 T whole-
body scanner (Philips Medical Systems, Bothell, WA) and a
Philips 8-channel head coil at the University of Texas
Southwestern Medical Center using the Philips SENSE parallel
acquisition technique.

Anatomical Images
A T1-weighted sagittal magnetization-prepared rapid acquisi-
tion gradient echo (MP-RAGE) structural image was obtained
(TR = 8.1ms, TE = 3.7ms, flip-angle = 12°, FOV = 204 × 256mm2,
160 slices with 1 × 1 × 1mm3 voxels).

Functional Images
Functional magnetic resonance imaging (fMRI) used a blood
oxygenation level-dependent (BOLD) contrast sensitive gradient
echo echo-planar sequence (TR = 2000ms, TE = 25ms, flip
angle = 80°, FOV = 220mm, 43 interleaved axial slices per vol-
ume, 3.5/0mm (slice-thickness/gap), in-plane resolution = 3.4 ×

3.4mm2). At the beginning of each run, 5 volumes were
acquired and discarded to allow the MR signal to reach a
steady-state.

i. Resting-state fMRI: There were 2 functional runs in Dataset 1,
and 1 functional run in Dataset 2. Each functional run con-
sisted of 180 BOLD acquisitions for Dataset 1 and 154 acqui-
sitions for Dataset 2. Subjects were instructed to remain
still while fixating on a white crosshair against a black back-
ground. The experimenter verified that subjects complied
with the instructions and did not fall asleep during the
functional scan via verbal confirmation.

ii. Task-evoked fMRI: Task-evoked data from 2 types of tasks
were used in the current study (collected in the same study
session as RSFC data from Dataset 2; for additional details
see Chan et al. 2017): 1) Word judgment scans (semantic
task) collected in a block design (one run, 231 volumes; n =
222) where subjects viewed 128 words and made living or
nonliving judgments. Stimuli were categorized into 2 condi-
tions (unambiguously living or nonliving [Easy condition]
vs. ambiguous and harder to classify as living or nonliving
[Hard condition]). The 2 conditions were modeled sepa-
rately for the analysis in this study. All stimuli were pre-
sented in lowercase white font at the center of a black
screen. 2) Scene classification scans (visual task) collected
in an event-related design (3 runs, 171 volumes in each; n =
218) in which subjects viewed colored images of outdoor
landscapes and determined whether there was water pres-
ent in the scene. Based on a subsequent memory test, sti-
muli were categorized into 2 conditions (successfully
remembered [Remember condition] vs. forgotten [Forget
condition]) and were modeled accordingly. All picture sti-
muli were presented at the center of a black screen.

Basic fMRI Preprocessing

A number of steps were taken to reduce artifacts in functional
images, including 1) correction of odd versus even slice inten-
sity differences attributable to interleaved acquisition without
gaps, 2) head movement correction within and across runs, and
3) across-run intensity normalization to a whole brain mode
value of 1000 (Miezin et al. 2000).

RSFC Preprocessing

Additional preprocessing steps were taken to reduce spurious
variance unlikely to reflect neuronal activity in RSFC data
(Power et al. 2014). 1) Multiple regression of the BOLD data to
remove variance related to the whole brain gray matter signal
(global signal; defined by each subject’s own anatomy), ventric-
ular signal, white matter signal, 6 detrended head realignment
parameters obtained by rigid-body head motion correction, and
the first-order derivative terms for all aforementioned nuisance
variables. Global signals have been shown to be coupled with neu-
ral activity (Schölvinck et al. 2010), but recent evidence has
revealed that a major component of the global signal consists of
spatially nonspecific signal artifacts, in which head motion can
play a significant role (Satterthwaite et al. 2013, 2013; Power et al.
2014, 2017). Because older adults are more prone to head move-
ment (Van Dijk et al. 2012; Savalia et al. 2017) that leads to altered
RSFC profiles, it is critical to minimize the source of bias that may
contribute to erroneous estimation of RSFC areal boundaries. 2)
Band-pass filtering (0.009Hz < f < 0.08Hz).
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To further reduce the effect of motion artifact on RSFC, data
were processed using a “scrubbing” procedure (Power et al.
2014). Motion-contaminated volumes were first identified by
their frame-by-frame displacement (FD) calculated as the sum
of absolute values of the differentials of the 3 translational
motion parameters and 3 rotational motion parameters (Power
et al. 2014). Volumes with FD > 0.3mm were flagged. In addi-
tion, the frames acquired immediately prior and immediately
after each of these frames were also flagged to account for tem-
poral spread of artifactual signal resulting from the temporal
filtering in the first RSFC preprocessing iteration.

The RSFC preprocessing steps outlined above (steps 1 and 2;
including nuisance regression and temporal filtering) were
applied in the second iteration on RSFC data that excluded
volumes flagged during motion scrubbing. Following data
scrubbing, any participant with less than 75 frames of remain-
ing data were removed from subsequent analyses, resulting in
137 subjects (Dataset 1) and 222 subjects (Dataset 2). In Dataset
1, 254 frames were retained for each subject on average across
all cohorts (range: 80–403). In Dataset 2, each subject on average
retained 140 frames across all cohorts after scrubbing (range:
75–154).

Processing of Cortical Surface and Subcortical Anatomy

Each subject’s cortical surface was reconstructed to map func-
tional data, analyze and visualize data in a standard surface
space, and to rule out the possible contribution of white matter
signal by sampling signals from the gray ordinate to the surface
(partial volume effects). The anatomical volumes in their
“native” space were first submitted to FreeSurfer v5.3 auto-
mated processing pipeline. (Dale et al. 1999; Fischl et al. 1999;
Ségonne et al. 2005). This pipeline includes brain extraction,
cortical and subcortical segmentation, generation of the gray
matter-white matter boundary (white matter surface) and outer
cortical surface (pial surface), inflation of the surfaces to a
sphere, and surface shape-based spherical registration of the
subject’s “native” surface to the fs-average surface.

We recently demonstrated that excessive head motion in
structural images can lead to inflated effect sizes in the relation-
ships between regional anatomical measures and age (Savalia
et al. 2017). In addition, the gray/white matter signal intensity
ratio of T1-weighted image increases with aging (Salat et al.
2009), which may systematically bias estimation of specific sub-
jects’ brain data as anatomical processing algorithms are sensi-
tive to these contrasts (Dale et al. 1999). Accordingly, additional
steps were taken to reduce the influence of head motion and
other possible aging-related confounds. The automated
FreeSurfer outputs for each subject were manually inspected
and edited as necessary and verified by an independent
researcher. Manual editing included removal of nonbrain tissue
misclassified as part of the cortical surface, and editing regional
voxel intensity values of tissue excluded from the white and pial
surfaces (misclassification of gray and white matter). The man-
ual editing is particularly important to the current study involv-
ing aging data, which are more susceptible to age-related
anatomical abnormalities possibly mishandled by the default
FreeSurfer pipeline (Savalia et al. 2017). The editing follows
instructions from the official FreeSurfer Wiki and editing tutor-
ials (http://freesurfer.net/fswiki/FreeSurferWiki; https://surfer.
nmr.mgh.harvard.edu/fswiki/FreeSurferBeginnersGuide), and an
in-house guide to our laboratory’s FreeSurfer editing proce-
dures (available for download at our laboratory’s website). T1-
weighted image quality control (QC) ratings by 2 researchers

(N.S. and P.A.) and in-scanner head motion for each functional
run that was quantified with FD (Power et al. 2014) were then
used to flag subjects with excessive motion (see Savalia et al.
2017 for detailed procedures), who were excluded from the
analyses probing the relationship between cortical thickness
difference and parcellation overlapping percentages.

A single deformation map was created for each subject by
combining 1) the deformation map from “native” space to
FreeSurfer’s fsaverage atlas and 2) the deformation map from
fsaverage-aligned data to a hybrid left-right fsaverage surface
(fs_LR; Van Essen et al. 2012). The individuals’ surfaces in
“native” space were then registered to the 164k fs_LR atlas
using this single deformation map in a one-step resampling
procedure and down-sampled to 32k standard mesh (Van
Essen et al. 2012).

Due to age-related volume shrinkage of subcortical gray
matter (Pfefferbaum et al. 1994; Good et al. 2001; Fox and Schott
2004) and individual variability in change across age (Raz et al.
2005), the subcortical structures and cerebellum were aligned
across subjects (across all cohorts) to provide more precise
comparison of anatomical features between subjects and to
better align functional data. The volumetric subcortical struc-
tures and cerebellum labeled by FreeSurfer in “native” space
were registered to the DLBS adult-lifespan atlas (Chan et al.
2014) to reduce greater registration error among older adults
caused by conventional registration to younger adults-derived
MNI atlas space (Buckner et al. 2004). Atlas transformation was
computed for each subject using the atlas-registered anatomi-
cal image.

CIFTI File Generation

The files of Connectivity Informatics Technology Initiative
(CIFTI; Glasser et al. 2013) format were generated to integrate
information from all possible brain ordinates (such as the cere-
bral cortex, subcortical structures, and the cerebellum). To do
so, the time series data of the cortical surface were derived by
resampling functional volumes in “native” space to 32k mesh
surface using single deformation maps derived from surface
data processing and smoothed on the surface with a Gaussian
kernel (6mm full width-half maximum [FWHM]). Volumetric
time series of each individual’s subcortical structures and cere-
bellum were created by resampling the functional data to an
isotropic 3mm atlas space, combining movement correction
and atlas transformation in a single cubic spline interpolation
(Lancaster et al. 1995; Snyder 1996). This single interpolation
procedure eliminated blurring that would be introduced by
multiple interpolations. Finally, the subcortical data were
smoothed in volumetric space with a Gaussian kernel (6mm
FWHM).

Finally, the time series data of the cortical surface and volu-
metric time series of FreeSurfer-labeled subcortical structures
and the cerebellum were combined to create the CIFTI files.

Task-Evoked fMRI Analysis

Task-evoked fMRI task data were analyzed using SPM 8
(Wellcome Department of Cognitive Neurology; http://www.fil.
ion.ucl.ac.uk/spm/). For each task condition, a general linear
model (GLM) was built to include the onsets and durations of
each block/event and the number of runs where appropriate,
and nuisance regressors (the 6 head realignment parameters, a
high-pass filter and linear trends) for each subject. Following a
subject’s GLM estimation, the volumetric task-evoked beta
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image was mapped to the 32k fs_LR atlas surface using single
deformation maps derived during surface data processing.

Generation of Parcellation Maps

A flowchart of the parcellation map generation procedure for
each cohort can be seen in Figure S1. For each subject, the pair-
wise correlation of the time series between each surface vertex
and every other surface vertex in the CIFTI file was computed
to create a 32 492 × 64 984 (32k × 64k) correlation matrix for
each hemisphere (similar to the procedure described in previ-
ous work) (Wig, Laumann, Cohen, et al. 2014; Gordon et al.
2016). Because the number of subcortical voxels varied across
subjects, their signals were not included to create cortical par-
cellations, which relied on equivalent matrix sizes across parti-
cipants in order to create bootstrap samples (described below).
Each correlation map was transformed using Fisher’s r-to-z
transformation; the full correlation distribution (including neg-
ative and positive correlations) was used for the generation of
parcellation maps.

To generate reliable parcellation maps that both reduce the
degree of individual variability and also minimize sampling
error of RSFC profiles that may be introduced with inclusion of
lesser time points per subject (Laumann et al. 2015), a boot-
strapping procedure was used for parcellation map generation.
100 bootstrap samples were created for each cohort, where
each bootstrap sample was created by randomly sampling
(with replacement) the same number of subjects for the cohort.
For each bootstrap sample in a given cohort, the following steps
were then taken: 1) Mean correlation maps were generated by
averaging correlation maps across the subjects in the bootstrap
sample, producing a 32k × 64k matrix for each hemisphere.
2) Vertex-wise RSFC similarity matrices were derived by calcu-
lating the pairwise spatial correlations between every vertex’s
RSFC correlation maps with one another, resulting in a 32 492 ×
32 492 (32k × 32k) similarity matrix (for each hemisphere). Each
slice of the similarity matrix represents a map on the cortical
surface in which values represent the similarity between RSFC
maps of a given vertex and all other vertices. 3) To identify
positions where RSFC similarity exhibited abrupt transitions,
gradient maps were generated by computing the first spatial
derivative of RSFC similarity maps using the “cifti-gradient”
function in the Connectome Workbench (Glasser et al. 2013).
This resulted in a 32k × 32k gradient matrix (for each hemi-
sphere). 4) Each of the resultant gradient maps were smoothed
with a Gaussian kernel (6mm FWHM) on the surface (as in
Gordon et al. 2016).

