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Palmitoleic acid inhibits Pseudomonas 
aeruginosa quorum sensing activation 
and protects lungs from infectious injury
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Abstract 

Background  Unsaturated fatty acids targeting quorum sensing (QS) system have shown potential application 
in reducing bacterial virulence. We aim to investigate the effect of palmitoleic acid (PMA) on P. aeruginosa QS activa-
tion, and its impact on infection-induced lung injury.

Methods  The influence of PMA on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin 
production, and QS gene transcription levels were examined in wildtype PAO1 culture. The roles of PMA in reducing 
infection-induced injury were assessed in human bronchial epithelial BEAS-2B cells and mouse lung infection models, 
respectively. PMA levels and QS signaling molecule concentrations were tested in the bronchoalveolar lavage fluid 
(BALF) of bronchiectasis patients with first-time detection of P. aeruginosa infection.

Results  PMA administration dose-dependently suppressed the expression of QS signaling molecules, pyocyanin, 
and QS genes during the logarithmic stage of bacterial growth. In BEAS-2B cells, PMA-treated PAO1 filtrates signifi-
cantly reduced cell apoptosis and expression of IL-8 and IL-6. In mouse lung infection models, prophylactically oral 
administration of PMA significantly downregulated the expression of P. aeruginosa QS signals and QS genes (lasR, rhlR, 
rhlI, lasB, rhlA, phzA1, phnA) in lungs, and relieved neutrophilic airway inflammation. Finally, PMA levels were negatively 
correlated with the concentrations of both 3OC12-HSL and C4-HSL in BALF of bronchiectasis patients, and positively 
correlated with their forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1.0).

Conclusion  Our findings show that PMA inhibits P. aeruginosa QS activation and protects lungs from injury caused 
by bacterial virulence. Hence, PMA may serve as a potential anti-QS agent against P. aeruginosa infection and would 
help to alleviate lung injury in bronchiectasis patients.
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Introduction
Pseudomonas aeruginosa is a common gram-negative 
pathogen responsible for opportunistic infections in 
patients with chronic lung diseases such as bronchi-
ectasis. P. aeruginosa can cause serious lung injuries by 
releasing numerous virulent factors regulated by quorum 
sensing (QS) systems [1, 2]. In recent years, eradicat-
ing P. aeruginosa has been increasingly challenging due 
to its antibiotic resistance. Hence, targeting QS system 
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emerges as an important anti-infective strategy, as it 
can not only exert an anti-virulence effect but also avoid 
evolutionary pressure on bacterium that develop resist-
ance [3]. P. aeruginosa QS signaling pathways are acti-
vated after signaling molecules outside the bacterial cells 
reach a threshold. These signaling molecules can diffuse 
through bacterial membranes and combine with their 
responding receptors in the cells. Among these mole-
cules, N-3-oxo-dodecanoyl-homoserine lactone (3OC12-
HSL) and N-butanoyl-homoserine lactone (C4-HSL) 
are critical signals that activate P. aeruginosa LasR-I and 
RhlR-I systems respectively, and promote the transcrip-
tion of virulence genes [4].

Unsaturated fatty acids (uFA) are medium- or long-
chain carboxylic acids containing one or more carbon–
carbon double bonds, and exhibit significant antibacterial 
activities against various pathogens, including multidrug-
resistant bacteria [5, 6]. In these years, uFA that targets 
QS system has shown potential application in reducing 
bacterial virulence and relieving infection-induced injury 
[7, 8]. Palmitoleic acid (PMA) is a cis-monounsaturated 
n-7 fatty acid consisting of 16 carbon atoms, classified 
within the omega-7 fatty acids group. So far, whether 
PMA could target QS system and exert an anti-infection 
effect on P. aeruginosa is not clear. This study aims to 
investigate the role of PMA in suppressing P. aeruginosa 
QS activation, and explore whether it could alleviate lung 
injury during early infection.

Material and methods
This study is comprised of experiments on P. aeruginosa 
culture, human airway epithelial cells stimulated with 
P. aeruginosa-culture filtrates, mouse models of P. aer-
uginosa lung infection, and bronchoalveolar  lavage fluid 
(BALF) of bronchiectasis patients with first-time detec-
tion of P. aeruginosa infection. Figure 1 provides an over-
view of the study design and procedures.

