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Abstract
This study evaluates information produced from 14 fisheries independent monitoring pro-

grams (FIM) in the Gulf of Mexico. We consider the uniqueness of information from each

program and its usefulness in estimating fisheries management indices. Biomass values of

35 functional groups are extracted from an operating model (Ecospace) with a method that

replicates the patterns of historic FIM samplings. Observation error is added to these data in

order to create a set of pseudo data that replicate the type and quality of information ob-

tained from FIM programs. The pseudo data were put into a separate fishery assessment

model (Pella-Tomlinson) to determine management indices of each functional group

(maximum sustainable yield (MSY), biomass at MSY, and fishing mortality at MSY). These

indices are compared against values in Ecospace, and against previously published single-

species stock assessments. We also evaluate the full suite of information derived from FIM

within an ecosystem context, considering whether functional roles are over- or under-

sampled, and whether sampling effort is proportional to the value of fish stocks. Results re-

veal that model derived fishery indices closely matched published indices for the majority of

the functional groups, economic and ecological evaluation suggests that several piscivo-

rous functional groups are under-sampled include forage base species that are likely to indi-

rectly support fisheries for piscivores, and sampling efforts are not proportional to the value

of some fish stocks. Following ecological modelling we performed statistical analyses on

historic FIM catch data to identify optimal species-specific sampling months and gear-types

that can be used to refine future FIM sampling efforts.

Introduction
Data yielded from fisheries independent monitoring (FIM) programs in the Gulf of Mexico
(GOM) provide the basic information for federal and state stock assessments on numerous ex-
ploited species. Stock assessments consider species-specific information from FIM data obtained
by federal agencies such as the National Oceanographic and Atmospheric Administration
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(NOAA) or state agencies such as the Florida Fish andWildlife Research Institute (FWRI). The
data collected typically includes numbers or weights caught, taxonomy, morphometrics, as well
as the dates and locations of the capture events. These agencies utilize several fishing gear-types
to sample the marine ecosystems, such as shrimp trawls, traps and long-lines. Ultimately, stock
assessments based on FIM sampling data, allow the setting of safe harvest limits (e.g., [1]). Un-
less we feed accurate and representative stock information into the stock assessments, manage-
ment decisions could lead to harvest levels that are too low, threatening viability of the fishing
industry, or too high threatening the marine ecosystem (e.g., [2–7]).

Typically FIM programs are developed and managed independently and usually on a state-
by-state basis. As a result they are not optimized for data collection across the ecosystem as a
whole, and they may overlap in species, age classes, depths or habitats sampled (providing re-
dundant information). FIM sampling methods may under-represent certain species, or they
may allocate sampling effort disproportionately to the commercial or recreational importance
of a species. Moreover, areas sampled may be more or less useful for the stock assessment of
certain species when considering native distributions and habitat usages.

More recently fishery assessments have begun using whole-ecosystem models to develop
management strategies in other parts of the world, as these models describe important tropho-
dynamics missed in single species assessments [8–10]. In general, ecosystem models have been
applied to support single species assessments. Whole-ecosystem models have the ability to not
only quantify ecosystem connectivity (predator-prey interactions), they can also test maximum
fishing mortality scenarios per species with resulting whole-ecosystem responses, the creation
of seasonal or geographic fishing closures to estimate overfished species-specific recovery
times, or even environmental drivers of migration [11–15]. There are even higher resolution
ecosystem models that capture fine-scale details of time [16] and biogeochemistry [17] for bet-
ter predictions of plankton dynamics when considering physical oceanography and various in-
fluences to the marine ecosystem (e.g., water mass advection, light and/or nutrients).

Combining recent advancements in ecological modelling with FIM data has the potential to
be an effective tool for more accurately describing important trophodynamic links in the marine
ecosystem, as a single species distributions, biomass and fishing limits are affected by environ-
mental and ecological connections [18–20]. However, in the GOM there are only a few pub-
lished ecosystem models, and those models they have been limited to estimating ages [21], levels
of natural mortality [22], or population connectivity [23–26]. While improved estimates of
these parameters for stock assessment models are important, accurate fishery independent indi-
ces of abundance remain critical for providing effective evaluations of a stock’s status [e.g., 27].

Fishery managers and marine scientists currently recognize the need to expand FIM sam-
pling programs for more effective management of fishery resources [28], as more focused sam-
pling efforts could provide a continuous baseline of data on stock status. Although FIM is
naturally limited by the selectivity of sampling gears or the accessibility of certain habitats, no
previous study in the GOM has considered the resulting value of FIM information from a
whole-ecosystem perspective, nor assessed how sampling can be improved to yield more repre-
sentative data for the entire suite of stock assessments. Using a whole-ecosystem model can
help focus FIM sampling efforts, maximizing scientific benefit across a range of managed spe-
cies, and also allows for the comparison of fisheries assessments based on target species (histor-
ic) versus whole ecosystem; both of which can be used for more adaptive fisheries management
indices [29,30].

The current study quantifies the information value of various sampling programs within the
Southeast Area Monitoring and Assessment Program (SEAMAP; [31]) and the Comparative
Assessment of Gulf Estuarine Systems (CAGES; [32])) using spatial ecological modelling, FIM
data, and fisheries assessments. We propose which components of individual programs, if
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expanded, would yield the greatest improvements in the accuracy of stock assessments. To ac-
complish this we develop a spatial operating model. We treat the operating model as the “true”
ecosystem, then species’ biomass values, catch values, ratios, and fisheries management indices
throughout the GOM become ‘known values’. We sample biomass from the operating model
at the same locations as the actual FIM programs and with the same level of accuracy by ac-
counting for observational error, and this data is used to estimate common fisheries manage-
ment indices (e.g. maximum sustainable yield (MSY), biomass at MSY (BMSY), and fisheries
mortality at MSY (FMSY)) with an assessment model. Fishery indices generated by the operat-
ing and assessment models are then compared to one another, as well as to historic, current
and suggested fishing mortality rates including FMSY, the maximum fishing mortality thresh-
old, and other management indices for the GOM. By assessing the accuracy of the indices de-
rived from the assessment model relative to the known values of the operating model, we get
an idea of the accuracy of each stock assessment, and therefore the information content of the
FIM data on which it relies. Additionally, we evaluated the raw historic FIM catch data using
multivariate analysis to determine which sampling years and FIM program characteristics con-
tributed the most information by species. Specifically, we identify best sampling habitats,
months and gear-types for obtaining data on many species in the SEAMAP and CAGES pro-
grams with the goal of maximizing total scientific value from future FIM sampling.

Methods and Materials

Operating Model
We developed a spatial operating model of the northern GOM based on Ecospace [33]. The
model domain ranges from 24–31°N latitude to 80–98°W longitude, including the coastlines
and estuaries from Texas to the Florida Keys, and depths from 0–1000 m (Fig 1). The model
was based on an Ecopath with Ecosim (EwE) model [34], which considered 48 functional
groups, including single species, aggregated groups of species, and age-structured species. Our
amendments to the model include the addition of seven defined habitat types with functional
group habitat preferences, the addition of specific Marine Protected Areas (MPAs) to restrict

Fig 1. High resolution Ecospace map ranging from 24 to 31°N latitude and 80 to 98°W longitude, and a 4.4 km x 4.4 km resolution per map cell.
Depths greater than 1000 m in the central GOM and Florida’s east coast are omitted from ecological analyses.

doi:10.1371/journal.pone.0120929.g001
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fishing effort spatially, and simulated input of annual chlorophyll a concentrations to influence
basal trophic energetic exchanges.

The Ecopath with Ecosim model organizes individual species, multi-stanza (or multiple age
classes) species, and aggregated groups of species into functional groups. The model acts like a
thermodynamic accounting system, tracking material flows through the ecosystem and func-
tional groups according to the constraints of mass-balance and conservation of energy. Eco-
path represents an instantaneous ‘snap-shot’ of material fluxes in the ecosystem (see [35] for
equations), Ecosim adds a temporal dimension, predicting biomass change for primary pro-
ducers and consumers according to Eqs 1 and 2, respectively, and Ecospace adds a spatial di-
mension based on Ecosim simulations in each pixel, adjacent pixels, and habitat preferences
(discussed below).

dBi

dt
¼ cBi

P
B

� �
i

EEi �
Xn

j¼1

f ðBi;BjÞ �MiBi ð1Þ

dBi

dt
¼ cgi
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f ðBj;BiÞ �
Xn

j¼1

f ðBi;BjÞ þ Ii � BiðMi þ Fi þ EiÞ ð2Þ

Bi and Bj are biomasses of prey (i) and predator (j), P is production rate, EE is ecotrophic effi-
ciency, f is a relationship predicting consumption, I is immigration,M and F are natural and
fishing mortality, E is emigration, g is growth efficiency, and n is the number of functional
groups. The scalar c is used in this article to introduce forcing functions on productivity (de-
scribed below), and EE is the proportion of the production used in the marine ecosystem.