Each cohort’s average gradient map was calculated by aver-
aging the gradient maps across the 100 bootstrap samples to
produce a 32k × 32k matrix. For each cohort, a watershed algo-
rithm (Beucher and Lantuéjoul 1979) was applied to each slice
of this average gradient matrix to identify cortical boundaries,
creating a 32k × 32k boundary map matrix. Here, each column
represents a given vertex’s watershed boundary image whereby
each value in the boundary matrix (Aij) represents whether the
ith vertex is a boundary (Aij = 1) or not (Aij = 0) in the jth vertex’s
watershed boundary map. Lastly, each cohort’s final boundary
map (32k × 1 per hemisphere) was created by averaging across all
vertices’ boundary maps.

Closely following Gordon et al. (2016), the functional parcel-
lation of each age cohort was derived from its final boundary
map. We first identified local minima of each cohort’s boundary
map that were then used to detect parcels using a watershed
algorithm. This procedure required thresholding boundary

values when generating parcels, which poses a limitation to
the parcellations generated using this approach. To avoid arbi-
trarily choosing a threshold, we explored a wide range of
thresholds (5–60%) to assess the results and compare them to
the boundary maps. Due to the nature of the watershed algo-
rithm, parcellations at lower thresholds often appeared over-
segmented, and were under-segmented at higher thresholds
because the algorithm neglected weaker borders that may
delineate important RSFC features. Based on visual examina-
tion and comparison between these parcels and those from
existing studies (Glasser et al. 2016; Gordon et al. 2016), we used
the parcellations at the threshold of 35%, which not only cap-
tured important boundaries while avoiding over- and under-
segmentation across cohorts, but also shared more features in
common with the existing parcellation schemes relative to par-
cellations obtained from other thresholds.

Comparison and Evaluation of Boundary Maps and
Parcellations

Comparison of Boundary Maps
The similarity of boundary maps between YA and each of the
non-YA cohorts (ME, ML, OE, OL) was quantified using Dice
coefficients. To further investigate whether the similarity
between maps was better than chance, the Dice coefficients
between each map comparison was compared with a corre-
sponding null model. The null model was derived by calculat-
ing the Dice coefficients between the boundary map of each
non-YA cohort and 100 randomly rotated YA boundary maps
on the spherical 32k fs_LR atlas (Gordon et al. 2016). Vertices
falling in the medial wall area of the rotated boundary map
were assigned with the mean boundary value of the same verti-
ces in all other valid rotated boundary maps where the vertex
did not fall in the medial wall. A Z-score ( )Zboundary maps was
computed using the coefficients with the formula below:

=
−

Z
MDiceCoef

SD
boundary maps

actual DiceCoef

DiceCoef

null

null

where DiceCoefactual is the Dice coefficient of YA’s boundary
map with a given non-YA boundary map, MDiceCoefnull is the
mean of 100 null model Dice coefficients, and SDDiceCoefnull

represents the standard deviation (SD) of 100 null model Dice
coefficients. Dice coefficients and Zboundary maps were computed
based on the strongest boundaries (i.e., higher RSFC transition
probability) across multiple thresholds (top 1-100%, in steps of 1%).

Evaluation of Parcellation Quality Using Homogeneity Tests
The parcellation of each cohort was evaluated with homogene-
ity tests performed as follows (Gordon et al. 2016): Firstly, for a
given vertex in a parcel, whole-brain connectivity patterns (i.e.,
cortical RSFC maps) were averaged across all subjects. A princi-
pal component analysis (PCA) was performed on the averaged
connectivity patterns of all vertices for a given parcel, where
the variance explained by the first component represents the
homogeneity value for that parcel. The homogeneity values of
all parcels were then averaged to produce the mean homogene-
ity for each cohort’s parcellation. To inspect whether this par-
cellation homogeneity was better than chance, we calculated
the Z-scores ( )Zhomogeneity on both the mean homogeneity of
each cohort’s actual parcellation and a null model comprising
mean homogeneities from 100 randomly rotated parcellations
for this cohort. Any parcels rotated into the medial wall area
when generating the null model parcellations had their
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homogeneity values assigned as the mean homogeneity value
of the same parcel from all other null model rotations in which
the parcel did not fall into the medial wall.

To determine whether the application of YA parcellation to
non-YA cohort data also exhibited homogenous parcel esti-
mates, we performed similar homogeneity tests as described
above, but this time using the YA parcellation applied to each
non-YA cohort data. For each non-YA cohort, a Z-score
( )Zhomogeneity was computed based on the mean homogeneity
using YA parcellation applied to the cohort’s data and a null
model comprising mean homogeneities from 100 randomly
rotated YA parcels. A comparison was made between the
Z-scores, instead of mean homogeneities, from cohort-specific
and YA parcellations to avoid the issue of parcel sizes affecting
homogeneity measures.

For each dataset, both the cohort-specific and YA parcella-
tions (generated from Dataset 1) were applied to each cohort’s
data and Zhomogeneity values were computed and compared for
each type of parcellation.

Evaluation of Parcellation Quality Using Silhouette Coefficient
The Silhouette coefficient (Rousseeuw 1987) describes the reli-
ability of assigning vertices to their parcels (Yeo et al. 2011;
Craddock et al. 2012; Arslan et al. 2018):

= −
( )

b a
b a

Silhouette coefficient
Max ,

i i

i i

where bi is the mean of dissimilarity values (1 – correlation
coefficients) between the whole-brain RSFC map of vertex i and
the whole-brain RSFC maps of all the vertices in the immedi-
ately adjacent parcels, and ai denotes the mean of dissimilarity
values between the whole-brain RSFC map of vertex i and the
whole-brain RSFC maps of all other vertices in the same parcel.
Silhouette coefficient ranges from −1 to 1 wherein a positive
value suggests the RSFC map of a given vertex is more similar
to all other vertices in the same parcel relative to the vertices
in the immediately adjacent parcels.

For each dataset, both the cohort-specific and YA parcella-
tions (generated from Dataset 1) were applied to each cohort’s
data and Silhouette coefficient values were computed for each
type of parcellation. Silhouette coefficient values using cohort-
specific and YA parcellations were compared using a 2-sample
t-test.

Comparison of Spatial Similarity of Parcellations Across Cohorts
Two techniques were used to assess the spatial similarity of
the YA cohort parcellation with each non-YA cohort’s
parcellation:

i. Matching parcels: Parcels between each non-YA cohort and
YA were matched based on the spatial overlapping percen-
tages computed using Jaccard index. The formula of over-
lapping percentage was calculated as follows:

=
∩

∪

P P

P P
Overlap

A B

A B

i j

i j

where |⋅| denotes the number of objects (vertices) in a set,
PAi represents the ith parcel of cohort A and PBj is the jth
parcel of cohort B. This formula takes spatial features
including shape, size, and location of parcels into account
to provide an objective measure of the spatial similarity

between 2 parcels across distinct cohorts. Parcels were
matched with one another based on their maximal overlap
across cohorts. This criterion can result in multiple matches
for a given parcel. The average parcel overlap was calcu-
lated for each cohort relative to one another.

Parcel matching across cohorts was evaluated in com-
parison to a null model. The null model comprised 100
overlapping percentages of matched parcellation pairs, in
which each non-YA cohort’s parcellation was matched to
each of 100 randomly rotated YA parcellations. A Z-score of
overlapping percentages ( )Zoverlap was computed to quantify
the matching results in comparison to the null model (for
parcels matching to the rotated medial wall, the averaged
overlapping percentage of its successfully matched parcel
pairs was used):

=
−

Z
M M

SD
overlap

overlap overlap

overlap

actual null

null

where Moverlapactual is the mean of overlapping percentages
of all matched parcels in each cohort-pair, Moverlapnull is the
mean of the null model, and SDoverlapnull

represents the stan-
dard deviation of the null model.

Spatially matched parcels were also compared in terms
of the similarity of their RSFC using the combined dataset
(the results were qualitatively similar when analyzed within
each dataset). To do so, for each subject in a given cohort,
the parcellation of this cohort was applied to the subject’s
vertex-wise RSFC time series data to extract mean time
series for each parcel. The mean time series of each parcel
was then correlated with the time series of all cortical verti-
ces to generate a RSFC map for each parcel in each subject.
Finally, the RSFC map for each parcel was averaged across
all subjects in the cohort. The RSFC similarity value of any
matched parcels between 2 cohorts was calculated by corre-
lating their cohort averaged RSFC maps. The RSFC similarity
was quantified in comparison to a null model, which was
generated as described above, using the formula (for parcels
matching to the rotated medial wall in some null model
matched parcellations, the averaged RSFC similarity of its
successfully matched parcel pairs was used):

=
−

Z
M M

SD
RSFC

RSFC RSFC

RSFC

actual null

null

where MRSFCactual is the mean of RSFC similarity values of all
matched parcels in 2 actual parcellations, MRSFCnull is the
mean of the null model, and SDRSFCnull represents the stan-
dard deviation of the null model.

ii. Adjusted rand index (ARI): The spatial similarity of 2 parcella-
tions was quantified using the ARI (Hubert and Arabie 1985),
a measure that represents a count of the vertices that are
assigned to the same or different parcels (Thirion et al.
2014; Arslan et al. 2018).

A Z-score ( )ZARI was calculated based on ARI of actual parcel-
lations between each non-YA cohort and YA in comparison
to a null model. The null model comprised 100 ARI between
each non-YA cohort’s actual parcels and 100 randomly
rotated YA parcels:

=
−

Z
MARI

SD
ARI

actual ARI

ARI

null

null
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where ARIactual is the ARI between 2 actual parcellations,
MARInull denotes the mean ARI of the null model, and SDARInull

is the standard deviation of the null model.

Measurement of Brain Structure and Anatomical
Alignment

To evaluate whether specific factors may relate to between-
cohort parcellation differences, the spatial distribution of dif-
ferences in cortical thickness and anatomical alignment was
quantified across cohorts. All available cortical thickness and
anatomical deformation data from both Datasets 1 and 2 were
used, although the results were qualitatively similar when ana-
lyzed within each dataset. Data from subjects identified as hav-
ing excessive head motion (see Processing of Cortical Surface
and Subcortical Anatomy for details) were excluded from the
analysis.

Cortical Gray Matter Thickness
Each subject’s cortical gray matter thickness was calculated in
FreeSurfer by computing the distance between the white mat-
ter surface and pial surface at each vertex along the cortical
mantle. The resulting “native” space vertex-wise thickness
map was then registered to the 164k fs_LR atlas using a single
deformation map in a one-step resampling procedure.
Individual vertex-wise thickness maps were averaged across
subjects to create each cohort’s cortical thickness maps, pro-
ducing a 164k × 1 vector (per hemisphere) wherein each value
represents the average cortical gray matter thickness of each
cohort at a given vertex. The cohort-average maps were down-
sampled from 164k fs_LR atlas to 32k fs_LR atlas using
Connectome Workbench (Glasser et al. 2013) so that the resul-
tant images were in the same resolution as anatomical defor-
mation maps and boundary maps.

Anatomical Deformation
The deformation map quantifies the data resampling density at
each surface vertex from individual native space to atlas space,
so it was used to approximate the degree of anatomical realign-
ment due to variability of anatomy relative to the surface atlas.
Each individual’s anatomical deformation map corresponds to
the transformation between their native space surface mesh
and the atlas-registered surface mesh, which was then
resampled to 32k fs_LR atlas surface, resulting in a 32k × 1 vec-
tor (per hemisphere). Within each cohort, the individual maps
were averaged across subjects to create a mean cohort defor-
mation map.