Bacterial strains and PMA treatment
Wildtype P. aeruginosa PAO1 strains were grown in 
Lysogeny Broth (LB) medium with 50  mM 3-(N-mor-
pholino) propanesulfonic acid at 37  °C with 250  rpm 
shaking overnight. When indicated, cultures were sup-
plemented with different doses of PMA (0.01  mg/mL, 
0.05 mg/mL, 0.5 mg/mL).

AHL and pyocyanin measurements
Signaling molecules were extracted using ethyl acetate, 
and both 3OC12-HSL and C4-HSL concentrations were 
measured using reporter strains as previously described 
[9, 10]. Pyocyanin was extracted from 4 mL culture fluid 
with 2 mL chloroform, and was then extracted from the 
chloroform with 1  mL 0.1  mol/L hydrochloric acid–
water. At 520  nm, the absorbance was measured and 
multiplied by 17.072 to get the concentration of pyocya-
nin [11].

Fig. 1  Flow chart of the study design and procedures. PMA palmitoleic acid, QS quorum sensing, BALF bronchoalveolar lavage fluid
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Biofilm detection
Bacterial biofilm was quantitatively detected using a 
96-well microplate. Briefly, 100  μL LB medium with or 
without 0.5  mg/mL PMA was added to each well and 
incubated with 10  μL overnight PAO1 culture at 37  °C 
for 36  h. The plate wells were washed and fixed with 
methanol for 15 min. Add 100 μL 1% crystal violet solu-
tion to each well and dye at room temperature for 5 min, 
and then the wells were rinsed and dried. After complete 
drying, add 100 μL of 33% glacial acetic acid solution to 
each well and incubate at 37  °C for 30  min to dissolve 
crystal violet. Measure the optical density (OD) value of 
the solution in the culture well using a microplate reader 
(BioTek Epoch, BioTek Instruments, Winooski, VT, US) 
under 590 nm conditions.

Bronchial epithelial cell stimulation experiments
Pseudomonas aeruginosa filtrates were prepared as 
reported in a previous study [12]. Briefly, PAO1 cultures 
were grown in LB medium supplemented with PMA 
(0.5  mg/mL) for 24  h. Cultures grown in LB medium 
without PMA were used as controls. Cultures were cen-
trifuged and filtered with 0.22-μm cellulose acetate fil-
ters, and the filtrates were collected. Human bronchial 
epithelial BEAS-2B cells (2.0 × 105 cells/well) were incu-
bated in a starvation medium for 16 h, and then stimu-
lated with 60 μL of sterile filtrates or LB medium for the 
time-points of 3 h, 6 h, 12 h, and 24 h.

Cell Counting Kit-8 kit (Signalway Antibody, Green-
belt, MD, USA) was utilized to assess cell viability. After 
stimulation, cells were incubated with 10  μL kit solu-
tion in 96-well plates for one hour. Optical density was 
measured at 450 nm. For cell apoptosis assay, cells were 
collected and stained with Annexin V-FITC (Beyo-
time Biotechnology, Shanghai, China). To analyse the 
cell cycle, cells were treated with propidium iodide (PI) 
and RNase A for 30 min. The proportion of cells in each 
phase was determined using the FlowJo software (FlowJo 
LLC, Ashland, OR, USA). Human interleukin (IL)-6, and 
IL-8 in the epithelial cell cultures were determined by the 
use of enzyme-linked immunosorbent assay kits (R&D 
Systems, Inc., Minneapolis, MN, USA). The mRNA lev-
els of IL-6 and IL-8 were determined by qRT-PCR. Each 
experiment was performed in triplicate.

Prophylactic administration of PMA in mice with P. 
aeruginosa infection
Male C57BL/6 mice (specifically pathogen-free, 6 weeks 
of age) were purchased from SLAC (Shanghai, China). 
Experimental Animal Care and Ethics Committee of 
Shanghai General Hospital approved all experimen-
tal protocols used in this study. Mice were inoculated 

intratracheally with 50  μL P. aeruginosa-laden agarose 
beads (2.0 × 106  CFU/mL) as previously described [13]. 
Mice were prophylactically administered with PMA 
(300  mg/kg) by gavage daily starting 2  weeks before 
inoculation. Those administered with saline were used as 
controls. The treatment continued after inoculation until 
mice were euthanized at indicated times.

