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Abstract: Herein, an injectable thermosensitive hydrogel was developed for a drug and cellular
delivery system. The composite was prepared by facile physical mixing of pluronic F-127 (PF) and
silk fibroin (SF) in an aqueous solution. The chemical structure, transparency, viscosity, injectability,
degradation kinetic, cumulative release of dexamethasone (Dex), a type of corticosteroid drug, and
size distribution of the fabricated hydrogels were characterized. Cytotoxicity of the hydrogels was
also studied to verify the biocompatibility of the hydrogels. The addition of a proper amount of
SF to PF not only improved the mechanical strength but also decreased the degradation rate which
improved the fast rate release of hydrophobic drugs. The cytotoxicity of the hydrogel decreased
when SF was added to PF in a proper amount. Overall, the results confirm that the composite of PF
and SF can be a promising cell and drug delivery system for future application in tissue engineering
and regenerative medicine.

Keywords: hydrogel; tissue engineering; pluronic F-127; silk fibroin

1. Introduction

One of the aims of tissue engineering (TE) is to implant alternative substances such
as cells, drugs, biomolecules, and growth factors into the damaged or injured tissue for
therapeutic purposes [1–6]. Hydrogel-based TE treatment is one of the most promising
regeneration strategies and has received considerable attention from various researchers in
biomedical fields. Hydrogel mimics salient components of native extracellular matrices
(ECM) and has similar mechanical properties to those of many soft tissues [7–9]. The
application of hydrogels has proven to be effective in a range of cell culture applications
to a delivery system [10–12]. Advanced hydrogel-based biomaterials are continuously
proposed and studied.

Among various types of hydrogels, thermosensitive hydrogels possess great potential
for a wide range of TE applications [12–15]. The sol–gel transition of thermosensitive
hydrogels can appear at a physiological temperature (~37 ◦C). Pluronic F-127 (PF) is one of
the promising thermosensitive hydrogels which is used for various application [16–18]. PF
is composed of an A-B-A non-ionic tri-block copolymer structure where A is a hydrophilic
poly (ethylene oxide) (PEO) and B is a hydrophobic poly (propylene oxide) (PPO) [19].
The merits of PF are that it is biocompatible, non-toxic, and can readily form a hydrogel
at a specific temperature [20]. Further, PF forms a micelle during the gelation process
which allows encapsulation of hydrophobic drugs in the core of the micelle and forms a
hydrophilic interaction with various biological factors [21–23]. However, in the physiolog-
ical conditions, the hydrogel structure is unstable due to the low molecular weight and
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poor mechanical properties. These drawbacks cause rapid decomposition and cause the
burst release of the drug [24]. To compensate the poor mechanical and physicochemical
properties of PF, high concentrations of PF can be used but may result in undesirable side
effects in vivo [25]. To overcome these problems, different types of polysaccharide and
collagen-derived polymers such as hyaluronic acid, alginate, chitosan, gellan gum, and
gelatin have been applied with PF to enhance the stability and physicochemical properties
of PF through the intramolecular interaction [16,26–30]. A facile blending with various
types of matrix exhibited a promising application as an injectable hydrogel for drug and
cell delivery. Studies on a PF micelle which was physically blended with silk-related
protein were also performed in previous papers, but no studies have been conducted on
the possibility of an injectable device [31–33].

Herein, silk fibroin (SF) extracted from the Bombyx mori cocoon is used to compensate
for the mechanical properties and stability of PF. SF is widely reported to be biocompatible
and biodegradable, and to have high cell adhesion moieties, low antigenicity, superior
mechanical properties, and ease of handling [34–37]. For these advantages, SF is actively
used to form a three-dimensional (3D) scaffold, or for a drug delivery system [38]. However,
SF requires rather harsh external stimuli such as pH, ultrasound, chemical modification,
and chemical crosslinking to obtain an SF-based hydrogel [39,40]. To solve the limitations
of both PF and SF, non-toxic physical crosslinking was applied in this study. It was
hypothesized that the mixture PF and SF may enhance the mechanical properties of PF by
inter-micellar packing through the physical crosslinking of SF and form a thermo-reversible
injectable hydrogel for tissue engineering biomaterial (Scheme 1). The various amounts of
SF were loaded in PF, and the characterization was carried out with FT-IR, a transparency
test, gross observation, a size distribution test, a viscosity study, injectability, degradation,
and release studies, and a cytotoxicity test.