Agreement of Parcellations With Task-Evoked fMRI
Maps

The quality of cohort-specific parcellations was evaluated
based on the degree to which the parcels captured task-evoked
estimates. We hypothesized that cohort-specific parcellations
should be able to capture more uniform signals in task-evoked
estimates within each parcel, in comparison to applying parcels
defined from younger adults to cohorts of other ages. For each
cohort, the corresponding cohort-specific parcellation was first
applied to the cohort’s mean beta map for each task condition.
Next, the SD of beta values within each parcel was computed
and averaged across conditions of each task. The mean SD
across all parcels was computed to summarize the general
agreement of the parcellation with beta maps of each task. A Z-
score ( )ZSD was computed based on the averaged SD of each

cohort-specific parcellation and a null model of 100 averaged
SD values from applying 100 random rotations of the cohort-
specific parcellation to the beta map, using the following for-
mula (any parcel rotated into the medial wall in some null
model rotations was assigned with the averaged SD of the
same parcel that did not fall into the medial wall; the YA par-
cellation applied to each non-YA cohort’s beta map was evalu-
ated using the same method):

=
−

Z
M M

SD
SD

SD SD

SD

actual null

null

where MSDactual denotes the mean of SD values across actual
parcels, MSDnull is the mean of the null model, and SDSDnull is
the standard deviation of the null model.

Brain Network Analysis

Individual RSFC data in Dataset 2 were used in brain network
analysis in order to confirm our previously reported findings
(Chan et al. 2014) within the same dataset, and also avoid intro-
ducing potential variance related to within-subject longitudinal
changes of brain networks that would accompany inclusion of
both datasets.

Construction of Brain Graphs
Each subject’s brain graph was constructed using network
nodes that were defined according to the individual’s cohort-
specific parcels. The average time series across all vertices
within each parcel was computed and cross-correlated with
the average time series for every other parcel, producing a
node-to-node correlation matrix for each individual. A Fisher’s
z-transformed r-matrix (z-matrix) was then derived by convert-
ing correlation coefficients into z-values using Fisher’s r-to-z
transformation. Although negative edges may represent mean-
ingful network features (Rubinov and Sporns 2011), they were
excluded from further analyses owing to the ambiguity in inter-
preting the negative correlations introduced by the necessary
step of global signal regression (Power et al. 2017) and in accord
with our previous work (Chan et al. 2014, 2017, 2018).

Community Detection and Comparison
Network communities of the node-wise graphs of all cohorts
were identified using the Infomap algorithm (Rosvall and
Bergstrom 2008). Specifically, a bootstrap approach was used to
detect each cohort’s RSFC communities with the following
steps: 1) 1000 bootstrap samples, each of which randomly sam-
pled (with replacement) the same number of subjects from
within the cohort, were created for each cohort. 2) The z-matri-
ces were averaged across all subjects for each bootstrap sample
and thresholded across 3–10% edge densities (in steps of 0.1%
from 3% to 5% and in steps of 1% from 5% to 10%). This resulted
in 1000 matrices at each edge density for each cohort.
Correlations between nodes whose centroids were less than
20mm apart were excluded from further analyses. 3) Community
detection was performed on each thresholded mean z-matrix,
resulting in 1000 community assignments for each cohort, at
each edge density. The community assignments were labeled
based on maximal overlap with a set of published RSFC func-
tional systems (Power et al. 2011). 4) At each edge density, the
most common assignment (mode) across the 1000 community
assignments was selected as the node’s reliable community
assignment.
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To create the final community assignment for each cohort, a
“consensus” procedure was used to collapse communities at
each edge density. To do so, the system assignments of nodes
at the sparsest edge densities were used, at which finer struc-
tures of the brain network could be revealed. Communities
with 5 or fewer nodes (i.e., parcels) were excluded and their
nodes were reassigned to the communities with 6 or more
nodes at less sparse densities. Communities only present at
one threshold were excluded. For a few nodes that belonged to
major systems across most edge densities but were separated
into small communities present only when connections
became very sparse, we manually reassigned these nodes to
the major systems from which they originated. For example,
several parcels in the right lateral prefrontal cortex were pre-
dominantly assigned to the default mode community across
most thresholds in ML, and a few parcels in the left lateral pre-
frontal cortex were predominantly assigned to the frontal–pari-
etal community across most thresholds in OL. In the sparsest
graph-density thresholds, these parcels were separated from
the system they were assigned to across most densities and
became isolated into independent communities. Since this was
more of an over-partitioning effect due to the loss of edges in
highly sparse matrices rather than the reflection of the whole
assignment history across thresholds, we manually reassigned
these parcels to the networks from which they originated. The
unaltered assignments are presented in Figure S8. We note that
summarizing community detection based on a consensus
approach does not provide precise descriptions of every
detected detail across edge densities, but rather a summary of
general structure of the network across graph densities.

The spatial similarity of each system between each non-
YA and YA cohort was quantified. Specifically, for each sys-
tem, we calculated the Dice coefficient of the system maps
between each non-YA and YA cohort ( )DiceCoefactual . To gen-
erate a null model, we created 100 random rotations of YA
system maps, and then calculated 100 Dice coefficients
(DiceCoefnull) between each non-YA cohort system map and
the randomly rotated system maps. Any non-YA system map
falling within the medial wall of the randomly rotated YA sys-
tem was assigned the mean value of all other null model Dice
coefficients (where non-YA system did not fall into the medial
wall). Finally, Zsystem was computed using the coefficients
with the formula below.

=
−

Z
MDiceCoef

SD
system

actual DiceCoef

DiceCoef

null

null

where MDiceCoefnull is the mean of 100 DiceCoefnull and
SDDiceCoefnull represents the SD of 100 DiceCoefnull. As the mouth
somatomotor system did not appear in 3 cohorts but was origi-
nated from the hand somatomotor system at less sparse edge
density, we combined the 2 somatomotor systems together for
this analysis.

System Segregation
A measure of brain system segregation was computed to sum-
marize values of within-system correlations in relation to
between-system correlations (Chan et al. 2014). Without
thresholding the correlation coefficients, this measure takes
the differences in mean within-system and mean between-
system correlation as a proportion of mean within-system cor-
relation, as noted in the following formula:

= −Z Z
Z

System Segregation w b

w

where Zw represents mean connectivity (Fisher z-transformed
correlation coefficients) between nodes within the same system
and Zb denotes mean connectivity between nodes of different
systems. Based on the derived community assignments, sys-
tem segregation was computed across all systems. In addition
to the network’s overall system segregation summarizing con-
nectivity across the entire brain network, system segregation
was also calculated for two different types of functional sys-
tems (sensory-motor systems and association systems).
Sensory-motor systems are primarily involved in processing
sensory information (e.g., the visual system) and motor infor-
mation (e.g., the hand somato-motor system), whereas associa-
tion systems primarily integrate information across a wide
range of tasks (e.g., cingulo-opercular control system). The sys-
tem segregation of a given system type (i.e., association sys-
tems or sensory-motor systems) describes the extent to which
systems within a given system-type (e.g., default mode, fron-
tal–parietal, and others categorized as association systems) are
segregated from all other functional systems. For more specific
system type to system type segregation, such as association-to-
association system segregation, Zw is the mean within-system
connectivity of each association system, and Zb is the mean
between-system connectivity of each association system to all
other association systems. For the system segregation between
different system types (e.g., association-to-sensory system seg-
regation), Zw is the mean within-system connectivity of each
association system, and Zb is the mean between-system con-
nectivity of each association system to all sensory-motor sys-
tems. System segregation was then calculated based on the
average mean within-system connectivity (Zw ) and average
mean between-system connectivity (Zb ) values.

Results
The Locations of Prominent RSFC-Defined Boundaries
are Consistent Across Age, Although Increasing Age is
Associated With Less Parcellation Similarity Relative to
Younger Adults

RSFC-defined parcellation maps were derived from boundary
maps that identify locations where RSFC patterns exhibit abrupt
transitions across the cortical surface—these boundary maps
delineate putative borders between brain areas (Cohen et al.
2008; Wig, Laumann and Petersen 2014; Gordon et al. 2016). Age
cohort-specific boundary maps were computed for participants
in Dataset 1 (Table 1) by applying this method to data averaged
across groups of subjects that were sampled across the healthy
adult lifespan. Visual inspection of boundary maps reveals that
locations of cortical boundaries are similar across all cohorts in
numerous locations, while other RSFC boundary features differ
across one or more cohorts’ maps (Fig. 1A). Dice coefficients
(spatial similarity indices) were used to quantify the similarity
between the young adult (YA) boundary map relative to each
non-YA cohort’s boundary map (ME, ML, OE, OL). All boundary
maps were first thresholded to retain the strongest borders (top
1–100%, in steps of 1%; Fig. S2). The Dice coefficient between
each non-YA cohort’s boundary map and the YA boundary
map was significantly greater than null distributions built
from randomly rotated versions of the YA map across thresh-
olds (all Ps < 0.01). However, there was a nominal decline of
boundary similarity from younger to older cohorts, suggesting
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that functional boundaries tend to be less similar to younger
adults with increasing age (e.g., for top 50% of the boundaries,

= [ ][ ]Z 24.56, 24.59, 15.63, 9.91boundary maps ME,ML,OE,OL , Ps < 0.01).
Despite the quantitative differences across cohorts, direct
evaluation of border overlap revealed that many of the stron-
gest borders were present in each of the 5 independent cohort
maps, providing evidence that certain prominent area features
do not differ across the healthy adult lifespan (Fig. 1B).

Cohort-Specific Parcellations Exhibit Better Estimates of
Parcel Quality Compared With the YA Parcellation Map

An area parcellation map was created for each age cohort from
Dataset 1 by applying a watershed edge detection algorithm to
the cohort’s RSFC boundary map (Fig. 2A). The total number of
parcels identified in each parcellation map was comparable
across cohorts, ranging from 468 to 522. And the numbers of
parcels in left and right hemispheres were comparable across
all cohorts (left hemisphere: 242 ± 13, right hemisphere: 239 ±
12). The difference in mean parcel surface area between
cohorts was not significant (F(4, 2395) = 2.32, P = 0.055; Table S1).

To determine whether the cohort-specific parcels represent
valid estimates of functional parcellations (i.e., putative brain
areas), it is important to examine whether parcels exhibit inter-
nal uniformity of the parcellation features (i.e., the parcels
enclose sets of vertices with similar connectivity profiles) rela-
tive to null distributions. Parcel RSFC homogeneity was calcu-
lated using each parcel’s RSFC patterns across all constituent
vertices (Laumann et al. 2015; Gordon et al. 2016). Mean homo-
geneity for each cohort’s parcellation was compared with an
appropriate null model (RSFC signal homogeneity derived from
randomly rotated parcellations of the same cohort; see
Materials and Methods) to allow statistical evaluation. For each

cohort’s parcellation map, mean homogeneity of the parcella-
tion was significantly greater than its corresponding null model
(all >Z s 3.84homogeneity , Ps < 0.01; Fig. 2B).

A central hypothesis of the present report is that cohort-
specific parcellations are better suited to their own data than a
YA-defined parcellation. Accordingly, we examined whether YA
parcellation applied to each non-YA cohort’s data would exhibit
higher parcel homogeneity than cohort-specific parcellations. For
each cohort, the YA parcellation exhibited homogeneity that was
better than the null model (all >Z s 2.01homogeneity , all Ps ≤ 0.02).
Notably, however, the Zhomogeneity derived from YA parcellation
was consistently lower than that measured from cohort-specific
parcellations in every case (Fig. 2C). This provides evidence that
while parcellation defined from young adults may capture fea-
tures of older cohorts’ data, it is less effective at capturing the
precise functional divisions in older individuals.

One caveat to the observations noted above is that parcel
quality evaluation (homogeneity testing) was performed on
the same dataset used for parcel generation. As such, a second
dataset was used to further evaluate cohort-specific parcel
quality (Fig. 2D). Parcels defined from Dataset 1 were applied
to RSFC patterns of Dataset 2 (the participant age distribution
and composition of participants across cohorts in Dataset 2
was comparable to that of Dataset 1; Table 1). Results were
consistent with those derived using Dataset 1: all cohort-
specific parcellations were more homogeneous than their
respective null models. Specifically, except for OL that showed
a marginal effect (P = 0.06), each cohort exhibited a significant
difference between their parcellations and their null models
(all Ps ≤ 0.03). We also observed a decline of Zhomogeneity with
increasing age, suggesting that the parcels in older cohorts are
less homogenous than those of younger cohorts, possibly due
to greater variability across participants within cohorts in

Figure 1. RSFC-based boundary maps exhibit consistent boundaries across adult cohorts in Dataset 1. (A) RSFC boundary maps of 5 age cohorts: brighter colors indi-

cate higher probability of RSFC pattern transition (i.e., a putative area boundary). Darker colors correspond to vertices with stable RSFC patterns (i.e., less likely to be

area boundaries). Lateral and medial views of the left hemisphere are depicted. (B) Conjunction images depicting locations where stronger boundaries are consis-

tently identified across cohorts. Each individual cohort map from (A) was thresholded to its top 50% (left) and 25% (right) boundary map values, binarized, and

summed to reveal boundary features that are consistently identified across at least 2 and up to all 5 cohorts.
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Dataset 2. In comparison to YA parcellation, the cohort-
specific parcellations exhibited greater Zhomogeneity in ME, ML,
and OL cohorts, supporting the observations for age-related
differences in area parcellation. In addition, for the OL cohort,
the homogeneity derived from applying YA parcellation to the
OL data was not significantly better than the corresponding null
model (P = 0.22). For the OE cohort, the Zhomogeneity value for YA
parcellation was comparable to that of the OE parcellation.