The lungs were lavaged, and the BALFs were collected 
and centrifuged at 3000  rpm for 10  min at 4  °C. BALF 
cells were counted using a hemocytometer by two inde-
pendent observers. Lungs were aseptically homogenized 
in sterile saline for CFU enumeration, and lung myelop-
eroxidase (MPO) activities were measured by using a 
commercial kit (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China). Hematoxylin/eosin-stained sec-
tions were blindly scored for inflammatory infiltrates 
using the scoring system [14].

RNA isolation and qRT‑PCR
For PAO1 cultures, diluted cultures were grown at 37 °C, 
and when reaching the indicated OD600nm, cells were 
pelleted and preserved in RNA Protect Bacteria reagent 
(Qiagen, Hilden, Germany). For mouse lung tissues, 
the left lungs were excised aseptically and kept in liquid 
nitrogen. Cell pellets or lung tissues were lysed in QIA-
zol Lysis Reagent. Then the total RNA was extracted and 
purified using the RNeasy MinElute cleanup kit (Qia-
gen, Hilden, Germany). The expression of target genes 
was analyzed by following the protocol for the iQ SYBR 
Green SuperMix (Bio-Rad Laboratories, Hercules, CA, 
USA) on a ViiA 7 PCR System (Applied Biosystems, CA, 
USA). rplU was used as the reference gene, and the prim-
ers used in the study are listed in Table S1.

P. aeruginosa QS signal measurements and spirometry 
tests in bronchiectasis patients
Bronchiectasis patients with first-time detection of P. 
aeruginosa infection were recruited between January 
2020 to December 2023 from Shanghai General Hospital, 
China. At the time of admission, all patients presented 
with purulent sputum, and underwent spirometry tests, 
including forced vital capacity (FVC) and forced expira-
tory volume in the first second (FEV1.0). Then the bron-
choscopy examination was performed, and all patients 
were positive for P. aeruginosa (> 104  CFU/mL) in the 
samples of BALF. The measurements of P. aeruginosa 
3OC12-HSL and C4-HSL were performed using BALF 
samples as above described. The Medical Ethics Commit-
tee of Shanghai General Hospital approved the protocol.

PMA measurement in BALF
BALF sample mixed with chloroform methanol (2:1 v/v) 
had an ultrasonication of 30  min. Fatty-acid methyl 
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esterification was achieved by 30 min of 80 °C water bath 
and later mixed with n-hexane. The supernatant was 
subjected to an Agilent Model 7890A/5975C GC–MS 
system. An Agilent DB-WAX capillary GC column was 
used to separate the samples. PMA quantification (μg/
mL) was performed by making a calibration curve using 
the Supelco 37-component FAME mix (Sigma-Aldrich). 
The stability and repeatability of the system was verified 
by using a quality-control sample.

Statistical analysis
Data were analyzed by GraphPad Prism (version 9; 
GraphPad Software, San Diego, CA, USA), and graphs 
were drawn accordingly. For normally distributed quan-
titative variables, t-test or variance was used for data 
analysis; while for non-normally distributed variables, 
Mann–Whitney U test was used. Correlation between 
two nonparametric variables was performed using Spear-
man correlation coefficient (rs). P-values less than 0.05 
were considered statistically significant.

Results
PMA suppressed QS activation in PAO1 culture
We supplemented different doses of PMA to the PAO1 
wildtype culture and performed time-course experi-
ments. Compared with controls, the supplementation of 
PMA decreased the 3OC12-HSL and C4-HSL concen-
trations and reduced pyocyanin production in a dose-
dependent manner (Fig. 2A–C). To further elucidate the 
role of PMA in inhibiting QS activation, we examined the 
impact of PMA (0.5 mg/mL) on mRNA levels of QS genes 
and observed that high-dose PMA down-regulated the 
mRNA levels of lasR, rhlR, and rhlI (Fig. 2D, E, G), while 
no marked effect on lasI mRNA was observed (Fig. 2F). 
The formation of biofilm was significantly decreased by 
PMA (Fig. 2H).