Scheme 1. (A) Fabrication method and mechanism of Pluronic F-127 (PF)/silk fibroin (SF) (P–S) hydrogel; (B) Application
of P–S hydrogel: (a) A thermo-reversible transition for 3-dimensional (3D) culture and (b) Injectable device for cells, drugs,
and biological factors etc. delivery.
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2. Materials and Methods
2.1. Preparation SF Solution

An amount of 10 g of the silkworm cocoon was cut and boiled in a solution containing
0.02 M sodium carbonate (Na2CO3, Showa Chemical Industry Co., Tokyo, Japan) to remove
the sericin. After boiling for 30 min, it was washed with distilled water and put in a 60 ◦C
oven to remove water. An amount of 7 g of the dried silk was mixed with 9.3 M lithium
bromide (LiBr, Kanto Chemical, Tokyo, Japan) and stored at 60 ◦C for 4 h. When the
silk completely dissolved, it was dialyzed in distilled water for 72 h using a SnakeskinTM

Dialysis Tubing (3500 MWCO, Thermo Fisher Scientific, Waltham, MA, USA) to remove LiBr.

2.2. Fabrication of the Hydrogels

PF powder (Sigma-Aldrich, St. Louis, MO, USA) with an amount of 20% (w/v) was
stirred at 4 ◦C in distilled water. SF solution was blended with PF solution with the final
volumes of 0%, 0.5%, 1%, and 2% (w/v), which are specified as PF, P–S0.5, P–S1, and P–S2,
respectively, and was stirred at 4 ◦C for 3 h. The fabricated hydrogel solutions were stored
at 4 °C until further characterization.

2.3. Characterization
2.3.1. Chemical Structure Analysis

The chemical structures of SF, PF, and Pluronic F-127/silk fibroin (P–S) hydrogels were
measured by attenuated total reflectance-Fourier transform infrared (ATR-FTIR, Perkin
Elmer, Boston, MA, USA) at the wavelength range of 400–4000 cm−1. All the samples were
lyophilized at −84 ◦C and a vacuum gauge of 5 m Torr using a freeze dryer (ilShinBioBase
Co., Ltd., Dongducheon, Korea) to fully remove moisture.

2.3.2. Weight Loss Ratio

The hydrogels with an amount of 500 µL were placed in 1.5 mL microtubes and
gelation was induced by placing them in a 37 °C condition. The weight of the solidified
hydrogel was measured (Wi). Then, 500 µL of phosphate-buffered saline (PBS, Gibco,
Thermo Fisher Scientific, Waltham, MA, USA) was added and the samples were stored at
37 ◦C. At the specific time points, the hydrogels were centrifuged at 2000 rpm for 15 min at
37 ◦C using a Micro High Speed Centrifuge (Micro 17TR, Hanil Scientific Inc., Gyeonggi,
Korea). The supernatant was removed and the remaining weight was weighed (Wt). The
weight loss of the gels was calculated the following Equation (1) [41].

Weight loss (%) =
Wi −Wt

Wi
× 100 (%) (1)

2.3.3. Optical Intensity

The transparency of the P–S hydrogels was measured at 4 and 37 ◦C by gross obser-
vation and spectrum analysis, using a Synergy MX spectrophotometer (BioTek, Vernusky,
VT, USA) at a wavelength range of 380–780 nm. The transmittance of the specimens was
calculated following Equation (2).

Absorbance (A) = 2− log %Transmittance (T) (2)

2.3.4. Viscosity Evaluation

The viscosity and gelation temperature of P–S was measured by a viscometer (AME-
TEK Brookfield, Middleboro, MA, USA). The initial temperature was set at 18 ◦C and
each P–S solution was measured by adding 8 mL to the viscometer. The temperature
was gradually increased and viscosity was measured at various temperatures. The router
speed was set at 1 rpm, and cone and plate spindles (LV-04 spindle, AMETEK Brookfield,
Middleboro, MA, USA) were applied for this study.
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2.3.5. Injection Force Test

The injection force of the fabricated hydrogel was studied by following the previous
reported study with a slight modification [42]. The prepared samples were aspirated in
a 1 mL syringe (Kovax-Syringe, Korea Vaccine Co., Ltd., Seoul, Korea) with an amount
of 500 µL. The syringes were capped with a 6G 1

2 ′ needle and stored at RT for 5 min to
solidify the hydrogel solution. The samples were placed on a custom-designed bracket
and the injection force test was carried out with a Texture Analyzer (Version 1, 2013, Food
Technology Corporation, West Sussex, VA, USA) at a speed of 20 mm/min and load cell
of 20 N. The needle was submerged in the PBS solution to create a similar condition to
in vivo injection. The experiment was performed at 37 ◦C and 4 parallel measurements
was carried out.

