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Abstract

Background: Electronic health records (EHRs) provide possibilities to improve patient care and facilitate clinical
research. However, there are many challenges faced by the applications of EHRs, such as temporality, high
dimensionality, sparseness, noise, random error and systematic bias. In particular, temporal information is difficult to
effectively use by traditional machine learning methods while the sequential information of EHRs is very useful.

Method: In this paper, we propose a general-purpose patient representation learning approach to summarize
sequential EHRs. Specifically, a recurrent neural network based denoising autoencoder (RNN-DAE) is employed to
encode inhospital records of each patient into a low dimensional dense vector.

Results: Based on EHR data collected from Shuguang Hospital affiliated to Shanghai University of Traditional Chinese
Medicine, we experimentally evaluate our proposed RNN-DAE method on both mortality prediction task and
comorbidity prediction task. Extensive experimental results show that our proposed RNN-DAE method outperforms
existing methods. In addition, we apply the “Deep Feature” represented by our proposed RNN-DAE method to track
similar patients with t-SNE, which also achieves some interesting observations.

Conclusion: We propose an effective unsupervised RNN-DAE method to summarize patient sequential information in
EHR data. Our proposed RNN-DAE method is useful on both mortality prediction task and comorbidity prediction task.
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Background
The past decade has witnessed an explosion in the
amount of digital information recorded in electronic
health records (EHRs). The EHR data is an essential
resource for clinical researchers to design quantitative
models, and it is crucial to understand the information
contained in EHRs. In this case, machine learning mod-
els have been widely-used to analyze data with patient’s
EHRs, especially for predicting health status and help-
ing diagnose diseases, such as disease risk prediction [1],
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mortality prediction [2] and similarity analysis [3]. How-
ever, it is a great challenge to directly deal with raw EHR
data due to its temporality, high dimensionality, noise,
systematic bias, sparseness and random error [4]. Take
temporality as an example, the information about the
impending patient disease status is closely related to the
sequence of medical events. Moreover, the same clini-
cal phenotype may have many descriptions in EHRs [5].
Therefore, the success of predictive models relies heavily
on the representation of data. In other words, extract-
ing useful features from patient EHRs is one key aspect
leading to the success of prediction models.

Representation learning methods have been used exten-
sively within and outside the clinical domain to learn
the semantics of words, phrases, and documents. For
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instance, Mikolov et al. [6] applied neural language models
to learn a distributed representation for each word, called
a word embedding. They further proposed an unsuper-
vised algorithm [7] to learn fixed-length feature represen-
tations from variable-length pieces of texts, such as sen-
tences, paragraphs, and documents. Peters et al. [8] used
a bidirectional long short-term memory network trained
on a specific task to derive word embeddings. They came
up with the contextualized embedding (i.e., each word
has multiple embeddings depending on the context it is
used in) through grouping together the hidden states of
the their model. Devlin et al. [9] proposed a language
representation model called bidirectional encoder repre-
sentations from transformers to generate word embed-
dings. Those representations perform effectively results
on multiple natural language processing tasks, such as
question answering and language inference. Traditional
representation methods such as one-hot encoding and
multi-hot encoding treat every dimension independently.
Compared to the vectors generated by these methods,
those derived by representation learning models are low-
dimensional and dense, and they capture the semantics in
context.

In the clinical domain, considerable efforts also have
been made to convert medical information in EHRs to
vectors. For example, Choi et al. [10] learned word embed-
dings of medical concepts. Nguyen et al. [11] extracted
features from medical records with a convolutional neural
network model. Zhou et al. [12] applied stacked denois-
ing autoencoders [13] to learn deep representations for
predictive diagnoses. These works are all based on deep
learning methods. In some degree, deep learning methods
can overcome the difficulties in representation learning
caused by the complexity of EHRs. However, deep learn-
ing models of these works are trained to deal with a
specific task rather than a general task. We have to re-
learn or re-tune a new representation when giving a new
predictive task.

Learning a patient representation from for general pur-
pose is necessary to make it available for various medical
prediction tasks. The main challenge is to encode the
sequential information of EHRs into a vector. Considering
the temporality of EHRs, each patient typically has multi-
ple inpatient records. Since previous medical events may
have an impact on future medical events, these continu-
ous medical records are critical for clinical diagnosis and
treatment.

In this paper, we propose an effective patient represen-
tation learning method for time-series prediction tasks
based on real-world EHR data, which greatly improves
and extends our previous work [14]. We develop a recur-
rent neural network based denoising autoencoder (RNN-
DAE) to summarize inpatient records of each patient into
a dense vector. In detail, a sub-repository for heart failure

disease is first constructed from the clinical data repos-
itory of the Shuguang Hospital. After that, we represent
clinical event information of a patient with a tensor, i.e.,
a series of multi-hot vectors. Finally, we generate patient
representation vector by using our RNN-DAE model.
With the help of our RNN-DAE model, time-series infor-
mation in EHR data is well integrated in our patient
representation. The main contributions of this paper are
summarized as follows:

• We propose an effective patient representation
learning method for the time-series prediction tasks
in EHR data. Our proposed patient representation
learning method uses recurrent neural network based
denoising autoencoder (RNN-DAE) to encode
time-series information. Unlike existing patient
representation learning methods, our proposed
RNN-DAE method considers the time series
information in patient presentation.