It’s known that PMA is a major component in the bac-
terial membrane [15], so we examined whether PMA 
could alter membrane permeability to signaling mole-
cules. In the wildtype culture, the ratios of intracellular/
extracellular concentration for 3OC12-HSL were above 
2.4 throughout the time course. When exogenous PMA 
(0.5  mg/mL) was supplemented, the ratios were sig-
nificantly decreased to nearly 1.0 at the late logarithmic 
stage (Fig. 2I). While for C4-HSL, the ratio of intracellu-
lar/extracellular concentration was around 1.0 through-
out the time course, and PMA didn’t have a significant 
effect on C4-HSL distribution (Fig. 2J).

PMA treatment protected airway epithelial cells 
from bacterial virulence‑induced injury
To test whether PMA would have a protective effect 
on airway epithelial cells, we stimulated immortalized 

wildtype BEAS-2B cells by bacteria-free filtrates that 
were collected using PAO1 culture treated with 0.5 mg/
mL of PMA. We observed that when BEAS-2B cells were 
stimulated with PMA-treated filtrates, their viability was 
significantly higher than those stimulated with control 
filtrates (Fig.  3A). Further experiments indicated that 
PMA-treated filtrates significantly reduced cell apoptosis 
rates (Fig. 3B) and improved cell proliferation (Fig. 3C). 
The levels of both IL-8 and IL-6 (mRNA and protein 
expression) were significantly lower in cells stimulated 
with PMA-treated filtrates than those with control fil-
trates (Fig. 3D).

Prophylactic administration of PMA alleviated lung injury 
in mice with PAO1 infection
Having determined the protective role of PMA in allevi-
ating virulence-induced epithelial cell injury, we set out 
to investigate whether prophylactic administration of 
PMA could relieve lung injury caused by P. aeruginosa 
infection. We administered mice with PMA (300 mg/kg) 
by gavage daily for 2  weeks and then inoculated mouse 
trachea with agarose beads laden with PAO1 wildtype 
strain. We observed that prophylactic administration 
of PMA not only downregulated the bacteria-derived 
mRNA expression of QS-regulation genes (lasR, rhlR, 
and rhlI), but also downregulated the mRNA expression 
of virulence genes (lasB, rhlA, phzA1, and phnA) on both 
Day 1 and Day 3 (Fig.  4A, B). Lung pathological injury 
(Fig.  4C, D), neutrophilic airway inflammation (Fig.  4E) 
as well as lung myeloperoxidase activity (Fig.  4F) were 
significantly reduced by PMA on Day 3. The bacterial 
load showed no significant difference between the two 
groups (Fig. 4G).

PMA levels in BALF were positively correlated 
with spirometry results of bronchiectasis patients 
with first‑time detection of P. aeruginosa infection
We examined the levels of PMA and QS signaling mol-
ecules in the BALF samples from 28 bronchiectasis 
patients (56.2 ± 11.2  years old, 57.1% were female) with 
first-time detection of P. aeruginosa infection, and did 
spirometry tests for these patients. We found that BALF 
PMA levels were negatively correlated with BALF con-
centrations of QS signaling molecules (3OC12-HSL and 
C4-HSL) (Fig. 5A, B), and there were positive correlations 
between BALF PMA levels and the results of both FVC% 
and FEV1.0% of predicted in these patients (Fig. 5C, D).

Discussion
The widespread use of antibiotics has led to the out-
break of antibiotic resistance. In the past 5 decades, the 
antimicrobial resistance rate of clinical P. aeruginosa 
isolates has sharply increased, bringing huge economic 
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and medical burdens to patients and healthcare systems 
[16]. The pathogenesis of P. aeruginosa is mostly due to 
an arsenal of secreted virulence factors regulated by QS 
systems, so anti-QS therapy is a promising strategy that 
targets P. aeruginosa’s pathogenicity rather than viability 
[17]. In contrast to conventional antibiotics that directly 
kill or inhibit bacterial growth, anti-QS therapy bypasses 
the evolutionary pressure on the bacterium to develop 
antimicrobial-resistance and super-infections, and 
thus might have potential therapeutic advantages over 

traditional antibiotics in the treatment of antimicrobial-
resistant bacterial infections.