While homogeneity tests evaluate whether the signals
within each parcel are uniform, measurement of the Silhouette
coefficient quantifies parcellation quality by summarizing how
similar the RSFC profile of each vertex is to other vertices in the
same parcel relative to the vertices in all immediately adjacent
parcels. In Dataset 1, the mean Silhouette coefficient of cohort-
specific parcellations was significantly higher than the Silhouette
coefficient of YA parcellation applied to each cohort’s data (ts >
10.05, Ps < 0.001; Fig. 2E). This observation was replicated when
the parcels were evaluated in Dataset 2 (ts >4.27, Ps < 0.001;
Fig. 2F). Collectively, the results suggest that cohort-specific

parcellations exhibit better “fit” to data from their corresponding
age range in comparison to YA parcellation, and provide evi-
dence for some age-related differences in area parcellation.

Evaluation of Spatial, Functional, and Anatomical
Features of Boundaries and Parcellations Across
Cohorts

While many RSFC-defined boundaries are consistently detected
across age-cohorts, cohort-specific parcellations exhibit super-
ior parcel quality (i.e., higher homogeneity and Silhouette coef-
ficient) when applied to data from their own age range relative
to applying the YA parcellation, implying possible age-related
differences in the locations of some brain area boundaries. To
maximize the amount of available data towards deriving more
reliable parcellations, the 2 datasets were merged and parcella-
tions from the combined dataset were created (Fig. 3 and
Supplementary Results for additional details). In this combined
dataset parcellation, the number of parcels was again

Figure 2. Cohort-specific functional parcellations of Dataset 1 derived from RSFC-based boundary detection are of high quality and provide a better “fit” to data from

their own age range, compared with parcellation defined from younger adults. (A) Functional parcels of 5 age cohorts, calculated from their corresponding boundary

maps. (B) For each cohort-specific parcellation, parcels exhibit significantly greater homogeneity of their vertices’ RSFC maps (black dots) relative to corresponding

null model iterations (gray dots). (C) Z-scores of homogeneity values are plotted for cohort-specific parcellations and YA parcellation applied to each cohort’s dataset.

The homogeneity of both cohort-specific and YA parcellations are significantly higher than their corresponding null models, however, cohort-specific parcellations

provide a better representation of their corresponding data, as indicated by higher homogeneity Z-scores. The homogeneity values in Dataset 1 were evaluated from

the same data as was used to derive the parcellations. (D) As in (C), except using a separate dataset (Dataset 2) for homogeneity evaluation. Cohort-specific parcella-

tions exhibit higher homogeneity Z-scores than YA parcellation in ME, ML, and OL cohorts. (E, F) Mean Silhouette coefficients of cohort-specific parcellations are sig-

nificantly higher than YA parcellation in both datasets, suggesting greater reliability of cohort-specific parcellations to define brain areas in their corresponding age

ranges. Error bars indicate 95% confidence intervals of mean coefficients. Significance levels for Z-scores of homogeneity and 2-sample t-tests of Silhouette coefficient:

*P < 0.01; **P < 0.001.
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comparable across cohorts, and the mean parcel surface area
did not differ across cohorts (Table S2). This combined dataset
parcellation was used for subsequent evaluation and compari-
son of anatomical and functional properties.

The Spatial Overlap of Parcels Predicts Similarity of RSFC Patterns
Across Age
Visual inspection reveals that while some parcels are consis-
tent across cohorts in terms of size, shape, and location, others
look quite different (see Text S2, Fig. S4, and Table S2 for com-
parison of parcel number and size). The ARI was computed to
quantify the spatial similarity between the YA parcellation
map and each of the remaining cohort’s parcellation maps. In
each comparison, the ARI was greater than its corresponding
null model, indicating the spatial similarity between the YA
parcellation and each non-YA parcellation was significant (all

>Z s 9.05ARI , Ps < 0.01). However, the ARI parcellation similarity
statistic declined with increasing age (ZARI for ME, ML, OE, and
OL, respectively: 21.34, 16.72, 12.45, and 9.05), providing evidence
that when compared with YA parcels, the spatial similarity of
derived parcels exhibit decreasing similarity with increasing age.

To more specifically map spatial consistency of parcels
across cohorts, the spatial overlap between every parcel in
each non-YA cohort’s parcellation map and every parcel in the
YA parcellation map was computed, using maximal overlap
percentage (see Materials and Methods). For every comparison
(i.e., ME to YA, ML to YA, OE to YA, OL to YA), the mean over-
lapping percentage of matched parcels was found to be signifi-
cantly higher than its corresponding null model (all

>Z s 9.16overlap , Ps < 0.01; Fig. 4A). However, the spatial distribu-
tion of this overlap varied across the cortical surface (Fig. S6C).

We hypothesized that parcels that are spatially similar to
one-another would also exhibit similar patterns of RSFC, across
cohorts. The RSFC profile of each parcel was calculated as the
correlation between the mean time series of the parcel and the
time series of all cortical vertices for each subject; the RSFC of
the parcel was then averaged across all subjects of each cohort
(see Materials and Methods). For all non-YA cohorts to YA-
cohort comparisons, the RSFC similarity of spatially matched
parcels was consistently high (0.691–0.869; see Materials and
Methods for calculation) and significantly greater than corre-
sponding null models (all Ps < 0.01). However, ZRSFC declined
with increasing age ( = [ ])[ ]Z 11.52, 8.18, 7.90, 5.28RSFC ME,ML,OE,OL ,
suggesting a divergence in RSFC patterns that paralleled their
decreasing parcel overlap with increasing adult age. Consistent
with this, the spatial overlap between parcels directly predicted
RSFC similarity in each non-YA cohort to YA-cohort parcellation
comparison (rs > 0.417; Ps < 0.0001), indicating that parcels with
greater spatial similarity also exhibit greater RSFC similarity
across cohorts. Altogether, the results reveal that parcels
matched based on spatial features are highly similar in their
functional fingerprints as well. The analysis of large-scale RSFC
network patterns follows in a later section.

Cohort-Specific Parcellations Provide Better Convergence With
Task-Related Functional Activity
Previous studies have demonstrated a convergence between
RSFC boundaries and areas defined by task-evoked activity
(Wig, Laumann and Petersen 2014; Laumann et al. 2015; Glasser
et al. 2016; Arslan et al. 2018). We hypothesized that relative to
the parcellation defined from younger adults, cohort-specific
RSFC parcellations would provide better estimates of task-
related variance for data from their corresponding age cohorts.

Specifically, we determined whether cohort-specific parcels
would exhibit greater homogeneity in their cohort’s mean func-
tional (BOLD) activity; this was tested by computing and com-
paring the SD values of task activity within parcels. For the
word judgment task, the SD of beta values in cohort-specific
parcellations were significantly lower than their corresponding
null models (all Ps ≤ 0.05; Fig. 4B), and relative to the YA parcel-
lation (which did not significantly differ from their null models
for older cohorts, i.e., OE and OL). This suggests that relative to
the YA parcellation, cohort-specific parcellations are better able
to capture uniform task-evoked signals within parcels. For the
scene classification task, the difference between cohort-specific
parcellations and their null models was consistently lower
than that of YA parcellation, although these differences were
only significant in the OE cohort (Fig. 4C). Curiously, the SD of
beta values for the YA parcellation applied to younger adult
data was not lower than the corresponding null models, sug-
gesting that younger adults exhibited a high degree of variance
in their task-activation maps during scene classification.

Differences in Brain Structure and Anatomical Alignment Explain a
Significant Portion of the Parcellation Differences Across Age
It’s visually clear that while many of the parcellation bound-
aries are consistent across cohorts (Fig. 1B and Fig. S4C), there
is also increasing variability with increasing age. Consistent
with these impressions, the spatial correlation between each
cohort’s unthresholded boundary map was significant when
compared with the YA boundary map (r[ME–YA,ML–YA,OE–YA,OL–YA] =
[0.529, 0.448, 0.334, 0.248], Ps < 0.0001), although the percent vari-
ance explained decreased with increasing age. Specifically,
increasing age was accompanied by a greater number of loca-
tions (vertices) corresponding to medium probability RSFC trans-
ition zones (less likely to be boundaries), and a fewer number of
locations (vertices) both corresponding to higher probability
transition zones (more likely to be boundaries) and to lower
probability RSFC transition zones (more likely to be areas;
Fig. 5A). We hypothesized that some of the differences in parcel-
lation across age may be due to underlying age-related differ-
ences in brain anatomy (Good et al. 2001; Apostolova et al. 2012).
Relatedly, the increasing variability in cortical structure across
adult cohorts (Magnotta et al. 1999; Sowell et al. 2003; Raz et al.
2005) could also result in differing variability of anatomical
alignment to the surface atlas space, which would impact esti-
mates of group-derived parcellation features. To directly evalu-
ate these hypotheses, vertex-wise boundary map differences
were quantified across cohorts and compared with vertex-wise
differences of both mean gray-matter cortical thickness and
mean anatomical deformation.

To determine whether the differences in boundary maps
could be explained by the variability of cortical thickness and/
or anatomical deformation, the vertex-wise difference between
each cohort’s boundary map and the YA boundary map was
computed. For each cohort, the absolute value of the vertex-
wise boundary map difference (non-YA cohort – YA cohort)
was entered into a multiple regression analysis as a dependent
measure, and the absolute value of the vertex-wise cortical
thickness difference and vertex-wise anatomical deformation
difference were entered as independent predictors. The models
were significant for both of the older-age cohorts (OE: F(2,59409) =
16.22, P < 0.0001; OL: F(2,59409) = 59.46, P < 0.0001), but not the
middle-age cohorts (ME: F(2,59409) = 0.72, P = 0.487; ML: F(2,59409) =
1.13, P = 0.322). For the older cohorts, both the main effect of
cortical thickness difference (OE: t(59409) = 4.23, P < 0.0001; OL:
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t(59409) = 8.60, P < 0.0001; Fig. 5B) and deformation difference
(OE: t(59409) = 3.78, P < 0.0001; OL: t(59409) = 6.32, P < 0.0001;
Fig. 5C) were statistically significant. The interactions between cor-
tical thickness differences and deformation differences on bound-
ary map differences were not significant. The results suggest that
for older cohorts, age-related differences in cortical thickness and
anatomical alignment variability explain some of the boundary dif-
ferences between older and young adults at a vertex level.

An alternative approach for performing the above evalua-
tions is to first threshold the boundary maps (Fig. 1B), deter-
mine the amount of overlap between each non-YA cohort with

YA, and then examine if the nonoverlap coincides with locations
where the cohort and YA differ in cortical thickness, anatomical
deformation, or their intersection. To visually illustrate this, we
present each cohort’s thresholded boundary map (at 50%), and
color each cohort’s boundaries based on whether they overlap
with YA boundaries (blue color in Fig. 5D). In many cortical loca-
tions where there is an absence of overlap between a given
cohort’s boundaries and YA boundaries, we observed differences
in cortical thickness, anatomical deformation, or their intersec-
tion (Fig. 5E). This was consistent across a broad range of thresh-
olds (Fig. 5F; see Fig. S7 and Text S3 for additional results).