• Based on the heart failure EHR data collected from
the Shuguang Hospital, we experimentally evaluate
our proposed RNN-DAE method on two clinical time
series prediction tasks. Computational studies show
that our proposed RNN-DAE method is highly
competitive compared to existing methods, achieving
an AUC of 78.31% in mortality prediction task and
the best result in comorbidity prediction task. In
addition, we apply the “Deep Feature" represented by
our proposed RNN-DAE method to track similar
patients with t-SNE, which also achieves some
interesting results.

Related work
In this section, we first briefly introduce state-of-the-art
models for the mortality prediction and disease risk pre-
diction task of heart failure. then, we report the progress
of the representation learning methods in the medical
field.

Mortality prediction and disease risk prediction for heart
failure
Mortality prediction and disease risk prediction tasks
are very two essential health applications. It has been
found that many factors are able to increase mortal-
ity for heart failure, such as demographic factors (e.g.,
gender), clinical factors (e.g., renal dysfunction), comor-
bidities (e.g., diabetes), cardiac imaging markers (e.g.,
cardio-thoracic ratio and ejection fraction) and serum
biomarkers (e.g., brain natriuretic peptide and C-reactive
protein). In recent years, a lot of studies have shown that
machine learning methods play an important role in med-
ical research, including support vector machine, Bayesian
network, decision tree, nearest neighbors method, and
ensemble learning method [15]. For instance, Lee et al.
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[16] proposed a mortality prediction model with a patient
similarity metric. Three types of classification models
were used in their work, such as logistic regression, simple
statistics and decision tree. Panahiazar et al. [17] designed
a risk prediction model by using support vector machine,
logistic regression, random forest, adaboost and decision
tree. Furthermore, some researchers [15, 18] experimen-
tally compared and analyzed multiple mortality prediction
models. The results of these works varies because their
data and experiment settings are totally different, but they
did actually demonstrate that machine learning methods
have limitations in some degree.

Recently, deep learning methods play an important role
in medical research. For example, Choi et al. [19] and
Lipton et al. [20] integrated time-series information into
medical applications by recurrent neural network. Never-
theless, their model focus on event-level time-series infor-
mation (e.g., a series of blood pressure tests). Besides, their
model is not universal and can only handle specific tasks.
Cheng et al. [4] applied deep learning model to extract
phenotypes from EHR data. Although the representations
of phenotypes could be used in some further applications,
the convolutional neural network they developed in this
work might ignore the sequentiality of events. Compared
with traditional machine learning models, deep learning
models require less human efforts on feature engineering,
but their results are more difficult to interpret.

Representation learning in medical field
Since effective feature representation is a basic step before
further applications, a large amount of studies are devoted
to exploring representation learning methods in the med-
ical field.

Inspired by the work of word embedding in natu-
ral language processing, many studies focus on repre-
senting medical concepts in recent years. For example,
Minarro-Giménez et al. [21] developed skip-gram to
get the representations of medical terms. Their medical
texts are collected from Wikipedia, PubMed, Medscape
and Merck Manuals. Choi et al. [22] learned low-
dimensional vector representations of medical codes in

longitudinal EHRs with skip-gram-based model. Medical
codes include disease, medication and procedure codes.
In their studies, patient representation with one record
is generated by aggregating all the vectors of medical
codes. Another study [10] proposed an approach named
“Med2Vec" to learn the representations of medical codes
in code level and visit level. Cui et al. [23] proposed
a supervised model guided by specific prediction tasks
to facilitate representations of medical codes, and it is
effective to work with small EHR datasets. Deepika and
Geetha [24] used a semi-supervised learning framework
which contains representation learning of drugs to pre-
dict the drug interactions. However, these studies are all
concept level, which means that the representations are
learned to represent medical codes rather than patient
representations.

Meanwhile, patient representations are widely used in
several applications to assist clinical staff. Considerable
efforts were made to learn dense vector representations
at the patient level. For example, Zhou et al. [12] devel-
oped an unsupervised feature selection scheme relied on
stacked denoising autoencoders (SDAs). However, their
model aims to summarize time-series features in an inpa-
tient record, rather than the temporality between mul-
tiple inpatient records. Miotto et al. [25] adopted SDAs
to generate patient representations. Furthermore, Sushil
et al. [26] derived task-independent patient representa-
tions directly from clinical notes by applying SDAs and
a paragraph vector model. The above two methods only
consider the frequency of medical events. The main differ-
ence between our works and theirs is that they ignore the
temporality of EHRs. In addition, Zhang et al. [27] applied
Bi-LSTM network to derive the patient vectors based on
specific prediction. Although they take time series into
consideration, this method is task-driven and supervised.