In this study, we found that PMA, a 16-carbon mono-
unsaturated fatty acid, had the capability of suppress-
ing the expression of QS signaling molecules and 
QS-dependent genes at the logarithmic growth stage in 
P. aeruginosa. Treating P. aeruginosa culture with PMA 
protected airway epithelial cells from bacterial virulence-
induced injury. Prophylactically oral administration of 
PMA in mice infection models suppressed P. aeruginosa 
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Fig. 2  Time-course experiments of phenotypes and quorum-sensing gene transcriptions for PAO1 wildtype cultures supplemented 
with palmitoleic acid. Total levels of 3OC12-HSL (A) and C4-HSL (B), as well as production of pyocyanin (C), were significantly decreased in the PAO1 
culture by palmitoleic acid in a dose-dependent manner. High-dose palmitoleic acid down-regulated the mRNA levels of lasR (D), rhlR (E), and rhlI 
(G), while exhibiting no significant impact on the mRNA expression of lasI (F). Biofilm formation was significantly decreased by palmitoleic acid (H). 
The ratio of intracellular/extracellular 3OC12-HSL concentrations (Ci/Ce for 3OC12-HSL) was significantly decreased by high-dose palmitoleic acid 
(I), while the ratio of C4-HSL concentrations (Ci/Ce for C4-HSL) wasn’t significantly affected (J). Data were presented as mean ± SD (n = 3). *P < 0.05 
between indicated groups; PMA palmitoleic acid
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QS activation and relieved neutrophilic airway inflam-
mation. In bronchiectasis patients with first-time detec-
tion of P. aeruginosa infection, BALF PMA levels were 
negatively correlated with BALF QS signaling molecule 
levels and positively correlated with patients’ spirometry 
results. These data support that PMA could be poten-
tially applied as an anti-QS agent to alleviate lung injury 
induced by P. aeruginosa infection.

Pseudomonas aeruginosa produces a variety of viru-
lence factors, such as pyocyanin and protease, as well as 
forms biofilms in airways, which causes persistent neu-
trophilic inflammation and lung tissue injury [18]. QS 

system in P. aeruginosa primarily relies on the produc-
tion and secretion of autoinducers as diffusible signaling 
molecules that activate their corresponding receptors 
when reaching a certain concentration threshold, thereby 
directly or indirectly regulating the production of viru-
lence factors, enhancing biofilm formation, promoting 
immune evasion, and enabling bacterial colonization 
[7, 19, 20]. Therefore, suppressing QS function plays an 
important role in combating early P. aeruginosa infection. 
Our results showed that PMA has the capability of inhib-
iting P. aeruginosa QS activation from in vitro to in vivo, 
leading to reduced bacterial pyocyanin production and 

Fig. 3  Stimulating immortalized wildtype human bronchial epithelial BEAS-2B cells with P. aeruginosa filtrates. PAO1 wildtype cultures were 
treated with palmitoleic acid (0.5 mg/mL), and when their OD600nm reached 2.0, they were filtered to get the bacteria-free filtrates. Cultures 
grown in LB medium without PMA were used as controls. When BEAS-2B cells were stimulated with palmitoleic acid-treated filtrates, their 
viability was significantly higher than those stimulated with control filtrates (A). The cell apoptosis (%Annexin V+PI− cells, red arrow, B) and cell 
proliferation disorder (C) were significantly improved by the treatment of palmitoleic acid. The mRNA and protein expressions of IL-8 and IL-6 
were also significantly reduced in cells stimulated with palmitoleic acid-treated filtrates (D). Data were presented as mean ± SD (n = 3). *P < 0.05 
between indicated groups; PMA palmitoleic acid
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biofilm formation. These effects contributed to the alle-
viation of bronchial epithelial cell injury and lung damage 
caused by P. aeruginosa infection.

The application of anti-QS strategies needs to meet sev-
eral requirements. Firstly, the expression of virulence fac-
tors should be mainly promoted by targeted QS systems, 
and interference with QS activation is capable of weak-
ening the virulence [21, 22]. Secondly, interference with 
the QS system should not affect the growth of pathogens, 
thereby avoiding selective pressure and preventing the 
emergence of resistant strains [23]. Thirdly, the strategy 
of QS quenching is ideally deployed prior to pathogen 
proliferation reaching the threshold necessary to activate 
its pathogenicity [24]. In this study, we found that PMA 
suppressed the function of LasI-R and RhlI-R systems 

in P. aeruginosa, resulting in reduced production of 
pyocyanin and other soluble virulence factors, and thus 
alleviated bronchial epithelial cell injury. Furthermore, 
prophylactically oral administration of PMA suppressed 
P. aeruginosa QS-controlled virulence gene expression 
and relieved lung injury in mice. Whether in the culture 
medium or the host, PMA didn’t have a significant effect 
on the bacterial load. These findings supported PMA as 
a candidate anti-QS agent for QS quenching strategies 
against P. aeruginosa infection.