The operating model (Ecospace) map is comprised of a grid of pixels or cells that each rep-
resents an individual Ecosim simulation and habitat type. Each functional group in the model
is assigned a set of habitat preferences. Each map cell, with the exception of land cells, thus pre-
dicts biomass densities of multiple species and age classes, predator-prey interactions, and fish-
ing mortalities based on trophodynamics, which affects adjacent cells and spatial distributions.
Six of the habitat types are created to describe the depth ranges that are<10 m, 11–50 m,
51–100 m, 101–200 m, 201–1000 m, and> 1000 m according the previous EwE model [34].
Depths greater than 1000 m and Florida’s east coast are not considered in the Ecospace model
as this study focuses primarily on coastal functional groups in the GOM, and the majority of
fishing activities and FIM sampling efforts took place in shelf waters. A seventh habitat type,
“Reef,” is created using spatially referenced reef point data downloaded from the ReefBase web-
site (http://www.reefbase.org; [36]). Reefbase aggregates information from scientific studies
and crowd sourced data pertaining to coral reefs with the goal of producing information to
support decision making by fisheries and environmental managers.

Gulf of Mexico habitat types based on depth ranges are determined from a bathymetry map
derived from the SRTMS_PLUS V6.0 data files made available by the Shuttle Radar Topogra-
phy Mission (SRTM; [37]). The SRTM data was collected using radar interferometry [38], and
has a resolution of approximately 1.85 km. A grid of points each separated by 1/25th of a deci-
mal degree was overlaid upon the SRTM bathymetry map as well as the spatially referenced
reef point data in ArcGIS 10.0 [39] to create the operating model map with a resolution of 4.4
km x 4.4 km per cell. The cell resolution was chosen based on the average distances between
FIM sample collection sites within the Gulf of Mexico, which captured the start and end lati-
tudes and longitudes of FIM trawling efforts (e.g. shrimp trawls), or individual latitude and
longitude points of a stationary FIM sample point (e.g. trap or camera recording). This point
grid is also used to translate the locations of marine protected areas (MPAs) and values of chlo-
rophyll a to operating model cells using the data sources described below.

Assessment of Gulf of Mexico Fisheries Independent Monitoring Programs
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The operating model domain includes spatially referenced MPAs based on a list of 21 MPA
spatial fisheries closures. These help to apportion fishing effort realistically in the spatial
model. The dates enacted, names, and respective restrictions are detailed in the online report at
the University of South Florida [40]. These 21 MPAs were chosen as they were the most restric-
tive in terms of limiting fishing activities. When data pertaining to fisheries restrictions were
not included in the database of the National Marine Protected Areas Center [41], a basic inter-
net search was performed. A typical search for supplemental data included official local, state,
and national park websites, fisheries management agency websites, Google scholar searches by
MPA name, as well as fishing and travel blogs. Only a small portion of GOMMPA’s had specif-
ic restrictions on fishing. For example, areas such as national wildlife refuges, and state and
local parks did not have any specific restrictions beyond their respective state and national reg-
ulations despite their listing in the database. MPA’s with site-specific management plans that
may restrict fishing in a few small localities are not considered due to their scale.

Chlorophyll a concentrations in the model domain were determined according to remotely
sensed data downloaded from the Giovanni online data system (Giovanni MODIS-Aqua data)
maintained by NASA GES DISC at http://giovanni.gsfc.nasa.gov [42]. Giovanni MODIS-Aqua
data at a 4 km resolution was collected from Ocean Portal’s Ocean Color Radiometry Online
Visualization and Analysis’ global monthly products, and then averaged across this study’s
sampling region by annual concentrations from 1982 to 2012. For a MODIS-Aqua data point
that correlated to an Ecospace cell that had no chlorophyll a data, two-dimensional linear in-
terpolation was performed using Delaunay triangulation of the scattered data [43,44]. Average
annual chlorophyll a concentrations were translated into map cells using the point grid system.

Extracting Simulated FIM Data from Operating Model
Of the 48 functional groups driving trophic energetic exchanges in the Ecospace model, we
narrowed our analytical focus to 35 functional groups and their species that are considered in
state and/or federal fishing regulations, and/or had reef-related, pelagic and demersal species
(Table 1). We then extracted biomass (tonnes km-2) and catch (tonnes km-2 y-1) from a
30-year Ecospace simulation for each of the 35 functional groups by replicating the yearly sam-
pling patterns of FIM programs. This was achieved by converting reported FIM sampling loca-
tions (latitudes and longitudes) where each of the 35 functional groups were captured during a
given year into an equivalent matrix of Ecospace cells from which to extract biomass and catch
data. FIM sampling matrices, or geographically defined pixels of across the Gulf of Mexico, de-
scribe the sampling locations for each year in the SEAMAP program (2000 to 2012), and the
CAGES program (2000 to 2007). Each sampling matrix therefore characterizes the “year-pat-
tern,” or the total of the unique sampling locations in the operating model’s cells, as reported in
an FIM database for that year. By using individual year-patterns to extract the total biomass
and catch from the operating output files (files that summarize the biomass/catch per cell per
species and per year) we replicate FIM program’s sampling efforts for a given year in terms of
sampling areas (i.e. habitats/depths), species and age classes sampled. Therefore, the depths,
habitats, species and age classes accessible by all gear-types involved in FIM sampling are real-
istic and informed by the historical FIM data.

Using this method we analyzed 14 FIM programs. Thirteen programs were described based
on the gear-types used in the SEAMAP program, which included gear-type Bib Trawl (BB),
Bottom Longline (BL), Experimental Shrimp Trawl (ES), Fish Trawl (FT), Hand Line (HL),
High Opening Bottom Trawl (HO), Off-bottom Longline (OB), General Plankton (PN), Stan-
dard Mongoose Trawl (SM), Shrimp or SEAMAP Trawl (ST), Fish Trap (TR), Video Trap
(TV), and the Video Camera (VC). The fourteenth FIM program was the estuarine sampling
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Table 1. Species comprising the 35 functional groups in the 14 FIM programs considered in analyses in the present study.

Functional Group Species Functional Group Species

Atlantic Croaker Micropogonias undulatus Lobster Nephropsis spp.

Bay Anchovy Anchoa mitchilli Nephropsis aculeata

Blue Crab Callinectes spp. Nephropsis rosea

Callinectes sapidus Polycheles spp.

Callinectes similis Polycheles typhlops

Callinectes ornatus Panulirus argus

Catfish Arius felis Scyllaridae spp.

Bagre marinus Scyllarides aequinoctialis

Ictalurus furcatus Scyllarides delfosi

Ictalurus punctatus Scyllarides depressus

Grouper Epinephelus spp. Scyllarides nodifer

(ages 0–1, 1–3, >3) Epinephelus adscensionis Scyllarus spp.

Epinephelus drummondhayi Scyllarus americanus

Epinephelus flavolimbatus Scyllarus chacei

Epinephelus guttatus Mackerel Auxis rochei

Epinephelus itajara (ages 0–3, >3) Scomber japonicus

Epinephelus morio Scomber colias

Epinephelus nigritus Scomber scombrus

Epinephelus niveatus Scomberomorus cavalla

Mycteroperca bonaci Scomberomorus maculatus

Mycteroperca interstitialis Scomberomorus regalis

Mycteroperca microlepis Menhaden Brevoortia patronus

Mycteroperca phenax (Juveniles & Brevoortia gunteri

Mycteroperca venenosa Adults) Brevoortia smithi

Jacks Caranx spp. Mullet Mugil cephalus

Caranx crysos (ages 0–6, 6–18, >18) Mugil curema

Caranx hippos Pigfish Orthopristis chrysopterus

Hemicranx amblyrhynchus Pin Fish Diplodus holbrooki

Seriola spp. Lagodon rhomboides

Seriola dumerili Pompano Alectic ciliaris

Seriola fasciata Rachycentron canadum

Seriola rivoliana Trachinotus carolinus

Seriola zonata Trachinotus falcatus

Ladyfish Elops saurus Red Drum Sciaenops ocellata

(ages 0–10, >10) (ages 0–3, 3–8, 8–18,

Lobster Homarus 8–36, >36)

Munida spp. Red Snapper Lutjanus campechanus

Munida flinti (ages 0–6, 6–24, >24)

Munida forceps Scaled Sardine Harengula jaguana

Munida iris Sea Trout Cynoscion spp.

Munida irrasa (ages 0–3, 3–18, >18) Cynoscion arenarius

Munida longipes Cynoscion nebulosus

Munida pusilla Cynoscion nothus

Munida robusta Silver Perch Bairdiella chrysoura

Munida simplex Stone Crab Menippea spp.

Munida valida Menippe adina

(Continued)
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from CAGES. The database does not specify gear-type used. All 13 SEAMAP programs’ re-
ported in the historic catch records were used to construct each SEAMAP year-pattern, and
the CAGES program, describing the sampling of all 5 Gulf States, were used to construct each
CAGES year-pattern.

This method creates a set of ‘pseudo’ sampling data that represents the same kinds and qual-
ity of information that are obtained from FIM programs. Just as fisheries managers would do
in real life, we use this pseudo data in a separate assessment model to estimate common fisher-
ies management indices (maximum sustainable yield (MSY), biomass at MSY (BMSY) and fish-
eries mortality at MSY (FMSY)). We have assumed that a sampling event located within an
Ecospace cell would return a biomass density representative of that cell. This is not such a
strong assumption, as our cells are only 4.4 km by 4.4 km and are designed to represent homo-
geneous habitats. In fact, a similar assumption is implicitly present in any sampling program
that extrapolates swept-area measurements up to the scale of the whole stock or occupied
range. Obviously, FIM programs sample in different areas each year and with different
amounts of total sampling effort using an intentional random sampling strategy. This variabili-
ty gives us the opportunity to examine which areas provide the most valuable information for
stock assessment on a species-by-species basis.