Methods
The overview of our proposed patient representation
learning framework and its potential applications are
shown in Fig. 1. Specifically, a sub-repository focusing
on heart failure is built from clinical data repository

Fig. 1 An overview of the proposed representation learning approach to generate patient vectors and further applications
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(CDR) firstly. EHR data stored in the sub-repository is
then normalized and processed to tensors. Afterwards,
we derive the patient representations (called “Deep Fea-
tures”) by using our proposed RNN-DAE method. Finally,
the obtained “Deep Features” applied for some time series
prediction tasks, such as mortality prediction and comor-
bidity prediction. We use “Deep Feature” to conduct
patient similarity analysis as well.

Dataset generation: heart failure selection
The EHR data used in this paper is collected from the
Shuguang Hospital which is the first class general hos-
pitals in Shanghai. The CDR of the Shuguang Hospital
between January 2005 and April 2016 contains approxi-
mately 350,000 hospital records.

In this paper, a sub-repository focusing on heart failure
is constructed from the above CDR. We select patients
who satisfy the following criteria: One patient has at least
two hospital records, and the ICD-10 code associated
with heart failure exists in the diagnosis or medical order
of these two hospital records. Specially, clinical experts
define a list of ICD-10 codes related to heart failure,
including 63 codes.

Our dataset consists of 4682 patients with 10,898 inpa-
tient records, where 568 patients (about 12.1%) died in
the hospital and the remaining patients are difficult to
track. To enrich our dataset, we split the patients’ hos-
pital records and obtain 10, 898 samples. For instance,
if a patient has three inpatient records, we then con-
struct three samples by respectively selecting only the first
record, both the first and second records, and all three
records.

Data preprocessing
For each patient in the sub-repository, auxiliary informa-
tion, general demographic details (i.e., age and gender),
and clinical events are retained. Auxiliary information
contains EMPI (i.e., patient unique identifier), hospital ID
(i.e., inpatient record unique identifier), admission time
and death time. We use auxiliary information to orga-
nize and preprocessing EHR data. General demographic
details (i.e., age and gender) only needs two dimensions
to describe, and the value of age should be normalized
without breaking sparsity first. Besides, clinical events
include diagnoses, medications and lab tests. To convert
clinical events to computable sequences, the normaliza-
tion process for different clinical events varies by their
types. In particular, we convert clinical event information
of one record to a multi-hot vector. Finally, a multi-hot
vector with 1309 dimensions is obtained according to the
following principles:

• Diagnoses: The patient records of heart failure
repository include 1232 ICD-10 codes in total. As a

result, we represent the ICD-10 codes with 1232
dimensions.

• Medications: According to the universality of
medication for heart failure in China, 61 kinds of
medications are chosen by clinical specialists
manually. Clinical specialists classified these
medications into 11 groups, such as ACE-I, ARA, and
ARB. Similarly, we represent the medications with 11
dimensions.

• Lab Tests: Clinical experts choose 22 laboratory tests
related to heart failure in this research. According to
the reference value of each lab test, a flag including
high, low and normal is used to denote the results.
Therefore, three dimensions are required to convert
the result of one lab test into binary feature.
Eventually, we represent the lab tests with 66
dimensions.

Specially, raw feature includes clinical events and demo-
graphic details, and one record of raw feature is described
with 1311 dimensions in total.

Patient representation learning
Figure 2 describes a straightforward motivation for using
distributed representation for patients. The size of ten-
sor representations is variable because different patients
may have various inpatient times(i.e., x, y or z times).
As shown in Fig. 2a, it is challenging to use the tensors
with variable length as the input of prediction models.
To solve this issue, the representation method in Fig. 2b
performs statistics for all the inpatient records of each
patient, such as summarize, average, and maximize. For
example, the value on each dimension of the patient vec-
tor is the summary of the corresponding medical event in
all inpatient records. Therefore, the dimensions of patient
vector is equal to the number of distinct medical events
appeared in the raw data. However, these kind of repre-
sentation is still high dimensional and sparse. Moreover,
they do not take the time series information in EHRs
into consideration. A better way to represent patients is
shown in Fig. 2c. By using RNN-DAE model, we will use
distributed representation to better represent patients as
multi-dimensional real-valued vectors that will capture
the time series information between records.

Given a sequence of inpatient records X = (x1, x2,
· · · , xn), where xt(t = 1, · · · , n) is a multi-dimensional
multi-hot vector which represents an inpatient clinical
event record at time step t, our goal is to summarize a
feature vector representation c from these sequence of
clinical events. Finally, c will be concatenated with demo-
graphic details to get our “Deep Feature”.