Figure 3. RSFC-based boundary maps and parcellation maps using the combined dataset. Datasets 1 and 2 were combined to create a final set of boundaries and par-

cellation maps. (A) RSFC boundary maps of 5 age cohorts: brighter colors indicate higher probability of RSFC pattern transition (i.e., a putative area boundary). Darker

colors correspond to vertices with stable RSFC patterns (i.e., less likely to be area boundaries). (B) Functional parcels of 5 age cohorts, calculated from their corre-

sponding boundary maps. Lateral and medial views of the left hemisphere are depicted here; see Supplemental Information (Fig. S4) for right hemisphere views and

maps of boundary overlap.

Figure 4. Spatial overlap of matched parcels between non-YA and YA cohorts declines with age; cohort-specific parcellations provide better estimates of task-evoked

functional activity patterns relative to YA parcellation. (A) For each non-YA and YA cohort pair, the spatial overlap of matched parcels (black dots) are significantly

higher than the spatial overlap of matched parcel rotations (the null model; gray dots). The distance between the black dot and gray dots, which was quantified by

Zoverlap (see Materials and Methods), declines across age cohorts suggesting decreasing spatial overlap of parcellations. (B) During a word judgment task, the variance

(SD) of mean functional activity data within cohort-specific parcels is significantly lower than null models, whereas there is no significant difference between YA par-

cellation and its null model in older cohorts. The dotted line denotes Z = 0 where the SD of cohort parcels equals the SD of their rotations (i.e., parcellations would

exhibit the same performance as their null models). (C) During a visual scene judgment task, statistically significant differences are only present for OE cohort-

specific parcels, although Z-scores of cohort-specific parcellations are lower than YA parcellations applied to non-YA cohort task data. Significance levels for spatial

overlap analysis and standard deviation test: **P ≤ 0.01; *P ≤ 0.05; ~P ≤ 0.1.
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Overall, these results supported the observation that the
majority of area boundaries are consistent when comparing the
younger adult boundary map to each of the non-YA cohort’s
boundary map, and that a large portion of the nonoverlap can
be accounted for by differences in cortical structure and
within-cohort variability in anatomical alignment.

Large-Scale Network Analysis of the Adult-Lifespan
Using Cohort-Specific Nodes

Resting-State Community Organization is Similar Across Age
We have previously reported that network community struc-
ture is comparable across the adult lifespan (Chan et al. 2014,

2017). These observations were based on graphs built using
nodes defined from young adults. Although older cohorts’ par-
cellations are similar to YA parcellation, using cohort-specific
parcels as brain network nodes may reveal previously unidenti-
fied differences in functional network architecture across the
adult lifespan. Using a consensus community-detection approach
similar to previous literature (Gordon et al. 2016; Chan et al.
2017), subnetworks (communities) for each cohort were calcu-
lated across a range of edge-density thresholds using each
cohort-specific parcellation as their brain network nodes (Fig. 6;
see Fig. S8 for additional description of community assignments).
Commonly described functional systems (Power et al. 2011; Yeo
et al. 2011) were identified for each cohort across the adult life-
span. Furthermore, the community detection revealed highly

Figure 5. Locations that exhibit boundary differences (non-YA cohorts vs. YA) largely coincide with locations that exhibit differences in cortical thickness and ana-

tomical alignment across cohorts. (A) depicts the boundary value distribution of 5 cohorts; both x axis (boundary values) and y axis (number of vertices) were trans-

formed using a logarithmic function for better visualization. Relative to the younger adult cohort, older adult cohorts (OE and OL) exhibit more vertices corresponding

to medium probability RSFC boundary values, and less vertices exhibiting both higher (more likely to be area borders) and lower probability boundaries (more likely

to be areas). (B) Boundary differences are significantly correlated with thickness differences in older cohorts (OE and OL), but not middle-age cohorts (ME and ML).

(C) Boundary differences are significantly correlated with deformation differences for OE and OL, indicating that the vertices where there are greater boundary differ-

ences are also the locations of greater deformation differences for older cohorts (see Text S3 for details). (D) The similarity of the boundaries between each non-YA

and YA cohorts were calculated based on spatial overlap across multiple thresholds of maps. At a threshold of 50%, the majority of the boundaries overlap with each

other (vertices in blue), indicating high similarity between the 2 cohorts across the cortex. For the locations where boundaries were present in the YA cohort but

absent in the non-YA cohorts, the majority of those vertices either exhibit between-cohort differences in cortical thickness (red), anatomical alignment (i.e., deforma-

tion; yellow), or both (orange). Vertices colored green correspond to locations where a boundary is present in the YA map but absent the non-YA map, and did not

exhibit between-cohort differences in neither cortical thickness nor anatomical alignment. The distribution and proportion of these relationships is plotted in (E).

While the majority of YA vertices exhibit overlap with non-YA cohort boundaries, the remainders are largely locations that exhibit differences in the deformation

map and cortical thickness maps (all thresholded to retain the top 50% of vertices). (F) The correspondence between boundary overlaps and thickness/alignment dif-

ferences exhibits similar patterns across thresholds (top 1–100% of possible vertex values, in steps of 1%).
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similar network structures across cohorts; for each of the 10
major systems depicted in Figure 6, the spatial similarity between
the YA community map and each non-YA community map was
significantly greater than the corresponding null models, suggest-
ing significant spatial overlap in large-scale brain systems across
the adult lifespan (all >Z s 3.09system , Ps ≤ 0.04). For these analy-
ses, the mouth and hand somatomotor systems were combined
(the mouth somatomotor system being separated from the hand
somatomotor system in ME, ML and OE cohorts when the graphs
were sparser, but this division was absent in YA and OL); the
auditory community was not detected in the ML cohort, thus it
was not included in this comparison.

System Segregation Decreases With Increasing Age Using Cohort-
Specific Nodes
Cohort-specific parcellations that are able to define areas with
greater precision should provide more accurate estimates of
large-scale network properties. We applied cohort-specific par-
cellations to each cohort’s RSFC data to evaluate whether more
accurate node definition alters the observed relationships between
age and a measure of subnetwork organization: system segrega-
tion (Wig et al. 2011; Chan et al. 2014). System segregation charac-
terizes the separation of the brain’s subnetworks by comparing
connectivity within and between systems. Increasing age is asso-
ciated with decreasing segregation of brain systems, although the
observations thus far have been based on using nodes defined in
young adults (Betzel et al. 2014; Geerligs et al. 2015; Chan et al.
2014; for review see Wig 2017). As accurate network modeling
necessitates biologically plausible and accurate nodes (Smith et al.
2011; Wig et al. 2011), it is possible that the reports of age-
accompanied desegregation have been due to decreased accuracy
of sampling the underlying node features with increasing age;
using cohort-specific nodes could address this possibility.
Networks using the cohort-specific node set confirmed the previ-
ously reported decrease of network segregation across age (r =
−0.594, P < 0.001; Fig. 7A). Examining distinct types of systems (i.e.,
sensory-motor and association systems) revealed that the segre-
gation of both types of systems exhibited a cubic relationship with
age (sensory-motor systems: F(3,218) = 63.8, P < 0.001; association
systems: F(3,218) = 46.99, P < 0.001; Fig. 7B,C), as did the segregation
of sensory-motor systems from association systems (F(3,218) =
30.38, P < 0.001; Fig. 7D). These cubic age-related relationship pat-
terns were not observed in our initial report. All together, these
observations demonstrate that age-associated reductions in sys-
tem segregation are not a consequence of age-biased sampling
and labeling of brain network nodes or their associated systems,
respectively.

Discussion
RSFC-based boundary mapping methods were used to derive
area parcellations for cohorts of individuals across the adult
lifespan. Close examination of the boundaries across cohorts
revealed that the strongest parcellation boundaries were
largely consistent across the adult lifespan, suggesting a large
degree of age-invariance in the spatial location of prominent
area features. Despite the large degree of overlap, the spatial
similarity of cohort-specific boundaries relative to YA bound-
aries decreased with increasing age. These differences in spa-
tial similarity were closely coupled with differences in brain
structure and anatomical alignment between the older adult
cohorts and the younger adult cohort, providing evidence for
plausible sources of the differences in RSFC-defined parcella-
tion-features across age. Parcels defined from the boundary

maps of each cohort exhibited greater homogeneity of their
RSFC patterns relative to corresponding null models, providing
support for delineation of functionally distinct parcels that
may correspond to dissociable brain areas. While the parcels
were similar to each other in terms of parcel number, size, and
position, cohort-specific parcellations exhibited more homoge-
neous and representative estimates of resting-state and task
signals from their own age range, relative to the parcels defined
from younger adults. Using the cohort-specific parcellations to
generate cohort-specific nodes used in graph-based large-scale
RSFC network analysis demonstrated the presence and consis-
tency of multiple network communities that align with major
functional systems, in each age cohort. In addition, using
cohort-specific nodes confirmed previous observations (Chan
et al. 2014) that brain systems exhibit decreasing segregation
with increasing age across individuals. Altogether, the present
results provide an initial demonstration for age-accompanied
similarities but also variation in large-scale cortical organiza-
tion at the level of areal features, and their resultant network
structure. The collective observations have both theoretical and
practical implications towards numerous issues relevant for
the neuroscience of aging and cortical organization.

Many of the Differences in Area Parcellation Across the
Adult Lifespan are Related to Differences in Brain
Structure and Anatomical Alignment

Before discussing further the observed differences in parcella-
tion with increasing age, it is important to acknowledge the
similarities in parcellation that are prevalent across the adult
lifespan. Support for this idea is established across numerous
observations: 1) comparing younger adult parcels to each of the
cohort-specific parcels reveals greater spatial similarity than
expected by chance (Fig. 4A); 2) the locations of many of the
strongest borders are consistent across age cohorts (Figs 1B and
5, and Fig. S4C); and 3) the spatial topography of large-scale
RSFC systems defined using cohort-specific parcels exhibit high
similarity across age (Fig 6). Collectively, these results suggest
that the overall spatial organization of area parcellation is
largely maintained across the healthy adult lifespan. This con-
clusion provides support for making direct spatial comparisons
of anatomical and functional features across cohorts of adults
at different ages.

Despite the similarities in parcellation noted above, our
results provide evidence that there also exist distinctions in
RSFC-defined area parcellation across different age cohorts that
are important to consider. Direct matching of boundaries and
parcel shapes revealed progressively greater divergence from
the younger adult map with increasing age; for example, older
adult cohorts exhibited a greater number of medium-strength
RSFC-defined boundaries and a fewer number of stronger
RSFC-defined boundaries, relative to the younger cohorts.
Although we employed strict preprocessing procedures to mini-
mize the potential influence of head motion on RSFC signals
(Satterthwaite et al. 2013; Power et al. 2014), it is possible that
differences in residual head motion across cohorts contributed
to the observed parcellation differences (particularly in older
age cohorts (Van Dijk et al. 2012; Savalia et al. 2017)). While
supplemental analysis revealed that residual head movement
may impact parcel quality, this aspect of the data quality could
not fully explain the between cohort differences (Text S1 and
Fig. S3). We hypothesized that some of the age-related variation
in parcellation was associated with changes in brain anatomy
that accompany healthy aging; this hypothesis was supported
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by identifying the contribution of differences in cortical gray
matter thickness and anatomical alignment to boundary vari-
ability when comparing older cohorts to younger adults.

Numerous techniques have been developed to minimize the
impact of individual differences on brain alignment (Fischl
et al. 1999; Buckner et al. 2004; Van Essen et al. 2012) and we
employed considerable steps to ensure precise estimates of
gray matter tissue segmentation (Savalia et al. 2017) which
were used in subsequent surface-based alignment (Dale et al.
1999; Fischl et al. 1999; Ségonne et al. 2005; Van Essen et al.
2012). This likely contributed to the detection of consistent
boundaries across cohorts and homogenous parcels relative to
null models. However, gray matter cortical thickness along
with other aspects of anatomical morphometry also exhibits
increasing variability with increasing age (Sowell et al. 2003);
these differences compromise anatomical alignment for older
age groups (Fischl and Dale 2000). In keeping with this, our own
supplemental analyses revealed that increasing age was associ-
ated with increasing variability in anatomical deformation (see
Text S3 for results). At the regional level, locations that exhib-
ited thickness differences when comparing younger to older
adults also exhibited differences in anatomical deformation
(although these 2 measures were not perfectly correlated

suggesting some uniqueness, see Supplemental Information for
results). Critically, these locations also coincided with locations
where there was an absence of detected boundaries when com-
paring younger adult parcellation to older adult parcellations
(Fig. 5) and also with locations where boundaries were present
in older but not younger adults (Fig. S7), thus, providing evi-
dence that some of the parcellation differences may stem from
differences in brain anatomy.