Obviously, FIM programs sample in different areas each year and with different amounts of
total sampling effort using an intentional random sampling strategy. This variability gives us
the opportunity to examine which areas provide the most valuable information for stock as-
sessment on a species-by-species basis.

With the total biomass within sampled cells extracted from Ecospace and summarized by
year-pattern and FIM program, biomass is scaled to represent the total biomass of each func-
tional group (or species) over the entire operating model domain using a swept-area method.
For each functional group, total system biomass (B) was estimated by dividing the sample area
biomass values (b) in each sampled cell (j) by the number of unique Ecospace cells sampled by
that year-pattern (n), and then multiplying the answer by the number of Ecospace cells (S) in-
habited by that specific functional group. (Eq 3 below)

B ¼ S �
X

n

j¼ 1

bj
n

ð3Þ

For any functional group, a cell was considered inhabited if its biomass value was greater
than 10% of that group’s maximum biomass density. This was stipulated because of the Eco-
space diffusion algorithms which yield functional group biomass values in almost all Ecospace
cells. A cell that has greater than 10% of the functional group’s maximum biomass density thus
allows for the determination of the optimal habitat(s) for each functional group based on tro-
phodynamics, and 9 out of every 10 cells are consequently inhabited in each group’s habitat
type. Inhabited cell biomass values extracted from the operating model represented the stable
equilibrium condition and so were sampled after transient dynamics calmed in the model, usu-
ally after year 10. This method estimated the total biomass in the GOMmarine ecosystem for
each functional group and year based on year-pattern sampling efforts in FIM programs.

Table 1. (Continued)

Functional Group Species Functional Group Species

Munidopsis spp. Menippe mercenaria

Not all species considered were present in the 14 FIM programs. Ages are in years.

doi:10.1371/journal.pone.0120929.t001
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As there would be error associated with FIM sampling in the GOM, the estimated final “ob-
served biomass” values (per FIM program year-pattern and species) are determined by adding
an appropriate amount of observational error. Observational error is calculated using the SEA-
MAP database. Normal observational error is added to the operating model’s extracted bio-
mass values such that the standard deviation matches that observed in SEAMAP data when
averaged over all species and assessed within a five-year running mean (~16%) in order to ex-
clude variance from directional change and consider only year-to-year variability. SEAMAP
data is used for this calculation as it reported total kg of animals captured per sampling effort,
whereas CAGES reported only the number of animals captured per sampling effort [45]. Over-
all it is difficult to estimate observational error in trawl sampling without a dedicated study. A
minimum estimate of the observational error might be made by looking at variance of popula-
tion estimates over short time periods (i.e. short enough periods that any changes in the popu-
lation size can be assumed negligible). However, estimating variance over longer time periods
(i.e. over time scales at which population changes are likely to occur) is one way of placing an
upper limit on the amount of observational error that is possible. We compared the variance in
biomass estimates over short and long periods to develop an estimate of the likely range of ob-
servational error. Variance in biomass ranged from 13.4% for a 3-year running average to
16.5% for an 11-year running average. We elected to use a coefficient of variation of 16%, rep-
resenting the average variability over a 10-year moving window. That is long enough that our
estimate of observational error may be inflated by population size changes, but we consider it
safer to over-estimate observational error than underestimate it. In fact, the more salient con-
cern is our assumption that the same degree of observational error can be assumed for all sam-
pling gear types. Since the data record for those other gear types is non-continuous, and since
no previous studies are available estimating observational error for those gear-types, we assume
as a first estimate that the observational error from trawl is similar to that of other gear types.
In fact, more than 94% of the data used by our assessment model was produced by Shrimp
Trawls, so this assumption is reasonable. The resulting final observed biomass and catch esti-
mates (pseudo data) are used in the assessment model.

Assessment Model
A Pella-Tomlinson stock assessment model [46] is fit to the pseudo data biomass values and
operating model-wide catch data from fisheries statistics. The catch data are assumed to be free
of error, since this information is comparatively precise in real stock assessments. An assess-
ment is made for each year-pattern and functional group. The Pella-Tomlinson model contains
three parameters, which are varied in order to maximize log likelihood using the Solver func-
tion in Microsoft Excel. The first parameter is the theoretical Biomass at infinity (Binf), the
second is the intrinsic rate of population increase (r; a parameter that captures aspects of mor-
tality, reproduction, and tissue growth), and the third parameter is the shape (p), which was al-
lowed to vary between 0.0001 (approximating a Schaeffer model; [47]) and 1.0 (approximating
a Fox model; [48]). Log likelihood compares the goodness of fit of the observed Ecospace bio-
mass values and the predicted assessment model biomass values. With the model fitted to data,
the fishery management indices are determined for each functional group and year-pattern
sampling effort. For the multi-stanza functional groups (groups with multiple age classes), ag-
gregated biomass and catch values were inputted into stock assessments.

The FMSY values generated by the Pella-Tomlinson stock assessment model for each func-
tional group are compared to the FMSY values calculated by incrementally changing fishing
mortalities in Ecospace (i.e. an equilibrium analysis). This is accomplished by increasing fish-
ing mortality for all fished functional groups simultaneously, starting with fishing mortalities
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(F) of 0.0 times the baseline Ecopath F and then incrementally increasing F for all functional
groups by 0.1 until it reaches a value of 29.0 times the baseline Ecopath F. A value of 29.0 times
the baseline Ecopath F was needed to ensure that the majority of exploited groups collapsed.
This method yields operating model estimates of each functional group’s maximum fishing
mortality for FMSY. Note that this manual technique is required because Ecosim’s equilibrium
fitting routine does not operate in Ecospace; the equilibrium fitting routine would be inade-
quate for multi-stanza groups as the F of only a single age class can be incremented.

Analyses of Operating-Assessment Model Agreement
To quantify variability explained by the proportion of Ecospace habitat sampled in each year-
pattern, we use the operating and assessment model residuals of MSY, BMSY, and FMSY as de-
pendent variables Redundancy analysis (RDA; [43,49–51]) was used. RDA tests performed
forward-stepwise selections of the Ecospace habitats that included forward addition of those
variables based on the Akaike’s information criterion (AIC). AIC was used to estimate
Kullback-Leibler information loss by having a 'lack-of-fit' term and a number of parameters
penalty for statistical model complexity. RDA with AIC was used to test all functional groups
concurrently, and then run to detect individual functional group results. The results of the
RDA tests lead to the selection of the optimal subset of habitat types that explained the majority
of variability in residuals of MSY, BMSY, and FMSY, and corresponding R

2 values were reported.
This method of RDA was free of the reliance of F-ratios (F) and P-values (P) to determine sig-
nificance [52]. By assessing the accuracy of the indices derived from the assessment model rela-
tive to the known values of the operating model, we get an idea of the information content of
the FIM data. Moreover, we can describe the utility of each FIM program as it contributes to
the stock assessment of managed species. For example, FIM programs that sample on the edge
of a population, in marginal habitats or depth ranges, or catch a limited subset of age classes
may yield biomass information that is not representative of the overall population status. Alter-
natively, overlap by two or more FIM programs in the depths, habitats, species, or age classes
sampled, may indicate redundancy in FIM sampling effort.

To determine which functional groups were over- or under-sampled in the SEAMAP pro-
gram in relation to the size of their fishery, a figure was created by plotting the mean discrepan-
cy (coefficient of variations estimated between the assessment and operating model) of MSY
against Ecopath catch values [34]. Similarly, the mean discrepancy in MSY are plotted against
functional groups’ catch value and keystoneness to give an idea of sampling effort versus eco-
nomic and ecological importance of functional groups [53,54]. Keystoneness is a measure of
how much changes in the groups’ biomasses affect the rest of the ecosystem; a keystone species
has an effect disproportionate to its biomass. The protection of keystone species helps ensure
the function of the ecosystem and its natural resources, therefore keystoneness was included.
In each of the three plots (i.e. MSY coefficients of variations plotted against Ecopath catch,
catch value, and keystoneness) regression lines were added to illustrate trends in operating and
assessment model agreements. Significance of the regression line slopes (i.e. whether there was
a true relationship between X and Y) were assessed using permutation-based t-tests (iterations
n = 1000; [51]) for testing the null hypothesis that the slope of the regression was not signifi-
cantly different than zero. If two regression lines were plotted within a single figure the equiva-
lence of slope parameters were tested to determine whether or not the two regression lines
(trends in operating and assessment model agreements) were significantly different from one
another using permutation-based t-tests (iterations n = 1000). Following all permutation based
t-tests P-values are reported, and significance is concluded if a resulting P-value is<0.05.

Assessment of Gulf of Mexico Fisheries Independent Monitoring Programs

PLOSONE | DOI:10.1371/journal.pone.0120929 April 2, 2015 9 / 31



Statistical Analysis of Raw FIM Catch Data
We calculated the average long-term ratios of relative abundance (catch per unit effort, CPUE)
per species from the FIM data. Although CPUEs are expected to vary from year-to-year, the
gross ratio across all species may be constrained by total system productivity and trophic trans-
fer efficiencies. For SEAMAP we averaged the species’ CPUE ratios from 2000 to 2012 and for
CAGES we calculated the species’ CPUE ratios from 2000 to 2007. To see which year-pattern
(s) produced the most representative estimates of long-term CPUE by species, we conducted a
RDA in which years (e.g. 2000, 2001. . .2012 for SEAMAP data) were the independent vari-
ables, and CPUE was the dependent variable. The years that best explained variability in CPUE
were reported with corresponding R2 values.