2.3.6. Release Study

The release property of PF and P–S was conducted using dexamethasone (Dex, Sigma-
Aldrich, St. Louis, MO, USA), a type of corticosteroid drug. First, 20% (w/v) PF solution
was fabricated, and SF solution was blended with PF solution with the final volumes of 0%,
0.5%, 1%, and 2% (w/v) and stirred at 4 ◦C. Then, Dex was dissolved in an amount of 1
mg/mL. The manufactured hydrogel solution was transferred into a SnakeskinTM Dialysis
Tubing (Thermo Fisher Scientific, Waltham, MA, USA) in an amount of 3 mL. The samples
were incubated in 15 mL of PBS at 37 ◦C. At specific time points (0.5, 1, 3, 5, and 8 h), all of
the extracted solutions were transferred to a new conical tube and fresh PBS was added to
the samples. The released Dex was analyzed by a microplate reader (Synergy MX, BioTek,
Vernusky, VT, USA) at an absorbance of 241 nm.

2.3.7. Size Analysis of P–S Hydrogel

The micelle size and packing of the hydrogel were characterized at 37 ◦C using a
particle size analyzer (90Plus, Brookhaven Instrument Corp., Holtswille, NY, USA) at a
scattering angle of 90◦. The concentration of PF and P–S hydrogels was 1.875% (w/v).

2.4. In Vitro Study
Cytotoxicity Evaluation

The cytotoxicity of the P–S hydrogels was characterized by the extraction test reported
in the previous study with a slight modification [27]. An amount of 9 mL of RPMI (Gibco,
Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum
(FBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin/streptomycin
(PS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) was carefully added in 1 mL of
solidified hydrogel samples. The prepared samples were incubated in a 37 ◦C water bath
for 24 h. Autoclaved latex was chopped into pieces for the positive control (2.5 cm2/mL)
and was incubated with 10 mL of RPMI medium for 24 h in a 37 ◦C water bath. Then, the
extracted supernatant was filtered through a 0.45 µm pore size filter (Millex® Syringe Filters,
Merk Millipore, Darmstadt, Germany). NIH/3T3 mouse embryo fibroblast (National
Institute of Health, KCLB2165, Korean Cell Line Bank, Seoul, Korea) was used for the
cytotoxicity evaluation. The cells were cultured on 96-well plates (n = 6, 2 × 103 cells/well)
in RPMI cell culture medium. The cells were incubated for 24 h at 37 ◦C in a 5% CO2
incubator. The cell culture medium was removed after 24 h and the samples were added
and stored under standard culture conditions (5% CO2 and 37 ◦C). At a specific time
point, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazolyl blue,
5 mg/mL in PBS, Amresco, Dallas, TX, USA) solution was treated and the plates were
incubated for 1 h in a cell culture incubator. The supernatant was removed and dimethyl
sulfoxide (DMSO, Samchun chemical, Seoul, Korea) was added to dissolve the formazan
crystal. The absorbance of 570 nm was measured with a microplate reader (Synergy MX,
Biotek, Vernusky, VT, USA). All the groups were normalized with the negative control (RPMI
medium). All the groups were normalized with the negative control (cell culture media).
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3. Results and Discussion
3.1. Fabrication and Chemical Structure Evaluation

The 20% (w/v) PF concentration in P–S hydrogels is an adequate and widely used
formulation for use as an injectable hydrogel [26]. At physiological temperature, the PF
copolymer less than 15% (w/v) becomes a sol state and appears as a low-viscosity liquid;
however, the 20% PF copolymer exists in a gel state [43]. When the concentration of PF is
too high, side effects exist when used in the body [44]. The chemical composition of PF, SF,
and the interaction of the P–S composite was identified by using ATR-FTIR (Figure 1). The
specific peaks of PF were exhibited at 2882 (C-H stretching vibration), 1342 (in plane O-H
band), and 1098 cm−1 (C-O-C stretching) (Figure 1A) [45]. In SF, the characteristic peaks
were observed at 3334 (N-H stretching from the peptide bond of protein), 1646 (amide I),
1517 (amide II), and 1236 cm−1 (amide III) (Figure 1A) [46]. The P–S composite showed
specific peaks of PF (represented in the green box) which did not display any shifting. The
specific peaks of amide I and amide II of the P–S hydrogels appeared at 1625 and 1528 cm−1

(represented in the blue box), respectively (Figure 1B,C). The shifting of the wavenumber
may be due to the intermolecular interaction among PF and SF and also the formation of
β-sheets from the water absorbance of PF within SF [32]. New peaks did not appear which
proves that the hydrogel was manufactured based on physical mixing of PF and SF.