RNN is widely used to cope with time-series prediction
problems [28, 29]. RNN can remember historical infor-
mation because the value of current hidden layer depends
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Fig. 2 Three different forms of the representation of patients. Here, patient may have various inpatient times (e.g., x, y, z). The tensor representation
of each patient consists of multiple multi-hot vectors of N-dimensions (i.e., N = 1309). The statistic-based representation is derived by operating
summary statistics, and it gets a vector with N-dimensions. Typically, distributed representation is a better representation with D-dimensions (i.e.,
D = 300), where D is much lower than N. a Tensor representation of patients. b Statistic-based representation of patients. c Distributed
representation of patients

on the input of current layer and the output of previous
layer. Based on the standard RNN, Hochreiter et al. [30]
proposed long short-term memory (LSTM) model to cope
with gradient exploding and vanishing problems [31, 32].
To simplify the structure of LSTM, one of the most pop-
ular variants is gated recurrent unit (GRU) model [33]
is developed. The GRU model keeps both advantages of
RNN and LSTM, that is, supporting longer sequences but
consuming less training time [34]. Therefore, we replace
the standard RNN unit with GRU in our research.

We develop a recurrent neural network based denois-
ing autoencoder (RNN-DAE) model in this paper, which
combines the ideas of SDAs [13] and sequence autoen-
coders [35]. In detail, our model trains a GRUencoder to
convert input features to a vector, and then a GRUdecoder
is developed to predict input features sequentially. Spe-
cially, the decoder reconstructs the initial inputs from a
noisy version of the input features. Figure 3 illustrates the
architecture of our RNN-DAE model.

In order to avoid over-fitting when train our model,
input vectors X are first mapped through a stochastic
mapping X̃ ∼ qD(X̃|X). Specially, we adopt Gaussian
noise as the stochastic mapping to get X̃. Gaussian noise
is a series of random numbers with a Gaussian distri-
bution. The GRUencoder reads the X̃ and turn it into
a vector c, where c is actually the last hidden state of
GRUencoder which summarize the whole input sequence.
The GRUencoder predicts the next state ht at time step t
given the input xt and the previous hidden state ht−1 as
follows:

zt = δ(W z·[ ht−1, xt] ) (1)

rt = δ(W r·[ ht−1, xt] ) (2)

h̃t = tanh(W ·[ rt ∗ ht−1, xt] ) (3)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (4)
where rt is the reset gate, zt is the update gate, δ(·)
indicates a sigmoid activation function, and tanh(·) rep-
resents a tangent activation function. The reset gate reads
the values of ht−1 and xt and outputs the values (between
0 to 1 ) to the state ht−1 of each cell through the Eq. (2).
The update gate updates the hidden state to the new
state ht .

After encoding, GRUdecode is used to predict the next
state yt at time step t based on the global patient vector c
and the previous hidden state st−1 as follows:

zt = δ(W z·[ st−1, c] ) (5)

rt = δ(W r·[ st−1, c] ) (6)

s̃t = tanh(W ·[ rt ∗ st−1, c] ) (7)

st = (1 − zt) ∗ st−1 + zt ∗ s̃t (8)

yt = st (9)
where st is the hidden state of the decoder at time t.
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Fig. 3 The architecture of our proposed RNNDAE model. Multi-hot vectors (xt ) with time series are added by a Gaussian noise and then encoded by
a GRUencoder model into the patient vector (c). Given the patient vector, another GRUdecoder model is used to decode in order to make the input
(xt ) and the output (yt ) are consistent as much as possible

Reconstruction error L(X, Y ) is defined as the loss func-
tion, and the model optimize the parameters by min-
imizing reconstruction error. We utilize cross-entropy
function to calculate the reconstruction error as follows:

L(X, Y )=−
n∑

i=1

d∑

j=1

[
x(j)

i log y(j)
i +

(
1 − x(j)

i

)
log

(
1 − y(j)

i

)]

(10)

where x(j)
i is the j-th element of xi and y(j)

i is the j-th
element of yi. d is the dimension of xi and yi.

The Gaussian noise is set with a mean of 0 and a vari-
ance of 0.1. The output dimensions of GRUencoder and
GRUdecoder are all 300, therefore, c is a 300-dimensional
vector. When training the network, the loss is mini-
mized by gradient-based optimization with mini-batch of
size 100.

Finally, each patient vector consists of 302 dimensions
and is renamed as “Deep Feature". Among them, 2 dimen-
sions are demographic details (i.e., age and gender), and
the other 300 dimensions are the output of our repre-
sentation model (i.e., RNN-DAE). We do not input the



Ruan et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 8):259 Page 7 of 14

demographic details into our models because they are of
great significant effect on clinical tasks. The vector c is
derived by encoding clinical events only.