We then focused on testing two null hypotheses regarding the sampling characteristics in
the FIM programs: 1) species caught by FIM surveys show no significant differences in relative
abundances when analyzed with respect to the month of sampling, and 2) species caught
showed no significant differences in relative abundances with respect to the gear-types used for
sampling (SEAMAP database only). To test for significant differences in species abundances by
month or gear-type, a non-parametric multi-way analysis (np-Manova; [51,55]) evaluated
these hypotheses with distribution-free randomization tests (n = 1000 iterations). Null hypoth-
esis testing required the creation of dependent variable matrices based on Bray-Curtis dissimi-
larity. One matrix was comprised of all species’ relative abundances reported in the SEAMAP
database [31], and four more matrices were created for each Gulf State and their species found
in the CAGES database [32]. Significance is concluded if a resulting P-value is<0.05, and the
null hypothesis is rejected. The F-ratios and the number of observations (N) considered in
each np-Manova test are reported.

Following a significant result in an np-Manova test, a canonical analysis of principal coordi-
nates (CAP) test was used to detect the fraction of variability in abundance that was explained
by the category (i.e. month or gear-type) considered [43]. CAP uses a non-parametric Canoni-
cal Discriminant Analysis that utilizes a Bray-Curtis dissimilarity matrix [44,56–58]. This ma-
trix was created using abundance data according to the category in the null hypothesis being
tested. Each CAP test yielded the proportion of within group variation and percent of reclassifi-
cation success in the abundance data by category, and following 1000 iterations, provided
a P-value [43,51,58,59].

To establish if the percent reclassification success was significantly different than the null
model that assigned categorization of abundance data merely by chance, a Proportional
Chance Criterion (PCC) test was applied following the CAP test [43,51]. The PCC test de-
scribed the success of categorizing abundance data merely by chance, and generated a P-value
that indicated whether or not the fraction variability reported in the CAP test was significantly
different than the percent variability reported in the PCC [60,61].

To identify those species that contributed to the most differences detected in an np-Manova
and CAP test, the abundance data were then analyzed using RDA with AIC, and the methods
to identify indicator species [62]. The results of RDA with AIC lead to the selection of the opti-
mal subset of categorical variables and the identified indicator species that were characteristic
of a particular categorical variable or variables (i.e. specific month(s) or gear-type(s)) based on
the categorical affinity value. An indicator species characteristic of one categorical variable had
a higher categorical affinity value (e.g. 100%), which indicated that it occurs in one category
and in all samples within that category. A species characteristic of two or more categorical vari-
ables would subsequently have a lower affinity value, as the total percent (affinity) would be
shared between categories. The categorical affinity value, henceforth referred to as the Indicator
Value (IV), ranges from 0 to 100%, and affinity is maximum (100%) when a functional group
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or species occurred in all samples of that categorical variable. Thus, species that a particular
month or gear-type is exceptional at sampling are identified as having a high IV. These months
and/or gear-types are therefore potentially irreplaceable in the assessment of these species, as
they are essential for sampling of the species. The IV value and associated P-value were re-
ported for species with IV greater than a ten-percent association with the categorical variable.
As the CAGES database did not specify gear-type used for reported FIM sampling efforts, the
gear-type categorical variables were associated with the SEAMAP database only.

Results

Analysis of Operating-Assessment Model Agreement
SEAMAP and CAGES year-pattern sampling methods produced unique fishery management
index results per functional group, as detailed online [40]. The number of SEAMAP and
CAGES FIM samples taken per year-pattern is shown in Table 2. Overall, the assessment
model estimates agreed with known values of the operating model. Moreover, the operating
model estimates of FMSY agreed with historic, current and/or suggested fishing mortality rates,
including Maximum Fishing Mortality Thresholds (MFMT) and other management reference
values for GOM and the South Atlantic as calculated from previously published single-species
stock assessments [40]. This suggests that the assessment model is an adequate tool for stock
assessment in our simplified virtual ecosystem and offers a suitable portrayal of stock distribu-
tions and productivity. Potential exceptions included FMSY values for the aggregated functional
groups of Mullet, Red Snapper and Sea Trout.

Most Effective Habitats for FIM Sampling
Comparison of management index estimates from the operating and assessment models re-
vealed that the<10 m habitat most successfully determined MSY (see Fig 1 as<10 m area is
extensive; RDA results with square root transformation to down-weight high abundance
groups: R2 = 0.85). Although this R2 value was high, it primarily represented the habitat affinity
for the functional groups of Jacks (R2 = 0.85), Menhaden (R2 = 0.25), Pin Fish (R2 = 0.77),
Scaled Sardine (R2 = 0.94), and Stone Crab (R2 = 0.14). Similarly, square root transformed

Table 2. Number of Ecospace cells populated per habitat for each habitat in the SEAMAP and CAGES FIM programs.

SEAMAP Cages

Yearpattern <10 m 11–50 m 51–100 m 101–200 m 201–1000 m Reef <10 m 11–50 m

2000 81 667 191 21 0 0 370 2

2001 63 596 162 22 4 0 403 2

2002 75 668 194 27 2 2 408 1

2003 79 624 143 22 1 0 410 2

2004 81 641 170 14 0 0 406 2

2005 84 642 150 22 3 3 448 2

2006 93 607 208 56 10 1 60 1

2007 85 619 140 11 1 1 60 1

2008 73 785 299 22 1 0

2009 101 1161 309 15 1 0

2010 96 902 242 20 1 0

2011 47 412 99 2 0 0

2012 43 97 9 1 0 0

doi:10.1371/journal.pone.0120929.t002
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BMSY was most accurately determined from Reef habitats (R2 = 0.36), although the R2 value pri-
marily represents the functional group of Scaled Sardine. Inshore areas (<10 m) and reef habi-
tats therefore emerge as the most important areas sampled, providing highly representative
information on stock status and effectively supporting stock assessment models. Year-patterns
that sampled in those regions tended to provide highly representative stock information for the
above species. Overall FMSY was not successfully determined by any single habitat; however,
FMSY was successfully determined for several individual functional groups. The most relevant
information came from the following habitats:<10 m for Jacks (R2 = 0.88) and Pin Fish
(R2 = 0.77), and<10 m and Reef for Scaled Sardine (R2 = 0.83). As the majority of CAGES
data (~99%) came from the<10 m habitat, individual fishery indices with regards to habitat
were not examined using RDA.

Most Effective Gear-Types
Comparison of management index estimates from the operating and assessment models re-
vealed that MSY was not successfully determined by the sampling effort for any particular
gear-type. Instead MSY was most successfully determined for individual functional groups
with the sampling efforts of three gear-types: Shrimp Trawls for Atlantic Croaker (RDA results:
R2 = 0.31), Pin Fish (R2 = 0.30), Red Snapper (R2 = 0.30), Sea Trout (R2 = 0.20), and Stone
Crab (R2 = 0.14), a combination of Shrimp Trawls and Experimental Shrimp Trawls for Scaled
Sardine (R2 = 0.71), Experimental Shrimp Trawls for Mullet (R2 = 0.34), and Fish Trawls for
Catfish (R2 = 0.50), Grouper (R2 = 0.64), and Ladyfish (R2 = 1.00). Overall FMSY was not suc-
cessfully determined by sampling effort of any one gear-type; however, FMSY was successfully
determined when fishing with gear-types unique to individual functional groups. The most rel-
evant information came from the following gear-types: Shrimp Trawls for Atlantic Croaker
(R2 = 0.34), Bay Anchovy (R2 = 0.34), Blue Crab (R2 = 0.17), Pigfish (R2 = 0.26), Sea Trout
(R2 = 0.26), and Silver Perch (R2 = 0.26), a combination of Experimental Shrimp Trawls and
Fish Trawls for Stone Crab (R2 = 0.55), and Fish Trawls for Catfish (R2 = 0.45), Grouper
(R2 = 0.62), Ladyfish (R2 = 0.50), and Red Snapper (R2 = 0.17).

FIM Sampling Accuracy Compared to Group Exploitation Status
Fig 2 reveals the discrepancy (coefficient of variation) of MSY estimated between the assess-
ment and operating models based on 2000 to 2008 data and 2009 to 2012 data versus Ecospace
catch values (tonnes km-2 year-1), which includes discards/bycatch. The years from 2009 to
2012 illustrated differences in FIM data for reasons discussed below, and therefore Figs 2, 3
and 4 were divided into results of the years before and after 2009. One might expect a priori
that exploited species with high coefficients of variance towards the top in Fig 2 should be as-
sessed by FIM programs with greater rigor than exploited species with a low coefficient of vari-
ance towards the bottom of the figure. Therefore, we expect to see a negative slope where
accuracy of the stock assessment improves for species with large total catch. In general, that is
the case, specifically for the functional groups of Mullet, Pin Fish, Scaled Sardine, and Silver
Perch. Exploited functional groups with the least amount of accuracy are Grouper, Jacks,
Mackerel, Pigfish and Pompano. With some important exceptions, the sampling efforts from
2009 to 2012 were less effective in producing accurate management index estimates than years’
previous, as demonstrated in the regression line’s more positive slope when compared to the
2000 to 2008 regression line. Both regression line slopes were significantly different from zero
(t-test; 2000 to 2008 P-value = 0.02, 2009 to 2012 P-value = 0.05), and from one another (t-test;
P = 0.01). These exceptions indicate that programmatic or technical changes to FIM since 2009
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in the SEAMAP program have reduced accuracy for assessing high biomass fish populations in
the GOM.