Cortical thinning exhibits different trajectories for distinct
brain areas along the healthy lifespan (Sowell et al. 2003; Salat
et al. 2004); for example, locations typically categorized as being
part of “association cortex” (Mesulam 1990) typically exhibit the
greatest age-related anatomical change (Resnick et al. 2003; Raz
et al. 2005; Fjell et al. 2009). At a cellular level, differences in
cortical thickness can be attributed to shrinkage and loss of
neurons (Kril et al. 2004), or reduction in dendritic arborization
(Morrison and Hof 1997). Age-related cortical thinning has also
been found to relate to differences in genetic organization pat-
terns (Fjell et al. 2015), which may undermine the information
processing and storage in neurons (Small et al. 2002, 2004).
These observations have led to ideas regarding age-related dif-
ferences in the function of areas (Cabeza et al. 1997; Grady et al.
1998; Reuter-Lorenz et al. 2000). Patterns of RSFC are thought to

Figure 6. Community detection using cohort-specific parcellations reveals the presence and consistency of large-scale systems across the healthy adult lifespan.

Cohort-specific parcels were used as nodes to model RSFC networks within each cohort across a range of edge-density thresholds (see Supplementary text for details),

revealing a consistent topography of large-scale systems. Commonly identified systems are labeled as in Power et al. (2011).

Figure 7. Using cohort-specific nodes, system segregation is negatively correlated with age. (A) In line with our previous findings (Chan et al. 2014), here using systems

defined by cohort-specific community detection applied to graphs built using cohort-specific parcels as nodes, the system segregation exhibits an age-related

decrease along the healthy adult lifespan. The segregation of (B) association systems, (C) sensory-motor systems, and (D) between association and sensory systems

exhibited cubic relationships with age. Each point represents an individual; the line represents a locally weighted scatterplot smoothing (LOESS) curve of each relation

(see Results for detailed statistics).
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represent a history of coactivation patterns (Wig et al. 2011)
and functional activation patterns differ with increasing age
(Reuter-Lorenz et al. 2000; Park et al. 2004; Chan et al. 2017).
These functional differences may result in either reduced abil-
ity to detect strong cortical boundaries between adjacent
regions (under-parcellation) or detection of transitions within
areas that are exhibiting increased differentiation of RSFC pat-
terns in the older cohorts (over-parcellation). Further, as RSFC
patterns are constrained by white matter connections (Honey
et al. 2009), the variation in white matter volume (Bartzokis
et al. 2001; Allen et al. 2005) and integrity (for review see
Kennedy and Raz 2015) that accompanies healthy aging might
also contribute to the observed distinctions in RSFC-defined
parcellation maps observed here, even in locations where there
were no observed differences in cortical thinning or alignment
(i.e., the “green” vertices in Fig. 5). Related to all this, a number
of important earlier studies of regional activation patterns in
aging demonstrated differences in the spatial extent of task-
related activation (Grady et al. 1998; Reuter-Lorenz et al. 2000).
While these observations were unable to adjudicate the possi-
ble source of the differences, our results suggest that the acti-
vation differences may relate to differences in spatial
alignment of areas; an alternate possibility is that the activa-
tion differences are due to differences in the strength of area
function/borders across age, possibly in relation to experience-
related changes in cortical function. Naturally, these different
explanations are not mutually exclusive and may be related. It
remains to be seen whether and how any of the inconsistent
boundaries in the present report correspond to previously
described functional distinctions.

The Spatial Topography of Large-Scale Networks is
Consistent Across the Healthy Adult Lifespan

Age-associated similarities were not limited to areal parcella-
tion; parcel-wise maps of network communities were spatially
similar across age cohorts as well. In each age cohort’s orga-
nized networks, we identified major RSFC functional systems
that have been previously reported (e.g., the default system,
cingulo-opercular control system, visual system) (Power et al.
2011; Yeo et al. 2011). Examination and comparison of large-
scale network organization across aging and disease has typi-
cally relied on using YA parcellation to construct network
representations (Chan et al. 2014; Buckley et al. 2017). A tacit
assumption of these approaches is that the nodes are equally
appropriate across all participants. However, without direct evi-
dence supporting this assumption, any individual differences
observed in network organization or its properties may be
influenced—at least in part—by systematic bias in sampling
biologically appropriate and accurate nodes across individuals
(Wig et al. 2011). As we have attempted to minimize this source
of error, our results provide evidence that large-scale system
organization is comparable across adult age.

We have previously provided evidence for the presence of
large-scale systems across age (Chan et al. 2014, 2017), although
those reports did not examine or directly compare the spatial
topography of those systems. The present findings demon-
strate that large-scale brain systems are maintained across the
adult lifespan, which stands in contrast to previous studies
that have reported qualitative differences in the organization of
the brain’s subnetworks when comparing younger to older
adults (Meunier et al. 2009; Geerligs et al. 2015). While direct
examination of all the factors that differ across the studies is
beyond the scope of the present report, we suspect that a large

source of these differences can be attributed to differences in
preprocessing techniques (e.g., inadequately removing motion-
contaminated frames using appropriate thresholds for frame
removal) and distinctions in methods of node-definition.

A number of smaller qualitative differences in community
assignment were observed across age. For the most part, this
was due to differences in community assignment observed
across different edge density thresholds. For instance, nodes in
left prefrontal cortex were assigned to the frontal–parietal com-
munity across most thresholds in the OL cohort, but broke off
to form an independent community across sparser graph-
density thresholds (see Fig. S8). This observation speaks to the
distribution of connection strengths that form the sub-graph,
and also converges with previous findings that describe a weak-
ening of within system connections in older age (Andrews-Hanna
et al. 2007; Damoiseaux et al. 2008; Chan et al. 2014). Despite
these nuanced differences that need to be explored further, our
approach and recommendation involves examining community
assignments across a range of thresholds to ensure that an
inferred pattern is not constrained to a specific edge-density
threshold or parameter.

Cohort-Specific Nodes Reveal Relationships Between
Aging and System Segregation

Cohort-specific parcels were used as network nodes, and
together with their cohort-specific community assignments,
measures of system segregation were calculated for each par-
ticipant. The size and number of parcels (nodes) was highly
similar across cohorts (Table S2); the small differences in node
number are in a regime where graph measures have been
shown to remain relatively stable when functionally defined
parcels are examined (Arslan et al. 2018).

Despite the similarity of communities identified across
cohorts, age-related differences in network organization were
observed in the current report, as revealed by decreased system
segregation along the adult lifespan. This is in accordance with
previous findings using young adult nodes, demonstrating age-
related differences in brain-wide segregation/modularity (for
review, see Wig 2017). Specifically, we have previously argued
that decreased segregation reflects a type of “de-differentia-
tion” of the brain’s functional systems within the network
(Chan et al. 2014), that these differences in network organiza-
tion relate to the brain’s functional activity (Chan et al. 2017)
and are moderated by an individual’s environment (Chan et al.
2018). Here we provide evidence that the age-segregation rela-
tionship is not likely due to biased node sampling in that it is
still present using cohort-specific nodes.

Cohort-Specific Parcellations Provide Better Estimates of
Functionally Distinct Areas Than Parcellations Defined
From Younger Adults

Well-defined functional areas permit accurate characterization
of brain features. Parcels can serve as a priori region of interests
(ROIs) that contain uniform brain signals, and in doing so mini-
mize the between-subject variance of task and connectivity
estimates within a cohort. We and others have demonstrated
that parcellations defined by resting-state data can define areas
that are in good agreement with task-evoked activity patterns
in young adults (Wig, Laumann and Petersen 2014; Laumann
et al. 2015; Glasser et al. 2016; Gordon et al. 2016; Arslan et al.
2018). The present observations support these observations.
They further demonstrate that while younger adult parcellation
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can be applied to older adult cohorts, cohort-specific parcellation
is feasible and may be necessary for accurate characterization of
individuals who exhibit differences in their brain anatomy in
order to ensure accurate areal localization. To review, our proces-
sing stream utilized surface-based registration procedures that
minimize the bias of anatomical variability and cross-participant
brain alignment. Notwithstanding this important processing step,
additionally employing cohort-specific parcellations provided
enhanced area localization relative to the application of YA parcel-
lation to non-YA subjects, as evidenced by the greater parcel
homogeneity of RSFC patterns and lower parcel variance of task-
signal estimates. Collectively, these results highlight the advan-
tages of defining functional areas at an age-appropriate level.

While we have focused on the differences in area parcella-
tion across the adult lifespan, the approach has implications
that extend beyond these specific comparisons and domains of
analysis. Both anatomical and functional variability are preva-
lent across individuals (Devlin and Poldrack 2007; Van Essen
and Dierker 2007; Amunts and Zilles 2015; Laumann et al.
2015). Numerous registration procedures have been developed
to overcome the anatomical source of intersubject variance
(Fischl et al. 1999; Buckner et al. 2004; Van Essen et al. 2012). An
appreciation that the brain’s functional processing units need
not respect anatomical landmarks has led to the additional
development of procedures that align maps using “hyperalign-
ment” of functional signals (Haxby et al. 2011), using multi-
modal data (Robinson et al. 2014) and subject-specific ROIs
(Saxe et al. 2006). Here, we demonstrate that a parcellation
based on younger adults may inaccurately prescribe the func-
tional boundaries of older adults, which can both impact esti-
mates of brain function and anatomy and may also lead to
inaccuracies in downstream applications of these tools (e.g.,
defining nodes in a large-scale brain network; Wig et al. 2011).
More broadly, this collective work continues to challenge the
assumption that areal organization is identical across indivi-
duals (Caspers et al. 2006). While individualized parcellation
may not be feasible due to data limitations (Laumann et al.
2015; Gordon et al. 2017) associated with collecting large sam-
ples of special populations, the present results encourage con-
tinued development and examination of potential area
parcellation differences across different segments of the entire
lifespan (i.e., including children and adolescents), and health
status (e.g., patients vs. controls).

Data Limitations and Future Directions

Cohort-specific parcel homogeneity decreased with increasing
age, suggesting that while cohort-specific parcellations are bet-
ter than the YA parcellation for older adults, their “fit” to their
own data is poorer. This observation could not entirely be
explained by residual motion (Text S1 and Fig. S3), and may be
a consequence of greater between-subject variability (e.g., ana-
tomical and functional features within cohort samples) of
increasing age, as revealed by the contribution of brain mis-
alignment to boundary variability. Indeed, relative to younger
adults, older subjects exhibit greater variability in measures of
anatomy and functional activity (Raz et al. 2005; Reuter-Lorenz
and Cappell 2008).

Our cross-validation employed incorporation of a second
dataset that was comprised of a subset of participants that
were also present in the first dataset. While having access to
the second dataset allowed us to take important steps towards
evaluating the replicability of parcellations, the second dataset
was not entirely independent in terms of subject composition

within each cohort. Additional work will be important to under-
stand the generalizability of our cohort-specific parcellations.

Related to the above, while the parcellations maps were
largely derived from cross-sectional data, additional considera-
tions present possible longitudinal applications of adult aging
parcellations. Direct comparison of parcellations reveals that
adjacent age-defined cohorts are most similar to one another
(Fig. S6B). The potential parcellation mismatches are relatively
minimal within the time-frames that are likely to be assessed
with longitudinal data analysis, compared with potential par-
cellation errors that might be introduced when applying a
young adult parcellation to an older adult parcellation, for
example. Based on this, one strategy would be to apply the par-
ticipant’s original parcellation (based on their age at time of
first data acquisition) to all subsequent longitudinal estimates.
However, as longitudinal analyses begin to reveal potential dif-
ferences in aging networks, additional consideration and evalu-
ation of this important application of parcellation will be
required.