Figure 1. ATR-FTIR evaluation of (A) lyophilized SF solution and PF hydrogel and (B) Lyophilized
P–S hydrogels measured at the wavelength range of 400–4000 cm−1 and (C) Magnified transmittance
of P–S hydrogels at 1500–1800 cm−1 wavelength.

3.2. Viscosity and Injection Force Analysis

The gelation temperature of the hydrogels and mechanical properties of the hydrogels
were measured by a viscosity study and an injection force test. The gelation temperature
of the hydrogels showed at ~27.3, ~27.3, ~27.4, and ~27.4 ◦C in PF, P–S0.5, P–S1, and
P–S2, respectively (Figure 2A). The final viscosity of the P–S hydrogels at a temperature
above 37 ◦C showed a higher storage modulus when compared to PF. It can be seen that
the temperature-induced phase transition behavior of PF hydrogels was not significantly
affected by the addition of SF. However, the maximum viscosity value of each sample
was increased by adding SF. It is suspected that the intermolecular interaction among PF
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and SF induced higher mechanical properties when the P–S composite reached a specific
temperature. The injection property is an important property of the hydrogel to be applied
in tissue engineering and regenerative medicine (Figure 2B). The PF group showed the
lowest injection force, while the SF-loaded hydrogels showed a higher injection force. As a
higher amount of SF was contained, the mechanical properties increased which required a
higher force to inject, but it was sufficient to inject.

Figure 2. (A) Viscosity analysis by gradually increasing the temperature from 18 to 60 ◦C. (B) Ex-
trusion test of the hydrogels analyzed at room temperature at a speed of 20 mm/min and load cell
of 20 N.

3.3. Gross Image and Transparency

The gross image and transparency of the fabricated hydrogels were characterized at
4 and 37 ◦C (Figure 3A). All the groups exhibited a liquid-like property at 4 ◦C and a solid-
like property at 37 ◦C, which confirms the thermo-responsiveness of the hydrogels. The PF
groups showed excellent transparency both at 4 and 37 ◦C. The P–S groups showed lower
transparency when compared to the PF group, which may be due to the intermolecular
interaction in the matrix. Moreover, the lower transparency of the P–S groups may be due
to the formation of β-sheets in SF by the absorbance of the water from the hydrophilic part
in PF, inducing a conformational change of SF from a random coil to a β-sheet structure [32].
The higher content of SF in the PF solution exhibited lower transparency from the existence
of a higher content of β-sheets. At 37 ◦C, although the difference was insignificant, the
transparency of the P–S group showed lower transparency than that in the liquid state. It
was believed that this phenomenon occurred due to the micellar packing of PF from the
physical crosslinking of SF. To confirm the intermolecular interaction among PF and SF, the
particle size of the PF and P–S groups was analyzed at 37 ◦C (Figure 3B).
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Figure 3. (A) Gross images and transparency results in the visible range wavelength of 380–780 nm.
(B) Size distribution of PF, SF, P–S0.5, P–S1, and P–S2 at 37 ◦C.

The PF group showed ~26 nm in particle size at 37 ◦C, while the SF group exhibited
a particle size of ~265 nm. P–S groups exhibited the particle size at two divided areas.
The P–S0.5 group showed a particle size of ~23 and ~115 nm, the P–S1 group displayed
a particle size of ~24 and ~230 nm, and the P–S2 group exhibited a particle size of ~22
and ~235 nm. The first section of the particle size of the P–S groups may be due to the
micelle formation of PF. The particle size of the second section of the P–S groups may be
attributed to the inter-micellar packing through the intermolecular interactions among SF
and PF. The size of the particle increased as the SF content was higher. In this regard, the
transparency of the P–S hydrogel groups may have decreased at 37 ◦C when compared to
the transparency of 4 ◦C due to the densely packed micelles. However, as the content of SF
increased, the particle size exhibited a broader range. It is suspected that above the critical
point, SF is dispersed in the matrix and forms an intermolecularly interacting SF matrix
rather than working as a micelle physical crosslinker.