Results
We compared our RNN-DAE model with other well-
known feature learning methods on mortality predic-
tion and comorbidity prediction tasks. Traditional meth-
ods such as k-means clustering(i.e., k-means),principal
component analysis (PCA), and Gaussian mixture model
(GMM)[36] performed only one transformation to the
original data, while deep learning method (i.e., SDAs)
needs to perform three transformations. The details of
traditional models to perform representation learning are
as follows.

• PCA uses an orthogonal transformation to convert a
set of observations of possibly correlated variables
(entities each of which takes on various numerical
values) into a set of values of linearly uncorrelated
variables called principal components. This
transformation is defined in such a way that the first
principal component has the largest possible variance
(that is, accounts for as much of the variability in the
data as possible), and each succeeding component in
turn has the highest variance possible under the
constraint that it is orthogonal to the preceding
components. The resulting vectors are an
uncorrelated orthogonal basis set, and the dimensions
of them are less than or equal to that of original data.
Here, we set the PCA with 512 principal components.

• k -means clustering aims to partition unlabeled data
into k clusters in which each observation belongs to
the cluster with the nearest mean. In the feature
learning, the centroids of the cluster are used to
produce features. Specially, we used the vector of
centroid of the cluster to represent the data within
this cluster in our experiments and we set k -means
with 16 clusters.

• GMM is a probabilistic model that assumes all the
data points are generated from a mixture of a finite
number of Gaussian distributions with unknown
parameters. One can think of mixture models as
generalizing k -means clustering to incorporate
information about the covariance structure of the
data as well as the centers of the latent Gaussian.
Each component (i.e., Gaussian distribution) of
GMM is a clustering center and has its own diagonal
covariance matrix. In the GMM model, the number
of components needs to be artificially defined, just
like the clusters number in the k -means. Specially, we
used the vector of the covariance of each component
to represent the data within this cluster in our
experiments and we set GMM with 512 components.

In this section, we devote to experimentally investi-
gate the effectiveness of our proposed RNN-DAE method.
Besides RNN-DAE, we also evaluate a variant of RNN-
DAE method. That is a RNN based autoencoder model
without Gaussian noise (RNN-AE). RNN-AE model is an
alternative of RNN-DAE by removing Gaussian noise. In
following experiments, we applied our proposed meth-
ods to mortality prediction task, comorbidity prediction
task, and patient similarity analysis. Experimental results
are recorded in terms of Accuracy, F1-score and the area
under the curve (AUC), they are widely-used performance
measures [37, 38].

Mortality prediction
Our proposed model is compared with four state-of-the-
art methods. Three of them are based on traditional
machine learning model including GMM, PCA and k-
means, and the remaining one is based on deep learning
model called “SDAs” [12]. Furthermore, we add an abla-
tion experiment to investigate the effect of the proposed
denoising part. In other words, we also develop a RNN-
AE model without Gaussian noise. According to patient
vectors derived from above representation learning mod-
els, downstream classifier is used to predict mortality.
The comparison of different downstream classifiers are
performed in the “Discussion” section.

Due to traditional machine learning models can not deal
with sequential data directly, observation windows are
required to extract features. In order to investigate impact
of window sizes, we conduct the experiments to compare
the performance of representation learning models under
various window sizes. Specially, the comparison is made
on mortality prediction task. According to the studies
[19, 25], the window sizes are set with 30, 60, 90 and 180
days. Table 1 shows experimental results. The first column
includes a series of represent learning methods, where
“Hand" indicates that the raw features of each patient are
only averaged. Since our proposed models RNN-DAE and
RNN-AE do not rely on window size, they achieve 0.783

Table 1 Comparative results of methods with different window
sizes

30 Days 60 Days 90 Days 180 Days

RNN-DAE 0.783 0.783 0.783 0.783

RNN-AE 0.755 0.755 0.755 0.755

SDAs 0.488 0.738 0.741 0.755

Hand 0.525 0.584 0.586 0.608

PCA 0.504 0.555 0.555 0.602

GMM 0.536 0.595 0.594 0.607

k-means 0.569 0.568 0.568 0.628

The performance is measured by AUC (i.e., the area under the ROC curve).
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and 0.755 respectively on AUCs in all cases. As the size
of the window grows, the performance of representation
learning models based on traditional machine learning
methods will increase as well. The reason is that the
larger the window size, more records it covers and more
useful information it provides. Consequently, we set the
window size with 180 days in later experiments. The per-
formance of comparison methods grows stably on AUC,
but our RNN-DAE model is at least 15.5% better than tra-
ditional machine learning models and 2.8% better than
the deep learning method “SDAs”. Comparative results
of different representation learning models for mortality
prediction task are summarized in Table 2. For the mor-
tality prediction task, we set the threshold value as 0.8 for
classification. The result shows that our RNN-DAE model
with Gaussian noise outperforms other models remark-
ably, achieving 0.783 on AUC, 0.779 on accuracy and 0.449
on F1-score.