FIM Sampling Accuracy versus Value and Ecological Importance
Using the discrepancies of MSY estimated between the assessment and operating models of the
2000 to 2008 and 2009 to 2012 data, Figs 3 and 4 revealed that the FIM sampling provides the
least accurate information for some of the most economically valuable and ecologically impor-
tant functional groups. These functional groups include Grouper, Jacks, Mackerel, Pigfish and
Pompano. These conclusions accompany regression line slopes in Fig 3 that are not significant-
ly different from zero or one another, when comparing 2000 to 2008 with 2009 to 2012, and in-
dicate that FIM sampling produced equally poor assessments of MSY for many economically
valuable functional groups (e.g., Red Snapper, Sea Trout and Stone Crab), regardless of catch
value. The ecologically important functional groups in Fig 4 (e.g., Mullet, Scaled Sardine, Silver
Perch) and regression line slopes indicates that FIM sampling was equally poor for the time pe-
riods before and after 2009, and least accurate ecologically important functional groups. Fig 4
regression line slopes were significantly different from zero (t-test; 2000 to 2008 P-value = 0.05,
2009 to 2012 P-value = 0.01; values log-transformed), but not one another. The effort of FIM

Fig 2. Accuracy of assessment model versus total catch by functional group. This figure illustrates the discrepancy (coefficient of variation) of
Maximum Sustainable Yield (MSY) estimated between the (assessment) Pella-Tomlinson model and (operating) Ecospace model based on 2000 to 2008
data (red squares and regression line) and 2009 to 2012 data (blue diamonds and regression line). Catch quantities are as indicated by the Ecospace model
fromWalters et al. (2008). In general, exploited functional groups towards the top of the figure should be assessed by FIM programs with greater rigor and
accuracy than other functional groups, as these functional groups have the highest coefficients of variance. Both regression line slopes were significantly
different from zero (t-test: 2000 to 2008 P-value = 0.02, 2009 to 2012 P-value = 0.05), and from one another (t-test: P = 0.01).

doi:10.1371/journal.pone.0120929.g002
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programs by species is therefore not allocated proportionally to the value of stocks from an eco-
nomic perspective or the importance of stocks from an ecological perspective.

Statistical Analysis of Raw FIM Catch Data
The most representative SEAMAP sampling years between 2000 to 2012 that explained the
most variability in CPUE for a few select species, and presented in order of variable selection
and cumulative R2 values, are: 2012 (R2 = 0.05), 2010 (R2 = 0.11), 2009 (R2 = 0.19), and 2011
(R2 = 0.33). This is due to reduced discrepancies between the operating and assessment model
for primarily the functional groups of Atlantic Croaker, Blue Crab, Catfish, Jacks, Menhaden,
and Pigfish (Fig 5). Reduced discrepancies indicate that sampling strategies in the most recent
years were more effective at providing representative stock information for the few functional
groups listed above; however, sampling strategies might be less efficient for other functional
groups (e.g. Red Snapper, Scaled Sardine or Silver Perch; Fig 2), and/or variability in CPUE
could not be explained by sampling strategies used from 2000 to 2008 compared to those from
2009 to 2012. CAGES results by Gulf state showed that the most valuable sampling year(s) in
Alabama were 2006 (R2 = 0.03) and 2007 (R2 = 0.07), Florida 2003 (R2 = 0.04), and Louisiana
2007 (R2 = 0.15) and 2001 (R2 = 0.19). Therefore, there has not been a noticeable increase or

Fig 3. Accuracy of assessment model versus total catch value by functional group. This figure illustrates the discrepancy (coefficient of variation) of
Maximum Sustainable Yield (MSY) estimated between the (assessment) Pella-Tomlinson model and (operating) Ecospace model based on 2000 to 2008
data (red squares and regression line) and 2009 to 2012 data (blue diamonds and regression line). Catch values ($ pound-1) per species are detailed by the
National Oceanic and Atmospheric Administration (NOAA) online at: http://www.st.nmfs.noaa.gov/pls/webpls/FT_HELP.SPECIES. In general, valuable
functional groups (towards the right of the figure) should be assessed by FIM programs with greater rigor and accuracy than other functional groups,
particularly Grouper, Jacks, Mackerel, Pigfish, and Pompano. Regression lines are not significantly different from zero or one another.

doi:10.1371/journal.pone.0120929.g003
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decrease in the quality of information emerging from CAGES; sampling years that provided the
best results were scattered among the history of the CAGES program. Similarly, RDA tests for
Mississippi and Texas revealed no differences in CAGES sampling variability from year-to-year.

The relative abundances of SEAMAP species comprising the 35 evaluated functional groups
were found to be significantly different between sampling months (np-Manova; F = 4.10,
P = 0.001, N = 162), suggesting that certain months may provide more comprehensive infor-
mation by species than other months. CAP tests revealed that sampling months had an overall
78% classification accuracy rate when classifying data (Fig 6), which was significantly better
than the 12% success rate predicted by PCC (P = 0.001). Therefore, sampling month has a
strong effect in the quality of information produced by the SEAMAP program. When vector
plots were examined, information overlap appeared most evident for Atlantic Croaker, Blue
Crab, Pompano, Mackerel, and Sea Trout, and less evident for Bay Anchovy, Jacks, Red Drum,
and Stone Crab. Species of Grouper, Red Snapper and two species of Jacks clearly showed that
their abundance data was limited to specific sampling months, and no overlap with other sam-
pling months was observed. The timing of sampling for these species is therefore inflexible and
should be directed towards the most effective months.

Fig 4. Accuracy of assessment model versus exponential Keystoneness by functional group. This figure illustrates the discrepancy (coefficient of
variation) of Maximum Sustainable Yield (MSY) estimated between the (assessment) Pella-Tomlinson model and (operating) Ecospace model based on
2000 to 2008 data (red squares and regression line) and 2009 to 2012 data (blue diamonds and regression line). Keystoneness values were calculated by
the Ecospace model. In general, ecologically important functional groups (towards the right of the figure) should be assessed by FIM programs with greater
rigor and accuracy than other functional groups, providing a negative slope overall. That is not the case. Regression line slopes were significantly different
from zero (t-test: 2000 to 2008 P-value = 0.05, 2009 to 2012 P-value = 0.01; values log-transformed), but not one another.

doi:10.1371/journal.pone.0120929.g004
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RDA and IV results of relative abundances according to sampling month were then detailed
by species and functional group in Table 3, although not all species in the functional groups
were found to have clearly important explanatory months and/or a month affinity values. RDA
tests demonstrated that the majority of the species that had important explanatory variables
were caught most often in a single sampling month, or over a seasonal sampling period (two or
more consecutive sampling months). In a few cases the species’ R2 value indicated it was caught
biannually. In general, R2 values from RDA tests on single species ranged from 0.01 to 0.50,
and IV ranged from 0.0% to 72.5%. It should be noted that the IV percentages reported in
Tables 3, 4 and 5 can be read additively if two or more values are reported for a single species.
An example of this was observed with the Blue Crab, Callinectes sapidus, whose IV percentages
for July and June were 30.0 and 26.0%, respectively, which indicated that 56% of the time this
species was caught during these months.

Fig 5. Redundancy Analysis Plot of Year and CPUE per Functional Group.Redundancy analysis shows the functional groups (green text and vectors)
most associated with the programmatic changes in the SEAMAP program according to the year-pattern (red text and vectors). The year-pattern refers to the
geographical locations described as points in the operating model. Approximately 25% of the variability in functional group abundances is explained by the
sampling year-pattern in two canonical axes. In general post-2009 changes have benefited only a few species, in particular Atlantic Croaker.

doi:10.1371/journal.pone.0120929.g005
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Relative abundances of the SEAMAP species comprising the 35 evaluated functional groups
were also found to be significantly different when sampling with different gear-types (np-
Manova; F = 3.94, P = 0.001, N = 34), and so the second null hypothesis was rejected: certain
gear-types may provide more comprehensive information than other gear-types. CAP tests re-
vealed that gear-type had an overall 89% classification accuracy rate when classifying data
(Fig 7), which was significantly better than the 19% success rate predicted by PCC (P = 0.001).
A gear-type CAP plot illustrated in Fig 7 indicated that functional groups were mostly captured
using one to two gear-types.

RDA and IV results of relative abundance according to sampling gear-type were then de-
tailed by species and functional groups in Table 4, although not all species were found to have
particularly important explanatory gear-types and/or a gear-type affinity values. RDA tests re-
vealed that all species had one or two most important gear-type(s) from which abundance data
was determined. For instance, the Grouper (e.g. Epinephelus flavolimbatus), Red Snapper (Lut-
janus capechanus), and Jacks (e.g. Caranx crysos) abundance data was most often determined
from Longlines (BL and OB), Video Traps (TV), and Experimental Shrimp Trawl (ES), respec-
tively. In general, R2 values from RDA tests on a single species ranged from 0.04 to 1.00, and
IV ranged from 0.0% to 99.8%. The average of the significant IV percentages among species in
Table 4 was 67.8%, which signified that many species had a high group affinity to one particu-
lar gear-type.