3.4. Weight Loss and Release Study

The weight loss ratio of hydrogels was analyzed for 7 days (Figure 4A). The PF group
and P–S0.5 group showed a fast rate of degradation and were completely dissolved on
day 5 of the experiment. On the other hand, P–S1 and P–S2 hydrogels maintained the
structure for 3 days of the experiment. The P–S1 group started to degrade on day 4 of the
experiment and on day 7, the samples remained at 62.01 ± 15.59% of the initial weight. The
P–S2 group did not show a degradation kinetic for 7 days. This confirms that incorporation
of SF enhances the physicochemical property of PF by physical crosslinking. However,
it is suspected that the enhanced physicochemical property of P–S2 occurred due to the
increased interaction among SF, rather than the inter-micellar physical crosslinking. The
cumulative release of the drug was also confirmed (Figure 4B).
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Figure 4. (A) Weight loss ratio of the hydrogels analyzed for 7 days. (B) Cumulative release kinetics
analyzed for 48 h (values are means ± SD, n = 4).

PF can be applied as a drug delivery vehicle but exhibits burst release at the initial
time point [26,47]. However, it was predicted that rapid release can be prevented by inter-
micellar packing. The PF group showed the fastest release kinetic when compared to the
P–S groups, and the entire Dex was released within 8 h. The reason for the fast release of PF
is due to the hydrophilicity of the PF micelles [47,48]. The P–S0.5 and P–S1 groups showed
slower release kinetics when compared to PF. This may be due to the barrier effect of the
inter-micellar packing which delayed the release of the drugs [49]. Further, the mesh size
of the hydrogel can be predicted from the mechanical properties. The crosslinking density
of the hydrogel increases as the mechanical properties are higher and the mesh size of the
hydrogel matrix decreases [50,51]. Through this, it can be predicted that the reduced mesh
size slowed down the drug release kinetic of the P–S hydrogel. On the other hand, the P–S2
group exhibited a faster release kinetic when compared to P–S0.5 and P–S1, which may
be due to the dispersed SF rather than the formation of micelle stacking which coincides
with the size distribution result [52]. The release study shows that the proper amount of SF
not only improved the overall mechanical properties but also formed an obstruction that
prevents the burst release of PF.

3.5. Cell Viability and Cytotoxicity Test

The biocompatibility of the fabricated material was confirmed by an extraction test
(Figure 5). In order to fabricate a PF hydrogel with sufficient mechanical properties, the
concentration should be above 15%. However, although it may depend on the type of
cell, the cytotoxicity increases when the concentration is too high. This is because high
concentrations may disrupt the cell membrane [53,54]. The number of NIH 3T3 cells
increased in both PF and P–S groups when the time passed (Figure 5A). However, the PF
group showed only 37.68 ± 0.16% of cell viability compared to the negative control on day
3 of the experiment (Figure 5B).

Figure 5. Cytotoxicity test of hydrogels analyzed for 72 h by using the medium extraction method.
(A) Cell viability expressed by optical density. (B) Representation of the percentage of P–S hydrogels
assuming the cell viability of the negative control group at 100% (NIH 3T3 cell line was used for this
study) (values are means ± SD, n = 8, p < 0.001 (***)).
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It is believed that the high amount of decomposition factors of PF existed in the
extracted medium solution from the fast degradation rate of PF which disrupted the
membrane of the cells [53,54]. The viability of the cells increased in the P–S0.5 and P–S1
groups. This may be due to the enhancement of the physical crosslinking of the hydrogel
matrix which inhibited the PF release. In particular, the P–S1 group exhibited 86.52 ± 0.15%
of cell viability which significantly enhanced the biocompatibility of PF. However, the
cell viability was 19.27 ± 0.07% in the P–S2 groups, which may be due to the release of a
residual SF matrix to the cells [55]. This illustrates the importance of the incorporation of a
proper amount of SF to enhance the biocompatibility.

4. Conclusions

In this study, a P–S hydrogel was proposed as an effective biomaterial for application
in tissue engineering and regenerative medicine. PF provided a platform for the entire
support. SF supported enhancing the intermolecular interaction of micelles by physical
crosslinking. P–S hydrogels were prepared by a simple physical mixing without any
chemical modification. Thermo-reversible P–S hydrogels showed sol–gel transition at 4
and 37 ◦C, which shows the potential of these gels as injectable hydrogels. The rapid weight
loss and cumulative release of pure PF were improved by the intermolecular interaction
of SF. Overall, the P–S hydrogels incorporated with the proper amount of SF showed
enhanced mechanical and physicochemical properties when compared to PF. Moreover, the
biocompatibility of the PF was significantly enhanced in the P–S hydrogel when compared
to the pristine PF. The results suggest that the P–S hydrogel incorporated with biological
factors or drugs may provide stable release in vivo. Further, cells can be encapsulated
in P–S hydrogels, which can be applied in 3D culture systems, or used for cell delivery
vehicles. Overall, the P–S hydrogel is a promising injectable hydrogel for future tissue
regeneration application.
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