Comorbidity prediction
Comorbidity prediction task is a typical disease risk pre-
diction task. In this experiment, we consider ten comor-
bidities related to heart failure, and further validate the
effectiveness of our RNN-DAE method on comorbidity
prediction task. The statistical results of comorbidities are
shown in Table 3. Several comorbidities are so rare in the
dataset, and need to undersample when training classi-
fiers. For example, only 80 patients with valvular heart
disease occur. The column “Count" represent the number
of occurrences of each comorbidity and the column “Per-
cent" indicates the percentage of each comorbidity in our
dataset. For these comorbidities with percentage is less
than 30%, we apply NearMIss undersampling algorithm
before classification [39]. At the last column “Sample?", we
also indicate the use of sampling algorithm or not.

In the experiments, we train downstream classifiers for
each comorbidity prediction task respectively based on
patient vectors derived from various representation learn-
ing models. The comparison of different downstream

Table 2 Comparative results of different representation learning
methods for mortality prediction

AUC
Threshold = 0.8

Accuracy F1-score

RNN-DAE 0.783 0.779 0.449

RNN-AE 0.755 0.760 0.444

SDAs 0.755 0.738 0.439

Hand 0.608 0.693 0.420

PCA 0.602 0.715 0.427

GMM 0.607 0.693 0.420

k-means 0.628 0.722 0.430

Table 3 Statistics of 10 selected comorbidities in heart failure

Comorbidity Count Percent Sample?

Hypertension disease 7,097 0.694 n

Diabetes mellitus 3,674 0.359 n

Coronary artery disease 5,072 0.496 n

Atrial fibrillation 3,053 0.299 y

Chronic renal disease 896 0.088 y

Valvular heart disease 80 0.008 y

Dilated cardiomyopathy 321 0.031 y

Hypertrophic cardiomyopathy 146 0.014 y

Chronic obstructive pulmonary disease 818 0.080 y

Cerebral infarction disease 2,579 0.252 y

classifiers are detailed in the “Discussion” section. Table 4
illustrates the comparative results between the patient
vectors learned by seven representation models with com-
plete ranking information. The result shows that no single
model achieves optimal performance across all 10 tasks.
Our RNN-DAE model achieves the most competitive
performance, and RNN-AE model achieves the second
highest performance. What is more, RNN-DAE model
achieves the highest score on 4 out of 10 comorbidity pre-
diction tasks, and obtains the smallest average ranks 2.000
(2.500, 5.600, 5.800, 5.400, 3.250 and 3.450 are respectively
obtained by the reference algorithms RNN-AE, SDAs,
PCA, k-means, GMM and Hand). Unlike RNN-DAE
model, traditional machine learning models and the unsu-
pervised deep learning model “SDAs” are constrained by
window size. To sum up, our proposed RNN-DAE model
is a better choice for comorbidity prediction task because
of its better performance.

Furthermore, we also apply the patient vectors derived
from our proposed model to predict top k comorbidities
that a patient may suffer from. We evaluate the accuracy
of top-k comorbidities prediction (with k = 1, 2, 3). The
accuracy of the downstream classifier is the average of the
top-k accuracy of all patients. Specially, the downstream
classifier assigns top k comorbidities to one patient by pre-
dicting the greatest k comorbidity scores, and the top-k
accuracy of one patient is the correct rate in the predicted
top k comorbidities. In this experiment, we evaluate the
theoretical upper bound of the classifier for each compar-
ison. That is, the accuracy when the classifier assigns all
the correct comorbidities to each patient. However, the
upper bond of top-3 comorbidities prediction is less than
1 when there is one patient with only one comorbidity in
our dataset. As shown in Table 5, our RNN-DAE model
performs a little worse than our original RNN-AE model
in top-1, but outperforms in top-2 and top-3 prediction
tasks.
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Table 4 Comparative results of different methods for comorbidity prediction

RNN-DAE RNN-AE SDAs PCA k-means GMM Hand

HD 0.745(2) 0.771(1) 0.736(3) 0.545(6) 0.537(7) 0.652(5) 0.654(4)

DM 0.671(1) 0.660(2) 0.422(7) 0.619(6) 0.631(3) 0.627(4.5) 0.627(4.5)

CAD 0.744(2) 0.746(1) 0.609(6) 0.601(7) 0.617(5) 0.741(3) 0.740(4)

AF 0.743(1) 0.522(6) 0.537(4) 0.535(5) 0.404(7) 0.645(2) 0.644(3)

CRD 0.700(2) 0.727(1) 0.554(6) 0.373(7) 0.566(5) 0.699(3) 0.698(4)

VHD 0.586(5) 0.842(3) 0.601(4) 0.258(7) 0.500(6) 0.882(2) 0.902(1)

DCM 0.785(1) 0.777(2) 0.406(7) 0.416(6) 0.440(5) 0.675(3) 0.674(4)

HCM 0.718(2) 0.814(1) 0.201(7) 0.222(6) 0.396(5) 0.438(3) 0.437(4)