The CAGES database had similar species among the five Gulf States; however, no state data-
base contained all of the species that were considered in SEAMAP database analyses, and the
total number of species and identity also varied by Gulf state. Initial statistical analyses by Gulf
State indicated that we could not reject the first null hypothesis for Mississippi: all months
appear equally suited to provide abundance data. However, the first null hypothesis was dis-
proved for Alabama (np-Manova; F = 9.76, P = 0.001 based on 34 species), Florida (np-
Manova; F = 2.49, P = 0.001 based on 10 species), Louisiana (np-Manova; F = 22.85, P = 0.001

Fig 6. Canonical analysis of principal coordinates (CAP) point (a) and vector (b) plots for SEAMAP abundance data organized by sampling months
per year. Axes in a) are labelled according to the overall classification accuracy by sampling month (78%), whereas axes in b) depict the correlations to
sampling month(s) by vector length along the first two canonical axes depicted in the CAP point-plot. Vector length is proportional to a month’s contribution in
separating functional groups by abundance, where longer vector lengths indicate importance. In general this figure illustrates a predictable assemblage of
species based on monthly captures, and indicates the similarity of different months in terms of the assemblage caught and therefore information content.

doi:10.1371/journal.pone.0120929.g006
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Table 3. Analysis of species-specific historic SEAMAP catch data using Redundancy Analysis with Akaike information criterion results for month
and Indicator Values (IV) (numbers).

Functional Group Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Atlantic Croaker Micropogonias undulatus *

Bay Anchovy Anchoa mitchilli *

Blue Crab Callinectes spp. *

Callinectes sapidus 26.0 30.0

Callinectes similis 17.6 17.2 *

Catfish Bagre marinus 17.9

Grouper Epinephelus adscensionis 20.0

Epinephelus drummondhayi 14.4 *

Epinephelus flavolimbatus 35.1 *

Epinephelus morio 13.3

Epinephelus nigritus 23.4

Epinephelus niveatus 19.0 *

Mycteroperca interstitialis *

Mycteroperca microlepis 15.9

Mycteroperca phenax 15.6 * *

Jacks Caranx crysos * *

Caranx hippos * 47.4

Caranx latus *

Seriola dumerili *

Seriola rivoliana *

Seriola zonata *

Ladyfish Elops saurus * 18.4 *

Lobster Munida spp. *

Munida fliniti *

Munida forceps *

Munida irrasa **

Munidopsis spp. * *

Munidopsis robusta 18.7

Nephropsis aculeata 13.7

Polycheles spp. 16.1

Scyllarides nodifer *

Scyllarus spp. *

Scyllarus chacei 12.3

Scyllarus depressus 14.1

Mackerel Scomber japonicus 30.2

Scomberomorus cavalla 14.7 ** 14.1

Scomberomorus maculatus 18.1 * 20.6

Menhaden Brevoortia patronus 29.1

Mullet Mugil cephalus *

Mugil curema *

Pigfish Orthopristis chrysopterus * *

Pin Fish Diplodus holbrooki *

Pompano Rachycentron canadum **

Trachinotus carolinus 30.0

Red Drum Sciaenops ocellata * 13.0

Red Snapper Lutjanus campechanus 38.7 18.3 *

(Continued)
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based on 49 species), and Texas (np-Manova; F = 19.58, P = 0.001 based on 12 species) as rela-
tive abundances of CAGES species were significantly different between sampling months.

CAP tests revealed that the majority of variability in species abundances, as sampled by
individual Gulf states, was accurately classified by sampling months. In Alabama categorical
sampling month had an overall 64% classification accuracy rate, Florida a 76% classification ac-
curacy rate, Louisiana 91% a classification accuracy rate, and Texas a 93% classification accuracy
rate. Each Gulf state also had a classification accuracy rate that was significantly better than the
success rate predicted by PCC (P = 0.001). Gulf state results henceforth are presented according
to geographical positions, west to east, starting from Texas and ending with Florida (Table 5).
This allowed for the presentation of insights per species in terms of potential seasonal changes
associated with individual Gulf States and ecosystem dynamics. As with SEAMAP data, a large
majority of variability in species’ abundances could be explained by sampling month.

Not all species were found to have particularly important explanatory months and/or
month affinity values. Similar to what was observed in SEAMAP results, the majority of the
species caught by the CAGES program that had clear explanatory months were caught most
often over a seasonal sampling period. The most informative seasonal sampling periods gener-
ally occurred earlier in seasonal cycles and/or included more sampling months. This was true
in Texas and Louisiana, whereas there were fewer seasonal sampling periods and less informa-
tion for Alabama and Florida. In general R2 values for the CAGES program ranged from 0.01
to 0.63, and IV ranged from 0.0% to 37.9%.

Discussion
In our efforts to understand the total scientific benefit of the SEAMAP and CAGES databases
we quantified the value of these 14 FIM programs using simulated FIM sampling from an oper-
ating model (Ecospace) and feeding the results to a separate stock assessment model (Pella-
Tomlinson). The stock assessment model was then used to estimate fisheries management indi-
ces for 35 functional groups. The accuracy of the assessment model was compared to known
index values from the operating model, obtained using a manual equilibrium analysis, and to
previously published single-species stock assessments. In stock assessments certain year-patterns

Table 3. (Continued)

Functional Group Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Functional Group Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Scaled Sardine Harengula jaguana *

Sea Trout Cynoscion spp. 72.5

Cynoscion arenarius 18.9

Cynoscion nebulosus 14.1 *

Cynoscion nothus * * * *

Stone Crab Menippe adina *

Menippe mercenaria 16.0

The italicized IV number or

* denotes R2 values for the month between 0.01 and 0.09, the underlined IV number or

** between 0.10 and 0.29, and the bold IV number or

*** >0.30. Thus, a bold number or

*** indicates that the month consistently yields information for the species being surveyed. The IV represents the faction or percent of time the species

was caught in the sampling month, indicating the irreplaceability of that month in sampling the species. Only IV values with significant P-values (<0.05)

were reported.
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Table 4. Analysis of species-specific historic SEAMAP catch data using Redundancy Analysis with Akaike information criterion results for gear-
type (color) and Indicator Values (IV) (numbers).

Functional Group Species BB BL ES FT HO OB SM ST TR TV VC

Atlantic Croaker Micropogonias undulatus 57.8 ***

Bay Anchovy Anchoa mitchilli 78.2

Blue Crab Callinectes spp. 99.0

Callinectes sapidus 68.6

Callinectes similis 26.6

Catfish Bagre marinus ***

Grouper Epinephelus drummondhayi **

Epinephelus flavolimbatus *** 35.3

Epinephelus morio **

Epinephelus niveatus ***

Mycteroperca interstitialis **

Mycteroperca microlepis **

Mycteroperca phenax **

Jacks Caranx spp. 99.7

Caranx crysos 97.3

Caranx hippos **

Seriola dumerili 70.8 **

Seriola fasciata **

Seriola rivoliana **

Lobster Munida spp. **

Munida pusilla **

Nephropsis aculeata 94.6

Polycheles spp. 87.6

Scyllaridae spp. 99.8

Scyllarides nodifer *

Scyllarus chacei *

Mackerel Scomber japonicus ***

Scomberomorus maculatus 56.4 **

Menhaden Brevoortia patronus * **

Pigfish Orthopristis chrysopterus **

Pin Fish Diplodus holbrooki *

Pompano Trachinotus carolinus 23.2 *

Red Drum Sciaenops ocellata **

Red Snapper Lutjanus campechanus 77.7

Scaled Sardine Harengula jaguana 75.8 **

Sea Trout Cynoscion spp. ** **

Cynoscion arenarius 42.6

Cynoscion nothus 46.6

The italicized IV number or

* denotes R2 values for the gear-type between 0.01 and 0.09, the underlined IV number or

** between 0.10 and 0.29, and the bold IV number or

*** >0.30. Thus, a bold number or

*** indicates that the gear-type consistently yields information for the species being surveyed. The IV represents the faction of time the species was

caught with the sampling gear-type, indicating the irreplaceability of that gear-type in sampling the species. Only IV values with significant P-values

(<0.05) were reported. Gear-type abbreviations are: Bib Trawl (BB), Bottom Longline (BL), Experimental Shrimp Trawl (ES), Fish Trawl (FT), Hand Line

(HL), High Opening Bottom Trawl (HO), Off-bottom Longline (OB), Standard Mongoose Trawl (SM), Shrimp or SEAMAP Trawl (ST), Fish Trap (TR), Video

Trap (TV), and Video Camera (VC).
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Table 5. Analysis of species-specific historic CAGES catch data using Redundancy Analysis results with Akaike information criterion results for
month (color) and Indicator Values (IV) (numbers).