The mechanism of PMA inhibiting QS activation might 
be related to the increased membrane permeability and 
enhanced 3OC12-HSL export, as it was observed that 
PMA reduced the ratio of P. aeruginosa cellular/extracel-
lular 3OC12-HSL concentration rather than suppressed 
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Fig. 5  Correlation analysis among palmitoleic acid levels, P. aeruginosa quorum sensing signal concentrations, and spirometry results 
in bronchiectasis patients with first-time detection of P. aeruginosa infection. The bronchoalveolar lavage fluids were collected, in which 
the PMA levels and P. aeruginosa quorum sensing signal concentrations were determined. PMA levels exhibited a negative correlation 
with the concentrations of signaling molecules 3OC12-HSL (A) and C4-HSL (B). Meanwhile, there were positive correlations between PMA levels 
and spirometry results (FVC% of predicted, C; FEV1.0% of predicted, D) in these patients (n = 28). PMA palmitoleic acid, FVC forced vital capacity, FEV1.0 
forced expiratory volume in the first second; rs spearman’s rank correlation coefficient
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the expression of lasI gene that encodes 3OC12-HSL 
synthetase. The maintenance of membrane homeostasis 
relies on the structural variety of saturated, monoun-
saturated, and polyunsaturated fatty acids. These com-
ponents are crucial for precisely adjusting membrane 
fluidity and permeability properties [25]. PMA, which 
belongs to cis-unsaturated fatty acid, can increase mem-
brane permeability and fluidity through the disruption 
of fatty acid tail packing [26]. Under normal physiologi-
cal conditions, although most N-acyl homoserine lactone 
signaling molecules are assumed to diffuse in and out of 
cells freely, 3OC12-HSL has been proposed to be par-
titioned by membranes due to its long chain [27]. Our 
data showed that PMA downregulated the ratio of cel-
lular/extracellular 3OC12-HSL concentration, suggest-
ing it may increase bacterial membrane permeability to 
3OC12-HSL, thereby decreasing cellular signal concen-
tration and delaying QS activation. Although PMA may 
simultaneously act on bacterial pathways other than QS 
system, its suppressive effect on QS activation is one of 
the most important roles involved in weakening P. aer-
uginosa virulence.

PMA comes from the desaturation of palmitoyl CoA, 
a process that can stem from lipogenesis or directly 
obtained from the diet through the activity of D9 desatu-
rase isomers [28]. Therefore, its level could increase when 
the endogenous lipogenesis is enhanced or the dietary 
intake of PMA is increased [29]. In human body, PMA 
has effects on fat synthesis and storage, intracellular traf-
ficking, inter-organ signaling pathways, as well as cell 
differentiation and proliferation [30]. However, in lungs, 
its data on relieving infection-induced injury is scarce. 
In this study, we showed that PMA might inhibit P. aer-
uginosa QS activation in human lungs, as there was a 
negative correlation between PMA level and QS signal 
(3OC12-HSL, C4-HSL) concentrations in BALF from 
bronchiectasis patients with first-time detection of P. 
aeruginosa. Furthermore, we showed that PMA levels in 
BALF were positively correlated with the results of FVC% 
and FEV1.0% predicted in these patients, supporting that 
PMA protected lung function during early infection with 
P. aeruginosa. While we cannot discount the possibil-
ity that PMA might exert other effects such as poten-
tial anti-inflammatory activities on host cells, its role in 
inhibiting bacterial QS activation likely constitutes one of 
the primary mechanisms that protect human lungs from 
infection-induced injury. From this perspective, increas-
ing PMA intake in the diet could help prevent lung injury 
in patients with a high risk of P. aeruginosa infection.

In conclusion, our work showed that PMA inhibited 
P. aeruginosa QS activation and reduced QS-related 
virulence production. It protected human airway epi-
thelial cells and mouse lungs from injury induced by P. 

aeruginosa virulence, and displayed the potential of 
improving lung function among bronchiectasis patients 
in the early stages of P. aeruginosa infection. Our data 
supported the anti-QS potential of PMA in tackling P. 
aeruginosa lung infection.
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