COPD 0.747(1) 0.547(3) 0.522(5) 0.577(2) 0.457(7) 0.522(5) 0.522(5)

CID 0.790(3) 0.739(5) 0.474(7) 0.697(6) 0.762(4) 0.872(2) 0.873(1)

Avg.rank 2.000 2.500 5.600 5.800 5.400 3.250 3.450

�Ten selected comorbidities of heart failure are hypertension disease (HD), diabetes mellitus (DM), coronary artery disease (CAD), atrial fibrillation (AF), chronic renal disease
(CRD), valvular heart disease (VHD), dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), chronic obstructive pulmonary disease (COPD) and cerebral
infarction disease (CID)

Patient similarity analysis
Due to diagnosis and treatment highly relying on previous
experiences, it’s important to find those patients whose
physical status are similar. It helps clinicians give accu-
rate treatments. Researchers have made a large amount of
efforts [40–42] to identify patients with similar status. We
make an assumption before we conduct the experiment.
That is, the patients who are dead in our dataset are sup-
posed to be similar. Based on the assumption, we try to
find out patients with similar outcomes (i.e., death) using
“Deep Feature” learned by our RNN-DAE model.

We use t-SNE [43] method to project “Deep Feature”
of 10,898 patient records to a 2-dimensional space firstly.
The t-SNE method is good at capturing much of the local
structure of the high-dimensional data, while also reveal-
ing global structure. As shown in Fig. 4, the red points
indicate the patients who finally die and the blue ones rep-
resent those patients who do not die. By using t-SNE, we
can convert “Deep Futures” in RD vector space into R2

vector space. It can capture the similarity of those “Deep
Future” so that the patients who die and those not are clus-
tered respectively. In detail, we split 2-dimensional space
into 30 ∗ 30 = 900 blocks. For each block at location
(i, j), the calculation of its mortality rate is performed as
follows.

Hij = Kij/Nij (11)

Hij = Kij/(Nij + F) (12)
where Kij indicates the number of dead records and Nij
represents the amount of inpatient records. When cal-
culate the mortality rate by Eq. 11, the corresponding
mortality rate will be 1.0 if a block has only one inpa-
tient record and it is a dead one. To avoid this problem,
we add F as a smooth factor as shown in Eq. 12, and
we set 5 as an empirical value. Once we get the mortal-
ity rate of all blocks, we can construct a heatmap (see
Fig. 5). The higher the mortality rate of a block, the
darker the color is supposed to be. As shown in this
figure, the dead records are clustered into a few blocks,
and some of them have mortality rates over 60%. These
interesting observations show that our “Deep Feature” is
useful to calculate and visualize the similarities between
patients.

Discussion
In this section, we conduct four groups of experiments.
In first three experiments, we analyze different sampling
strategies, different binary classifiers, and patient repre-
sentation vectors with different dimensions, respectively.

Table 5 Prediction accuracy of top-k comorbidity

Top-k° Upper Bound�
Patient representation learning methods

RNN-DAE RNN-AE SDAs PCA k-means GMM Hand

k = 1 0.962 0.604 0.617 0.212 0.449 0.181 0.607 0.605

k = 2 0.878 0.534 0.514 0.195 0.384 0.208 0.503 0.503

k = 3 0.769 0.452 0.419 0.177 0.305 0.144 0.416 0.417

◦“Top-k” represents the average accuracy of all the patients, where accuracy for one patient is the average number of correct results included in its top k predicted
comorbiditie(s). The top-k comorbiditie(s) is/are sorted by predicted probabilities, with k = 1, 2, 3.
�“Upper Bound” shows the best results achievable (i.e., all the correct comorbidities assigned to all the patients)
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Fig. 4 A diagram of t-SNE technique for dimensionality reduction. With the help of t-SNE, some D-dimensional data points are projected into
2-dimensional space. Specially, the red points indicate the patients who finally die and the blue ones represent those patients who do not die

Finally, we experimentally analyze the effect of different
training data sizes.

Analysis of different undersampling algorithms
The death information of EHR data is usually incom-
plete because only patients died in hospital were
recorded. Our dataset has imbalance issue because it
contains 4296 patients with 583 dead ones. The same
problem also exists between common diseases and
rare diseases in comorbidity prediction tasks. Thus,
it is necessary to undersample the dataset before the

prediction tasks. Various well-known undersampling
algorithms are evaluated in this experiment. Experimen-
tal results are displayed in Fig. 6, where x-axis repre-
sents different undersampling algorithms and y-axis indi-
cates the performance in terms of AUC. Besides, “Raw"
indicates that raw dataset was used without under-
sampling. We observe that NearMIss algorithm out-
performs other undersampling strategies. As a result,
we adopt NearMIss algorithm when undersampling
in mortality prediction and comorbidity prediction
tasks.