Functional Group Species Gulf State Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Atlantic Croaker Micropogonias undulatus Texas * * 18.3 19.6 14.4 * * *

Louisiana 16.6 18.9 22.1 19.2 *

Alabama 17.3 21.7 14.9 *

Florida *

Bay Anchovy Anchoa mitchilli Texas 19.0 13.9 * *

Louisiana * 10.3

Alabama 15.5 12.5

Florida *

Blue Crab Callinectes sapidus Texas * * 15.0 15.8 14.4 11.1 *

Louisiana 14.3 15.1 12.2 * * * *

Alabama 17.3 15.9 11.9 *

Florida 13.5 * *

Blue Crab Callinectes similis Texas

Louisiana *

Alabama *

Catfish Ariopsis felis Texas ** ** 13.7 12.7 12.3 * **

Louisiana 17.7 30.7 17.6 *

Alabama 20.3 *

Catfish Bagre marinus Alabama 49.2 12.3 *

Catfish Ictalurus furcatus Alabama *

Catfish Ictalurus punctatus Alabama *

Jacks Caranx crysos Louisiana *

Alabama * *

Jacks Caranx hippos Louisiana 37.9 34.1 10.8

Alabama 27.0 **

Jacks Hemicaranx amblyrhynchus Louisiana 12.2 15.8 *

Alabama 14.0 * *

Ladyfish Elops saurus Louisiana * * * 24.2 11.2

Alabama 19.4 * 25.5

Mackerel Scomberomorus cavalla Louisiana *

Alabama *

Mackerel Scomberomorus maculatus Texas * 11.3 * 11.8 *

Louisiana * 37.1 30.0 11.8 *

Alabama *

Florida *

Menhaden Brevoortia patronus Texas 15.9 16.3

Louisiana 17.8 23.0 23.5 16.5 *

Alabama 20.4

Florida * *

Menhaden Brevoortia smithi Alabama *

Mullet Mugil cephalus Texas 32.2 24.3 20.8

Louisiana 28.3 16.4 * * 18.2

Alabama * *

Florida **

Mullet Mugil curema Louisiana 14.2 29.9 *

Alabama * *

(Continued)

Assessment of Gulf of Mexico Fisheries Independent Monitoring Programs

PLOSONE | DOI:10.1371/journal.pone.0120929 April 2, 2015 21 / 31



performed better than others for predicting the true management indices reflecting differences
in how representative FIM data were for judging stock health based on particular areas/habitats/
depths that were sampled in those years, and the relative sampling effort of various sampling
gear-types. A redundancy analysis teased out what characteristics made each year’s sampling
pattern particularly apt at providing the most relevant information to the stock assessment pro-
cess; a method which can help guide reallocation of sampling effort between FIM programs, and

Table 5. (Continued)

Functional Group Species Gulf State Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Functional Group Species Gulf State Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pigfish Orthopristis chrysoptera Louisiana *

Alabama *

Pin Fish Lagodon rhomboides Texas * 12.1

Louisiana * 20.3 22.4 17.3 * *

Alabama 22.0 *

Pompano Trachinotus carolinus Louisiana *

Alabama * *

Red Drum Sciaenops ocellatus Texas 16.6 * 13.4

Louisiana *

Florida * *

Red Snapper Lutjanus campechanus Louisiana *

Alabama 23.6 16.9 *

Scaled Sardine Harengula jaguana Louisiana 15.0 30.2 24.7

Alabama *

Sea Trout Cynoscion arenarius Texas * 15.4 15.0 14.9 12.1 * * 13.6

Louisiana * 18.8 23.1 18.2 * * *

Alabama 27.1 17.2 *

Florida * * * * * *

Sea Trout Cynoscion nebulosus Texas 14.0 * 11.0

Louisiana ** * * * **

Alabama *

Sea Trout Cynoscion nothus Louisiana *

Alabama 18.9 19.9

Silver Perch Bairdiella chrysoura Texas * * *

Louisiana 16.9 20.0 16.1

Alabama * *

Florida *

Stone Crab Menippe adina Louisiana *

Alabama *

Stone Crab Menippe mercenaria Louisiana *

Alabama *

The italicized IV number or

* denotes R2 values for the month between 0.01 and 0.09, the underlined IV number or

** between 0.10 and 0.29, and the bold IV number or

*** >0.30. Thus, a bold number or

***indicates that the month consistently yields information for the species being surveyed. The IV represents the fraction of time the species was caught

in the sampling month, indicating the irreplaceability of that month in sampling the species. Only IV values with significant P-values (<0.05) were reported.

Table summarizes species into EwE functional groups for comparison.
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times and areas sampled. With these efforts we conclude with insights into estimating fishery
management indices based on trophodynamics considerations, demonstrating the ability of
FIM programs to maximize scientific benefit.

Results from the operating and assessment models indicated that the majority of fishery in-
dices for the 35 functional groups evaluated in the SEAMAP and CAGES programs could most
correctly be determined by sampling near-shore habitats and reefs. However, year-pattern
sampling efforts in both SEAMAP and CAGES clearly affected the estimated biomass values,
and so refining future sampling efforts would likely lead to more accurate stock assessments of
managed species. In general, lower biomass species should be assessed by FIM programs with
greater rigor. Consequently we expected to have less accurate estimates of their biomass, and
the estimates of MSY made by the assessment model should not have closely matched the true
MSY values from Ecospace. Indeed, that was the case. We see a reliable trend in Fig 2, where es-
timates of MSY from the assessment model matched the true value of the operating model with
greater precision for higher biomass groups than for lower biomass groups. This was particu-
larly true for the high biomass groups of Atlantic Croaker, Menhaden, Mullet, and Silver
Perch, and low biomass groups of Grouper, Jacks, Mackerel, Pigfish and Pompano. Although
effort in the FIM programs seem to reflect, approximately, the total tonnage caught, the effort
in FIM programs does not similarly reflect the relative value of fisheries (Fig 3), or the ecologi-
cal importance of species (Fig 4). These graphs can help in the prioritization of species for
additional monitoring. The best months and gear-types to use in this pursuit are explored in
Tables 3, 4 and 5.

For example the high catch value of Grouper, Jacks, Lobster, Mackerel, Pigfish and Pompa-
no (Fig 3), as well as their ecological importance in the GOM ecosystem (Fig 4) should further
encourage expanded monitoring of these functional groups. Another important GOM func-
tional group included Scaled Sardine, which revealed far less effective FIM-based management
for these species (which are located on the bottom right of Figs 2 and 4) would improve

Fig 7. Canonical analysis of principal coordinates (CAP) point (a) and vector (b) plots for SEAMAP abundance data organized by sampling gear-
types used eachmonth. Axes in a) are labelled according to the overall classification accuracy by sampling gear-type (89%), whereas axes in whereas
axes in b) depict the correlations to gear-types by vector length along the first two canonical axes depicted in the CAP point-plot. Vector length is proportional
to gear-type(s) contributions in separating functional groups by abundance, where longer vector lengths indicate importance. In general this figure illustrates
a predictable assemblage of species based on gear-type captures, and indicates the similarity of different gear-types in terms of the assemblage caught and
therefore information content.

doi:10.1371/journal.pone.0120929.g007
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allocation of FIM effort both in terms of stock value and the ecology of the system. Grouper,
Jacks, Mackerel, Pigfish and Pompano are all piscivorous functional groups, and are recom-
mended for increased assessment efforts. Not only do these functional groups support impor-
tant commercial fisheries, they likely play an important trophodynamic role as predators of the
forage base in the GOM, and so may directly influence bait fisheries. Thus, they may be more
valuable than the forage base based on catch value or keystoneness, and may be good candi-
dates for expanded monitoring, especially in near-shore habitats.

With several exceptions, the SEAMAP sampling efforts from 2009 to 2012 were less effective
in producing accurate biomass than previous years’ estimates, providing less precise estimates
of MSY from the assessment model, and providing the least accurate (or representative) infor-
mation on species’ relative abundances. Exceptions are noted for Catfish, Ladyfish, and Lobster
(Figs 2 to 4). This indicated that programmatic or technical changes to FIM since 2009 have
not paid dividends in an improved ability to assess fish stocks in the GOM. Note that this result
was seen in both the comparison of the assessment and operating models, and also in the statis-
tical analysis of raw FIM catch data. In the former case, year-patterns before 2009 provided the
most accurate simulated sampling data with which to drive the assessment model, and in
the latter case FIM data after 2009 was less representative of the long-term average CPUE in
the ecosystem. Interestingly, the SEAMAP Shrimp Trawl sampling protocol changed in 2009
from sampling across depth stratum to a 30-minute fixed tow time, which also included sam-
pling day and night, although diel movement was not considered here [63]. As the SEAMAP
Shrimp Trawl provided the greatest amount of information regarding species’ relative abun-
dances in the present study, and was used ~99% of the time for sampling functional group spe-
cies between 2000 and 2012, it was obviously an integral gear-type when compared to the other
12 SEAMAP gear-types, but other gear-types should be used more frequently.