A number of processing decisions imposed constraints on
the types of analyses we conducted and the breadth of the con-
clusions that can be established from the present dataset.
Since the central aim of our report was to examine parcellation
and organization of the brain across a wide age range, our prin-
ciple focus in data processing was to minimize sources of age-
related variation in factors known to influence resting-state
(Satterthwaite et al. 2013; Power et al. 2014) and anatomical
(Alexander-Bloch et al. 2016; Savalia et al. 2017) signals. This
decision inevitably resulted in data loss following our conserva-
tive QC and data cleaning procedures (both within a subject,
but also of whole subjects who did not meet our pre-
established criteria following data processing). However, the
inherent trade-off that accompanies the choice of analyzing a
greater amount of contaminated data versus a lesser amount
of clean data was balanced by leveraging the availability of a
large number of participants that were densely and relatively
uniformly sampled across decades of adult life. Although our
processing choices have allowed us to create cohort-defined
parcellations in multiple datasets, it will be important to eval-
uate the observations throughout the report additionally
using individual parcellations (Wig, Laumann, Cohen, et al.
2014; Laumann et al. 2015; Gordon et al. 2017), when the
appropriate data become available. This approach may also
minimize the issue of misalignment due to the nature of indi-
vidual studies.

It is also important to recognize that functional areas
defined by RSFC boundary mapping do not always overlap with
architectonic divisions (Wig, Laumann and Petersen 2014). For
example, RSFC transition zones are present within primary
somatosensory, motor, and visual areas; these borders exhibit
close correspondence with topographic distinctions (e.g., repre-
sentations of mouth vs. hand, central vs. peripheral visual
fields) (Wig, Laumann and Petersen 2014; Gordon et al. 2016).
Conversely, there exist area borders where RSFC-defined transi-
tions may not always be detected (e.g., the division between
somatosensory and motor areas along the precentral/postcen-
tral gyrus). All together these observations impose constraints
on our interpretation of the parcellation differences observed
here and their correspondence to potential area differences.
Incorporating additional features of area definition and identi-
fying the convergence of parcellations across modalities will be
important for confirming the existence and nature of area par-
cellation differences across age (Glasser et al. 2016; for discus-
sion see Wig et al. 2011; Eickhoff et al. 2018).

Adult Lifespan Brain Parcellation Han et al. | 4419



Supplementary Material
Supplementary material is available at Cerebral Cortex online.

Funding
Understanding Human Cognition Scholar Award from the
James S. McDonnell Foundation to G.S.W. The authors would
like to thank Denise Park for providing access to the Dallas
Lifespan Brain Study data, collected under National Institute on
Aging (NIA) (Grant 5R37AG006265-30).

Notes
The authors are grateful to anonymous reviewers for insightful
comments on an earlier version of this article. Conflict of
Interest: None declared.

References
Alexander-Bloch A, Clasen L, Stockman M, Ronan L, Lalonde F,

Giedd J, Raznahan A. 2016. Subtle in-scanner motion biases
automated measurement of brain anatomy from in vivo
MRI. Hum Brain Mapp. 37:2385–2397.

Allen JS, Bruss J, Brown CK, Damasio H. 2005. Normal neuroana-
tomical variation due to age: the major lobes and a parcella-
tion of the temporal region. Neurobiol Aging. 26:1245–1260.

Amunts K, Zilles K. 2015. Architectonic mapping of the human
brain beyond brodmann. Neuron. 88:1086–1107.

Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D,
Raichle ME, Buckner RL. 2007. Disruption of large-scale brain
systems in advanced aging. Neuron. 56:924–935.

Apostolova LG, Green AE, Babakchanian S, Hwang KS, Chou Y-
Y, Toga AW, Thompson PM. 2012. Hippocampal atrophy and
ventricular enlargement in normal aging, mild cognitive
impairment and Alzheimer’s disease. Alzheimer Dis Assoc
Disord. 26:17–27.

Arslan S, Ktena SI, Makropoulos A, Robinson EC, Rueckert D,
Parisot S. 2018. Human brain mapping: a systematic com-
parison of parcellation methods for the human cerebral cor-
tex. Neuroimage. 170:5–30.

Barnes CA, McNaughton BL. 1980. Physiological compensation
for loss of afferent synapses in rat hippocampal granule
cells during senescence. J Physiol. 309:473–485.

Barnes CA, McNaughton BL, O’Keefe J. 1983. Loss of place speci-
ficity in hippocampal complex spike cells of senescent rat.
Neurobiol Aging. 4:113–119.

Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N,
Mintz J. 2001. Age-related changes in frontal and temporal
lobe volumes in men—a magnetic resonance imaging study.
Arch Gen Psychiatry. 58:461–465.

Betzel RF, Byrge L, He Y, Goni J, Zuo XN, Sporns O. 2014. Changes
in structural and functional connectivity among resting-state
networks across the human lifespan. Neuroimage. 102:345–357.

Beucher S, Lantuéjoul C. 1979. Use of watersheds in contour
detection. In: International Workshop on Image Processing:
Real-time Edge and Motion Detection/Estimation. Rennes,
France.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional
connectivity in the motor cortex of resting human brain
using echo-planar MRI. Magn Reson Med. 34:537–541.

Brodmann K. 1909. Vergleichende lokalisationslehre der gros-
shirnrinde in ihren prinzipien dargestellt auf grund des zel-
lenbaues. Leipzig: J. A. Barth.

Buckley RF, Schultz AP, Hedden T, Papp KV, Hanseeuw BJ,
Marshall G, Sepulcre J, Smith EE, Rentz DM, Johnson KA,
et al. 2017. Functional network integrity presages cognitive
decline in preclinical Alzheimer disease. Neurology. 89:
29–37.

Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC,
Snyder AZ. 2004. A unified approach for morphometric and
functional data analysis in young, old, and demented adults
using automated atlas-based head size normalization: reli-
ability and validation against manual measurement of total
intracranial volume. Neuroimage. 23:724–738.

Burke SN, Barnes CA. 2006. Neural plasticity in the ageing brain.
Nat Rev Neurosci. 7:30–40.

Cabeza R, Grady CL, Nyberg L, McIntosh AR, Tulving E, Kapur S,
Jennings JM, Houle S, Craik FI. 1997. Age-related differences
in neural activity during memory encoding and retrieval: a
positron emission tomography study. J Neurosci. 17:
391–400.

Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K.
2006. The human inferior parietal cortex: cytoarchitectonic
parcellation and interindividual variability. Neuroimage. 33:
430–448.

Chan MY, Alhazmi FH, Park DC, Savalia NK, Wig GS. 2017.
Resting-state network topology differentiates task signals
across the adult life span. J Neurosci. 37:2734–2745.

Chan MY, Na J, Agres PF, Savalia NK, Park DC, Wig GS. 2018.
Socioeconomic status moderates age-related differences in
the brain’s functional network organization and anatomy
across the adult lifespan. Proc Natl Acad Sci USA. 115:
E5144–E5153.

Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. 2014.
Decreased segregation of brain systems across the healthy
adult lifespan. Proc Natl Acad Sci USA. 111:E4997–E5006.

Chang YM, Rosene DL, Killiany RJ, Mangiamele LA, Luebke JI.
2005. Increased action potential firing rates of layer 2/3 pyra-
midal cells in the prefrontal cortex are significantly related
to cognitive performance in aged monkeys. Cereb Cortex.
15:409–418.

Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van
Essen DC, Schlaggar BL, Petersen SE. 2008. Defining func-
tional areas in individual human brains using resting func-
tional connectivity MRI. Neuroimage. 41:45–57.

Craddock RC, James GA, Holtzheimer PE 3rd, Hu XP, Mayberg
HS. 2012. A whole brain fMRI atlas generated via spatially
constrained spectral clustering. Hum Brain Mapp. 33:
1914–1928.

Dale AM, Fischl B, Sereno MI. 1999. Cortical surface-based analy-
sis. I. Segmentation and surface reconstruction. Neuroimage.
9:179–194.

Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P,
Stam CJ, Smith SM, Rombouts SA. 2008. Reduced resting-
state brain activity in the “default network” in normal aging.
Cereb Cortex. 18:1856–1864.

Devlin JT, Poldrack RA. 2007. In praise of tedious anatomy.
Neuroimage. 37:1033–1041.

Eickhoff SB, Constable RT, Yeo BTT. 2018. Topographic organi-
zation of the cerebral cortex and brain cartography.
Neuroimage. 170:332–347.

Felleman DJ, Van Essen DC. 1991. Distributed hierarchical pro-
cessing in the primate cerebral cortex. Cereb Cortex. 1:1–47.

Fischl B, Dale AM. 2000. Measuring the thickness of the human
cerebral cortex from magnetic resonance images. Proc Natl
Acad Sci USA. 97:11050–11055.

4420 | Cerebral Cortex, 2018, Vol. 28, No. 12



Fischl B, Sereno MI, Dale AM. 1999. Cortical surface-based anal-
ysis. II: Inflation, flattening, and a surface-based coordinate
system. Neuroimage. 9:195–207.

Fjell AM, Grydeland H, Krogsrud SK, Amlien I, Rohani DA,
Ferschmann L, Storsve AB, Tamnes CK, Sala-Llonch R, Due-
Tonnessen P, et al. 2015. Development and aging of cortical
thickness correspond to genetic organization patterns. Proc
Natl Acad Sci USA. 112:15462–15467.

Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N,
Agartz I, Salat DH, Greve DN, Fischl B, et al. 2009. High con-
sistency of regional cortical thinning in aging across multi-
ple samples. Cereb Cortex. 19:2001–2012.

Fox NC, Schott JM. 2004. Imaging cerebral atrophy: normal age-
ing to Alzheimer’s disease. Lancet. 363:392–394.

Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM. 2015. A
brain-wide study of age-related changes in functional con-
nectivity. Cereb Cortex. 25:1987–1999.

Gilmore JH, Knickmeyer RC, Gao W. 2018. Imaging structural
and functional brain development in early childhood. Nat
Rev Neurosci. 19:123–137.

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J,
Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson
M, et al. 2016. A multi-modal parcellation of human cerebral
cortex. Nature. 536:171–178.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B,
Andersson JL, Xu JQ, Jbabdi S, Webster M, Polimeni JR, et al.
2013. The minimal preprocessing pipelines for the human
connectome project. Neuroimage. 80:105–124.

Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ,
Frackowiak RS. 2001. A voxel-based morphometric study of
ageing in 465 normal adult human brains. Neuroimage. 14:
21–36.

Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM,
Petersen SE. 2016. Generation and evaluation of a cortical
area parcellation from resting-state correlations. Cereb
Cortex. 26:288–303.

Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ,
Berg JJ, Ortega M, Hoyt-Drazen C, Gratton C, Sun H, et al.
2017. Precision functional mapping of individual human
brains. Neuron. 95:791–807 e797.

Grady CL, McIntosh AR, Bookstein F, Horwitz B, Rapoport SI,
Haxby JV. 1998. Age-related changes in regional cerebral
blood flow during working memory for faces. Neuroimage.
8:409–425.

Haxby JV, Guntupalli JS, Connolly AC, Halchenko YO, Conroy
BR, Gobbini MI, Hanke M, Ramadge PJ. 2011. A common,
high-dimensional model of the representational space in
human ventral temporal cortex. Neuron. 72:404–416.

Hedden T, Gabrieli JD. 2004. Insights into the ageing mind: a
view from cognitive neuroscience. Nat Rev Neurosci. 5:87–96.

Hof PR, Mufson EJ, Morrison JH. 1995. Human orbitofrontal cor-
tex—cytoarchitecture and quantitative immunohistochemi-
cal parcellation. J Comp Neurol. 359:48–68.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli
R, Hagmann P. 2009. Predicting human resting-state func-
tional connectivity from structural connectivity. Proc Natl
Acad Sci USA. 106:2035–2040.

Hubert L, Arabie P. 1985. Comparing partitions. J Classif. 2:
193–218.

Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I,
Rushworth MF, Brady JM, Smith SM, Higham DJ, Matthews
PM. 2004. Changes in connectivity profiles define functionally

distinct regions in human medial frontal cortex. Proc Natl
Acad Sci USA. 101:13335–13340.

Johnson MH. 2001. Functional brain development in humans.
Nat Rev Neurosci. 2:475–483.

Kennedy KM, Raz N. 2015. Normal aging of the brain. In: Toga
AW, editor. Brain Mapping: An Encyclopedic Reference,
Academic Press: Elsevier. vol. 3, p. 603–617.

Kril JJ, Hodges J, Halliday G. 2004. Relationship between hippo-
campal volume and ca1 neuron loss in brains of humans
with and without alzheimer’s disease. Neurosci Lett. 361:9–12.

Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox
PT. 1995. A modality-independent approach to spatial nor-
malization of tomographic images of the human brain. Hum
Brain Mapp. 3:209–223.

Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen
MY, Gilmore AW, McDermott KB, Nelson SM, Dosenbach
NUF, et al. 2015. Functional system and areal organization
of a highly sampled individual human brain. Neuron. 87:
657–670.

Lee HW, Hong SB, Seo DW, Tae WS, Hong SC. 2000. Mapping of
functional organization in human visual cortex—electrical
cortical stimulation. Neurology. 54:849–854.

Magnotta VA, Andreasen NC, Schultz SK, Harris G, Cizadlo T,
Heckel D, Nopoulos P, Flaum M. 1999. Quantitative in vivo
measurement of gyrification in the human brain: changes
associated with aging. Cereb Cortex. 9:151–160.

Markham JA, Juraska JM. 2002. Aging and sex influence the
anatomy of the rat anterior cingulate cortex. Neurobiol
Aging. 23:579–588.

Mesulam MM. 1990. Large-scale neurocognitive networks and
distributed processing for attention, language, and memory.
Ann Neurol. 28:597–613.

Meunier D, Achard S, Morcom A, Bullmore E. 2009. Age-related
changes in modular organization of human brain functional
networks. Neuroimage. 44:715–723.

Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL.
2000. Characterizing the hemodynamic response: effects of
presentation rate, sampling procedure, and the possibility
of ordering brain activity based on relative timing.
Neuroimage. 11:735–759.

Morrison JH, Baxter MG. 2012. The ageing cortical synapse: hall-
marks and implications for cognitive decline. Nat Rev
Neurosci. 13:240–250.

Morrison JH, Hof PR. 1997. Life and death of neurons in the
aging brain. Science. 278:412–419.

Park DC, Polk TA, Park R, Minear M, Savage A, Smith MR. 2004.
Aging reduces neural specialization in ventral visual cortex.
Proc Natl Acad Sci USA. 101:13091–13095.

Penfield W, Boldrey E. 1937. Somatic motor and sensory repre-
sentation in the cerebral cortex of man as studied by electri-
cal stimulation. Brain. 60:389–443.

Penfield W, Jasper HH. 1954. Epilepsy and the functional anat-
omy of the human brain. Boston: Little, Brown and Company.

Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. 1988.
Positron emission tomographic studies of the cortical anat-
omy of single-word processing. Nature. 331:585–589.

Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky
RB, Lim KO. 1994. A quantitative magnetic-resonance-
imaging study of changes in brain morphology from infancy
to late adulthood. Arch Neurol. 51:874–887.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA,
Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, et al. 2011.

Adult Lifespan Brain Parcellation Han et al. | 4421



Functional network organization of the human brain.
Neuron. 72:665–678.

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL,
Petersen SE. 2014. Methods to detect, characterize, and
remove motion artifact in resting state fMRI. Neuroimage.
84:320–341.

Power JD, Plitt M, Laumann TO, Martin A. 2017. Sources and
implications of whole-brain fMRI signals in humans.
Neuroimage. 146:609–625.

Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D,
Williamson A, Dahle C, Gerstorf D, Acker JD. 2005. Regional
brain changes in aging healthy adults: general trends, indi-
vidual differences and modifiers. Cereb Cortex. 15:
1676–1689.

Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C.
2003. Longitudinal magnetic resonance imaging studies of
older adults: a shrinking brain. J Neurosci. 23:3295–3301.

Reuter-Lorenz PA, Cappell KA. 2008. Neurocognitive aging and
the compensation hypothesis. Curr Dir Psychol Sci. 17:
177–182.

Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A,
Marshuetz C, Koeppe RA. 2000. Age differences in the frontal
lateralization of verbal and spatial working memory
revealed by PET. J Cogn Neurosci. 12:174–187.

Robinson EC, Jbabdi S, Glasser MF, Andersson J, Burgess GC,
Harms MP, Smith SM, Van Essen DC, Jenkinson M. 2014.
Msm: a new flexible framework for multimodal surface
matching. Neuroimage. 100:414–426.

Rosvall M, Bergstrom CT. 2008. Maps of random walks on com-
plex networks reveal community structure. Proc Natl Acad
Sci USA. 105:1118–1123.

Rousseeuw PJ. 1987. Silhouettes—a graphical aid to the inter-
pretation and validation of cluster-analysis. J Comput Appl
Math. 20:53–65.

Rubinov M, Sporns O. 2011. Weight-conserving characterization
of complex functional brain networks. Neuroimage. 56:
2068–2079.

Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E,
Morris JC, Dale AM, Fischl B. 2004. Thinning of the cerebral
cortex in aging. Cereb Cortex. 14:721–730.

Salat DH, Lee SY, van der Kouwe AJ, Greve DN, Fischl B, Rosas
HD. 2009. Age-associated alterations in cortical gray and
white matter signal intensity and gray to white matter con-
trast. Neuroimage. 48:21–28.

Satterthwaite TD, Wolf DH, Ruparel K, Erus G, Elliott MA,
Eickhoff SB, Gennatas ED, Jackson C, Prabhakaran K, Smith
A, et al. 2013. Heterogeneous impact of motion on funda-
mental patterns of developmental changes in functional
connectivity during youth. Neuroimage. 83:45–57.

Savalia NK, Agres PF, Chan MY, Feczko EJ, Kennedy KM, Wig
GS. 2017. Motion-related artifacts in structural brain images
revealed with independent estimates of in-scanner head
motion. Hum Brain Mapp. 38:472–492.

Saxe R, Brett M, Kanwisher N. 2006. Divide and conquer: a
defense of functional localizers. Neuroimage. 30:1088–1096.

Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K,
Amunts K, Zilles K. 2008. Probabilistic maps, morphometry,
and variability of cytoarchitectonic areas in the human
superior parietal cortex. Cereb Cortex. 18:2141–2157.

Schölvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. 2010.
Neural basis of global resting-state fMRI activity. Proc Natl
Acad Sci USA. 107:10238–10243.

Seelke A, Yuan S-M, Perkeybile A, Krubitzer L, Bales K. 2016.
Early experiences can alter the size of cortical fields in
prairie voles (Microtus ochrogaster). Environ Epigenet. 2:
1–9.

Sejnowski TJ, Churchland PS. 1989. Brain and cognition. In: Posner M,
editor. Foundations of cognitive science. Cambridge: MIT Press. p.
888.

Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA. 2004.
Imaging correlates of brain function in monkeys and rats
isolates a hippocampal subregion differentially vulnerable
to aging. Proc Natl Acad Sci USA. 101:7181–7186.

Small SA, Tsai WY, DeLaPaz R, Mayeux R, Stern Y. 2002.
Imaging hippocampal function across the human life
span: is memory decline normal or not? Ann Neurol. 51:
290–295.

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M,
Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW. 2011.
Network modelling methods for fMRI. Neuroimage. 54:
875–891.

Snyder AZ. 1996. Difference image vs. ratio image error func-
tion forms in pet-pet realignment. In: Myer R,
Cunningham VJ, Bailey DL, Jones T, editors. Quantification
of brain function using PET. San Diego, CA: Academic
Press. p. 131–137.

Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius
AL, Toga AW. 2003. Mapping cortical change across the
human life span. Nat Neurosci. 6:309–315.

Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K,
Aasland HW, Walhovd KB. 2014. Differential longitudinal
changes in cortical thickness, surface area and volume
across the adult life span: regions of accelerating and decel-
erating change. J Neurosci. 34:8488–8498.

Ségonne F, Grimson E, Fischl B. 2005. A genetic algorithm for
the topology correction of cortical surfaces. Inf Process Med
Imaging. 19:393–405.

Thirion B, Varoquaux G, Dohmatob E, Poline JB. 2014. Which
fMRI clustering gives good brain parcellations? Front
Neurosci. 8:167.

Uylings HB, de Brabander JM. 2002. Neuronal changes in normal
human aging and Alzheimer’s disease. Brain Cogn. 49:
268–276.

Van Dijk KR, Sabuncu MR, Buckner RL. 2012. The influence of
head motion on intrinsic functional connectivity MRI.
Neuroimage. 59:431–438.

Van Essen DC, Dierker D. 2007. On navigating the human cere-
bral cortex: response to ‘in praise of tedious anatomy’.
Neuroimage. 37:1050–1054.

Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T.
2012. Parcellations and hemispheric asymmetries of human
cerebral cortex analyzed on surface-based atlases. Cereb
Cortex. 22:2241–2262.

Van Essen DC, Maunsell JH, Bixby JL. 1981. The middle temporal
visual area in the macaque: myeloarchitecture, connections,
functional properties and topographic organization. J Comp
Neurol. 199:293–326.

Wig GS. 2017. Segregated systems of human brain networks.
Trends Cogn Sci. 21:981–996.

Wig GS, Laumann TO, Cohen AL, Power JD, Nelson SM, Glasser
MF, Miezin FM, Snyder AZ, Schlaggar BL, Petersen SE. 2014.
Parcellating an individual subject’s cortical and subcortical
brain structures using snowball sampling of resting-state
correlations. Cereb Cortex. 24:2036–2054.

4422 | Cerebral Cortex, 2018, Vol. 28, No. 12



Wig GS, Laumann TO, Petersen SE. 2014. An approach for par-
cellating human cortical areas using resting-state correla-
tions. Neuroimage. 93:276–291.

Wig GS, Schlaggar BL, Petersen SE. 2011. Concepts and principles in
the analysis of brain networks. Ann N Y Acad Sci. 1224:126–146.

Xu T, Opitz A, Craddock RC, Wright MJ, Zuo XN, Milham MP. 2016.
Assessing variations in areal organization for the intrinsic brain:
From fingerprints to reliability. Cereb Cortex. 26:4192–4211.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR,
et al. 2011. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J Neurophysiol.
106:1125–1165.

Öngür D, Ferry AT, Price JL. 2003. Architectonic subdivision of
the human orbital and medial prefrontal cortex. J Comp
Neurol. 460:425–449.

Adult Lifespan Brain Parcellation Han et al. | 4423


	Functional Parcellation of the Cerebral Cortex Across the Human Adult Lifespan
	Materials and Methods
	Participants
	Imaging Data Acquisition
	Anatomical Images
	Functional Images

	Basic fMRI Preprocessing
	RSFC Preprocessing
	Processing of Cortical Surface and Subcortical Anatomy
	CIFTI File Generation
	Task-Evoked fMRI Analysis
	Generation of Parcellation Maps
	Comparison and Evaluation of Boundary Maps and Parcellations
	Comparison of Boundary Maps
	Evaluation of Parcellation Quality Using Homogeneity Tests
	Evaluation of Parcellation Quality Using Silhouette Coefficient
	Comparison of Spatial Similarity of Parcellations Across Cohorts

	Measurement of Brain Structure and Anatomical Alignment
	Cortical Gray Matter Thickness
	Anatomical Deformation

	Agreement of Parcellations With Task-Evoked fMRI Maps
	Brain Network Analysis
	Construction of Brain Graphs
	Community Detection and Comparison
	System Segregation


	Results
	The Locations of Prominent RSFC-Defined Boundaries are Consistent Across Age, Although Increasing Age is Associated With Le...
	Cohort-Specific Parcellations Exhibit Better Estimates of Parcel Quality Compared With the YA Parcellation Map
	Evaluation of Spatial, Functional, and Anatomical Features of Boundaries and Parcellations Across Cohorts
	The Spatial Overlap of Parcels Predicts Similarity of RSFC Patterns Across Age
	Cohort-Specific Parcellations Provide Better Convergence With Task-Related Functional Activity
	Differences in Brain Structure and Anatomical Alignment Explain a Significant Portion of the Parcellation Differences Acros...

	Large-Scale Network Analysis of the Adult-Lifespan Using Cohort-Specific Nodes
	Resting-State Community Organization is Similar Across Age
	System Segregation Decreases With Increasing Age Using Cohort-Specific Nodes


	Discussion
	Many of the Differences in Area Parcellation Across the Adult Lifespan are Related to Differences in Brain Structure and An...
	The Spatial Topography of Large-Scale Networks is Consistent Across the Healthy Adult Lifespan
	Cohort-Specific Nodes Reveal Relationships Between Aging and System Segregation
	Cohort-Specific Parcellations Provide Better Estimates of Functionally Distinct Areas Than Parcellations Defined From Young...
	Data Limitations and Future Directions

	Supplementary Material
	Funding
	Notes
	References