Fig. 5 Results of patient similarity analysis based on “Deep Feature”
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Fig. 6 Comparative results of different sampling strategies

Analysis of different binary classifiers
We conduct two experiments to analyze different binary
classifiers. One is to determine a good classifier for down-
stream prediction tasks. The other is to verify the general
purpose of our RNN-DAE model.

We compare six well-known binary classifiers based on
mortality prediction task. These binary classifiers include
support vector machine (SVM), random forest (RF), gra-
dient boosting decision tree (GBDT), k-nearest neighbor
(KNN), logistic regression (LR) and naive Bayes (NB).
Figure 7 records the results, where x-axis represent var-
ious classifiers and y-axis indicates the performance in

terms of AUC. As shown in this figure, SVM classifier
achieves the best performance. Therefore, SVM classi-
fier is used in both mortality prediction and comorbidity
prediction tasks.

To verify that our RNN-DAE model is insensitive by
the selected classifier. We experimentally compare the
results of mortality prediction between various represen-
tation learning methods using different classifiers, and
their results are summarized in Table 6. From this table,
we observe that our proposed RNN-DAE method outper-
forms the traditional representation learning methods in
terms of AUC, with 4 of the 6 classifiers achieving the

Fig. 7 Comparative results of different binary classifiers
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Table 6 Comparative results of various representation learning
methods using different classifiers for mortality prediction

SVM RF GBDT KNN LR NB

PCA 0.602 0.538 0.654 0.566 0.561 0.481

k-means 0.628 0.565 0.570 0.527 0.642 0.500

GMM 0.602 0.637 0.735 0.561 0.649 0.502

RNN-DAE 0.783 0.611 0.697 0.598 0.694 0.516

Hand 0.608 0.637 0.737 0.561 0.649 0.502

The results are measured by AUC

best results. That is, our proposed RNN-DAE model is
able to achieve competitive results even without the best
classifier for downstream tasks.

Analysis of patient representation vectors with different
dimensions
To investigate the sensitivity of our proposed model, we
experimentally compare patient representation vectors
with different dimensions on mortality prediction task. As
shown in Fig. 8, the x-axis indicates different dimensions
of patient representation vector from 100 to 400 and the
y-axis denotes the performance of our proposed model
in term of AUC, Accuracy and F1-score. We observe that
the performance of our proposed model is basically stable,
although it is a bit fluctuating. In other words, no matter
how we vary the dimensions of our patient representation
vector, the value of AUC, Accuracy, and F1-score can be
better than 0.75, 0.71, and 0.42 respectively.

Analysis of different training data sizes
To find an empirical training data size to train our pro-
posed RNN-DAE model, we experimentally investigate

the effect of different training data sizes on mortality pre-
diction task. There are totally 10,898 samples in the train-
ing data. In the experiment, we randomly selected 10%,
20%, · · · , 100% of 10,898 samples to train our model. Com-
parative results are shown in Fig. 9. From this figure, we
observe that the performance of our RNN-DAE method
in terms of AUC, Accuracy, and F1-score increases sig-
nificantly when the training data increases from 10% to
30%. When the training data size continues to increase,
the value of AUC comes into a steady stage, but the val-
ues of accuracy and F1-score continue to rise until the
training data size reaches 60%. These interesting observa-
tions confirm the robustness of our proposed RNN-DAE
method. That is, our RNN-DAE model is able to achieve
comparable results even if only a few training data is used
to train.

Conclusions
We present an effective patient representation learning
method for time-series prediction tasks in real-world EHR
data. With the help of our patient representation learning
method, some predictive descriptors called “Deep Fea-
tures” can be derived from the EHR data. Our proposed
patient representation learning method uses recurrent
neural network based denoising autoencoder (RNN-DAE)
to encode time-series information. Our proposed RNN-
DAE method is able to capture hierarchical regularities,
dependencies, and time series information in the data
to create a compact, general-purpose set of patient fea-
tures that can be effectively used in predictive clinical
time series tasks. Based on the real-world heart fail-
ure EHR data collected from the Shuguang Hospital, we
experimentally evaluate the effectiveness of our proposed
RNN-DAE method on both mortality prediction task and
comorbidity prediction task. In addition, we apply our

Fig. 8 Comparative results of patient representation vectors with different dimensions
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Fig. 9 The effect of different training data sizes

proposed RNN-DAE method to conduct patient similarity
analysis. Experimental results show that “Deep Features”
derived by our RNN-DAE method are consistently bet-
ter than those obtained by other feature learning methods
based on EHR data.

In future work, we plan to investigate some possi-
ble applications of our proposed RNN-DAE method to
analyze other special diseases, such as diabetes and col-
orectal cancer, and to solve other clinical tasks, such as
personalized prescriptions and therapy recommendation.
Since the patient’s inpatient records in our dataset rarely
exceeds 180 days, we did not consider the window size
for more than 180 days in this paper. We plan to consider
window sizes over 180 days in the future.
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