When the raw historic catch for SEAMAP’s monthly sampling strategies were analyzed sta-
tistically, we could further suggest which months could yield the greatest improvement in the
accuracy of stock assessments. Suggestions were made based on observed species’ abundances
over two or more months. These increased abundances were thought to be attributable to eco-
logical factors, including ontogenic migrations. For example, according to the SEAMAP data-
base Ladyfish (Elops saurus) was observed to have higher abundances during the warmer water
months of August, September and October. When temperatures begin to decline in the GOM
ecosystem, Ladyfish have been reported to migrate into deeper waters during colder seasonal
periods [64], consequently becoming less abundant in other sampling months. In the present
study, Ladyfish was an indicator species for the month of September based on IV (Table 3) in
SEAMAP. For ladyfish, and other species (e.g. Red Drum and Red Snapper) the RDA and IV
test findings reported in Table 3 were also supported by the CAP point and vectors plots in
Fig 6. The significant groupings of species’ abundance according to sampling months in Fig 6
also provided evidence of informational overlap in the SEAMAP database and indicated several
important sampling months for functional group species. For instance, informational overlap
was observed between the months of June, September and October, signifying that for those
months the majority of the species collected during samplings had similar abundances. Other
seasonal observations could be categorized as biannual abundance increases, such as the
spawning aggregations of the Red Drum (Sciaenops ocellata) in summer (June) and fall (Octo-
ber), which would increase abundances in localized areas during these two sampling months
[65–68]. Red Drum was also selectively caught in October based on IV (Table 3). Although spe-
cies of Grouper, Mackerel, Pompano, Sea Trout, as well as the Red Snapper and Ladyfish all
had higher variability in relative abundance explained by the sampling month(s), other species
showed less evident associations. Considering species-specific strategies for sampling monthly
efforts is likely to enhance the SEAMAP program.
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In addition to sampling month, the SEAMAP sampling gear-type(s) were even more suc-
cessful in explaining the observed variability in species’ abundances. It became evident that in-
creasing the use of certain sampling gear-types could also greatly enhance relative abundance
reporting for several species. Examples included increasing the use of Video Traps to sample
Grouper, Lobster, and Red Snapper, or increasing the use of Fish Traps to sample the Blue
Crab, Lobster, and Mackerel. Examining catch at the species level clearly demonstrated that
Grouper species were successfully captured most often with Longlines and Video Traps, while
Atlantic Croaker was successfully captured most often with Shrimp Trawls or sometimes Ex-
perimental Shrimp Trawls. It was noted that the Shrimp Trawl gear-type was the most widely
used among all gear-types between 2000 and 2012, used more than 99% of the time to capture
all functional group species, and therefore provided abundance information for the greatest
number of species. While Shrimp Trawls provided valuable information, Fig 7 indicated that
several other gear-types were better suited for capturing important fishery managed species
(i.e. Grouper and Red Snapper using Video Traps (TV)). The General Plankton (PN) and
Hand Line (HL) gear-types in the SEAMAP database never captured any species in the func-
tional groups in this study. Increasing the use of video monitoring may also allow for better
accuracy in assessing near-shore and reef habitats, and reduce some relative abundance assign-
ment confusion with Bib Trawls for the Lobster functional group, as well as increase access to
habitats inaccessible to Shrimp Trawls.

Considering statistical results from SEAMAP database analyses, and monthly and gear-type
areas of sampling overlap, Tables 3 and 4 together provide suggested combinations of ideal
sampling months and gear-types for capturing functional group species in future sampling ef-
forts. These month and gear-type combinations would be expected to increase the likelihood of
collecting samples that more accurately reflect GOM stocks. Overall, SEAMAP sampling
months from April to July, as well as the month of October, produced the most information for
the majority of functional groups species. The months of February, March, August and Sep-
tember produced a moderate amount of information, and November through January pro-
duced the least. However, a few species of Crab, Grouper and Sea Trout exhibited significance
with one of the less informative sampling months. For example, this was true for Epinephelus
nigritus in February and Cynoscion arenarius in December (Table 3; Fig 6). This indicated that,
although those particular sampling months were less important for many other species, they
were most informative for determining these species’ relative abundances. Shrimp Trawl was
the most important gear-type for sampling all functional groups, as it consistently provided the
most information regarding species abundances. However is was noted that from 2000 to 2012
shrimp trawl rarely captured species in the functional groups of Ladyfish, Mullet, Pompano,
Red Drum and Stone Crab.

The CAGES database revealed various sampling advantages and challenges encountered by
each of the Gulf States. We analyzed this program state-by-state rather than program-wide
because of variability in estuary productivity, estuary size, trawling gears used, and towing
speeds. State-by-state differences were found between sampling years, as gradients in seasonal
abundances were observed in GOM estuaries according to sampling months and according to
species reported in each Gulf State database (Table 5). It was observed that the CAGES data-
base, compared to the SEAMAP database, revealed clearer seasonal migrations, movements,
and therefore changes in abundance according to ecological dynamics unique to each Gulf
State and estuary. A likely example is the Blue Crab, Callinectes sapidus, which follows an
inshore/offshore migration pattern (e.g. [69]) from estuaries to offshore waters [70,71], travel-
ing from tens to hundreds of kilometers [72,73]. Supporting ecological dynamics unique to
each Gulf State, Callinectes sapidusmigration patterns vary by region [72–74], with evidence
of significant genetic differences between the eastern (Texas and Louisiana) and the western
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(Alabama and Florida) GOM [75], and redistributions of larvae due to the GOM loop
current [76].

Recommended CAGES program sampling months for functional groups and by Gulf State
in Table 5 corresponded to many inshore/offshore migrations, which describe population
movements to and from the estuaries. For instance, Sea Trout (Cynoscion arenarius) were most
often in Texas from June to September, in Louisiana from May to July, and in Alabama from
April to May. Some functional groups yielded similar insights, while others had less conclusive
month associations as observed in the CAP axes and vectors plot. Examples include the: Atlan-
tic Croaker,Micropogonias undulates, which are more abundant in northern waters during
warmer months and migrate from estuaries into deeper waters for fall and winter spawning
(e.g. [77,78]); Bay Anchovy, Anchoa mitchilli, which migrate out of estuaries and into lower lat-
itudes during winter months [79]; Catfish, Ariopsis felis, which migrate to deeper, stable tem-
perature waters in winter months, but in some nearshore waters remain year-round [80];
Mackerel, Scombermorus maculatus, which migrates thousands of kilometers seasonally along
coastlines between Texas and Florida [81,82]; Menhaden, Brevoortia patronus, which migrates
from estuaries to offshore waters from summer to winter [83]; Sea Trout, Cynoscion arenarius,
which leaves estuaries in the fall and overwinter in the GOM [84]; and Stone Crab,Menippe
mercenaria which are less abundant in nearshore waters during warmer months (e.g. [85].
These and other species have monthly sampling recommendations based on statistical analyses
that align with species-specific ontogeny.

Conclusion
Even using the best sampling methods there is inherent observational error associated with
each FIM program. Observational error can develop from changes in locations or equipment
from year-to-year, the omission of important age classes of a species (e.g. juveniles are not
caught in larger mesh nets), or include problems associated with habitats that are difficult to
sample (e.g. shrimp trawls cannot sample coral reefs). For these reasons it is compelling to use
a whole-ecosystem analysis that can represent that data gathering capabilities of a suite of sam-
pling gear-types simultaneously to look for gaps in information delivered to stock assessment
and redundancies in the habitats, species and age classes sampled. Moreover, a dynamic whole-
ecosystem analysis including spatial trophodynamics of multiple species and age classes, like
the one performed here, also captures important predator-prey interactions and other indirect
effects, and so accounts for some of the process uncertainty that lies between data gathering
and the use of that data in stock assessments. As FIM programs are partially funded through
taxpayer dollars, and fisheries receive subsidies from taxpayer dollars, dynamic ecological anal-
ysis of FIM sampling strategies has the potential to direct future FIM sampling efforts and pro-
vide more accurate ecological information from which to guide fishery regulations.

SEAMAP and CAGES are two distinct programs which collect details concerning many
similar target species, but share only a few similarities in sampling equipment and sites. SEA-
MAP has the challenge of sampling near-shore waters as well as deeper waters off of the Gulf
coast, while GAGES concentrates on sampling GOM estuaries from Texas to Florida. With
dissimilarities in sampling extents it is likely that both programs will continue to have dissim-
ilar sampling reports of the same target species. Likewise, in the present study we found that
the SEAMAP and CAGES FIM programs had unique recommendations for refining future
sampling efforts in order to maximize their total scientific benefits. Maximizing these
benefits would improve the accuracy of stock assessments, and ultimately the quality of
fishery regulations.
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Although acquiring accurate representations of organismal abundances in the Gulf of Mexi-
co’s marine ecosystem will always be a challenge, the present study revealed important conclu-
sions unique to SEAMAP and CAGES:

1. SEAMAP would benefit from:

a. Concentrating sampling in near-shore and reef communities

b. Concentrating sampling during specific seasonal periods identified in Table 2

c. Expanding other FIM programs (e.g. Video Traps) to improve accuracy in specific spe-
cies (e.g. Grouper and Red Snapper), as well as continuing sampling efforts using the pro-
tocols (pre 2009) of the SEAMAP Shrimp Trawl program

d. Focusing more effort on economically and ecological important species identified in Figs
2 through 4 (e.g. Grouper, Jacks, Mackerel, Pigfish, and Pompano)

2. CAGES would benefit from:

a. Concentrate sampling effort during seasonal periods identified in Table 4. Note: CAGES
compared to SEAMAP had much clearer seasonal sampling periods per functional
group/species

This analysis could be expanded in a follow-on study into a proper cost-benefit analysis of
FIM effort by comparing the value of the data obtained from each FIM program against the
operating costs of the FIM program. Such a study would require an assessment of fixed and
variable costs (e.g. fuel, crew pay, etc. . .) through interviews and a search of government
financial records.
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