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Abstract

Despite remarkable gains in life expectancy and declining mortality in the 21st century, in many places mostly in developing
countries, adult mortality has increased in part due to HIV/AIDS or continued abject poverty levels. Moreover many factors
including behavioural, socio-economic and demographic variables work simultaneously to impact on risk of mortality.
Understanding risk factors of adult mortality is crucial towards designing appropriate public health interventions. In this
paper we proposed a structured additive two-part random effects regression model for adult mortality data. Our proposal
assumed two processes: (i) whether death occurred in the household (prevalence part), and (ii) number of reported deaths,
if death did occur (severity part). The proposed model specification therefore consisted of two generalized linear mixed
models (GLMM) with correlated random effects that permitted structured and unstructured spatial components at regional
level. Specifically, the first part assumed a GLMM with a logistic link and the second part explored a count model following
either a Poisson or negative binomial distribution. The model was used to analyse adult mortality data of 25,793 individuals
from the 2006/2007 Namibian DHS data. Inference is based on the Bayesian framework with appropriate priors discussed.
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Introduction

The improvement of health of the population has been a long-

term focus in most developing countries, mostly with the bid to

meet the Millennium Development Goals [1;2]. African countries

have channeled considerable resources aimed at boosting child

and maternal health. National governments and development

agencies have proposed strategies of advancing service delivery to

effectively combat poor health in children and mothers through

disease prevention and control [1]. Little focus, though, has been

drawn on adult health, specifically on adult survival and mortality.

In some countries adult mortality has slumped considerably,

despite the remarkable gains in life expectancy and declining

mortality in the 21st century [3]. The strong impact of HIV on

mortality, and the survival of adults has to some extent

substantially affected the population structure of African commu-

nities [2;4], Ngom. The life-course effects of abject poverty have

created structural spheres which have negatively impacted on the

quality of life manifesting at old age, further exacerbating adult

mortality. Moreover, many factors including behavioural, socio-

economic and demographic variables work simultaneously to

impact on risk of mortality. Understanding risk factors of adult

mortality is crucial towards designing appropriate public health

interventions.

Notwithstanding, the paucity of vital statistics in most sub-

Saharan Africa makes it difficult to study patterns and trends, as

well as risk factors of adult mortality. In most sub-Saharan Africa,

mortality data is based on census data, however, census are many

years apart to inform meaningful trends and patterns, and assess

the effect of any mitigatory interventions. To fill the gap, estimates

or projections from the WHO/UNDP have been used [1]. In

some countries, adult mortality estimates are derived from

demographic surveillance system (DSS), where these exist IN-

DEPTH or through the vital registration system (VRS). Ideally,

the VRS is not functional in many African countries. An

alternative to this is to use an increasing cross-sectional body of

data publicly available from Demographic and Health Surveys

(DHS), which collects data on survivorship/widowhood/siblings.

Recently, the DHS has collected data in eight African countries,

including Namibia, under the module ‘‘Support For Those Who

Have Died’’ which captured the household census mortality data

[6].

This study was aimed at understanding adult mortality by

developing models that explain risk factors of adult mortality in

Namibia. Following the conceptual framework as outlined in

Rogers et al. [7;8], we incorporated a number of relevant

explanatory variables, in particular, behavioural and health

factors, socio-economic and demographic variables that shape

mortality levels in a community. Within this framework, behav-

ioural and health factors include alcohol drinking and smoking,

availability and access to health care. The economic and social

variables encompass level of living, marriage and family charac-

teristics, and social ties to communities e.g. religion. Demographic

variables consist of age, sex and ethnicity. These variables are

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e73500



further grouped into individual, household and community

factors. Contextual factors, which measure unobserved or

unmeasured determinants, are introduced as random effects.

These are assumed to have a structured and unstructured pattern,

where the structured effects permit similarities across areas, while

the unstructured effects allow within area heterogeneity.

The need for geographical analysis is critical as it may assist in

social planning by highlighting areas of excess mortality. To

assume homogeneity in terms of regional mortality would be an

understatement. The 2010 poverty estimates in Namibia, the

country of focus in this study, indicated huge disparities across

regions [9;10]. Moreover, the thirteen regions of Namibia remain

disparate geographically, economically, culturally and socially and

undoubtedly may explain the expected differentials in adult and

old-age mortality (AMOA). Even so in these regions, there are

considerable heterogeneity in health outcomes and socio-econom-

ic factors [10].

Past work on the epidemiology of adult mortality have

considered either prevalence alone (i.e. whether death occurred

in a household) and used logit models to analyze such [11;12], or

severity only (i.e. compared the number of reported deaths) and

applied count regression models [13–15]. In some cases where

count data have excess zeros, zero-inflation (ZI) regression model

have been used, particularly in general adult health [16]. Use of

such ZI model in adult mortality is rare despite many examples in

biostatistics, epidemiology and econometrics that deal with zero-

inflated data. See for example Winkelmann [17] and references

therein.

In this article, however, our proposal was that there are two

processes: (i) whether death occurred in the household (prevalence

part), and (ii) number of reported deaths, if death did occur

(severity part). Wickelman [17] called such two-part processes as

extensive (the zeros) and intensive (the positives) margins in a

multi-index count model, representing the case that death did not

occur and that death did occur, respectively. It is also referred to as

a zero-hurdle model because it allows for a systematic difference in

the statistical process governing individuals (observations) below

the hurdle and individuals above the hurdle set at zero [17–19].

An alternative approach to two-part process is to use finite

mixtures, which is a combination of zeros point mass distribution

and the nonzero distribution [17]. Most work in this area,

however, do not address concerns that occurrence of death

(prevalence) and number of deaths (severity) reported in a

household are joint processes, and that failing to account for the

joint nature of these processes can bias estimates of risk factors on

adult mortality [20;21]. Furthermore, several challenges arise in

analyzing these data including how to: (i) handle correlation in the

data between the prevalence and severity processes; (ii) model

excess zero counts in the data; (iii) permit possible spatial

correlation; and (iv) fit nonlinearity in metrical variables.

In this paper we proposed a structured additive two-part

random effects model for adult mortality data to address the above

issues. Therefore following Neelon et al. [18], Winkelmann [19],

Olsen and Schafer [20] and Su et al. [21], the proposed model

specification consisted of two generalized linear mixed models

(GLMM) with correlated random effects, where the first part

assumed a GLMM with a logistic link and the second part

explored a count model following either a Poisson or negative

binomial distribution. Furthermore, the random effects in the

model permitted structured and unstructured spatial components

to account for spatial correlation at area level. The proposed

model was then used to analyse adult mortality data of 25,793

individuals from the 2006/2007 Namibian DHS data. Inference

was based on the Bayesian framework with appropriate priors

discussed.

The remainder of this paper is organized as follows. Section 2

presents the data, as well as outlines the two-part model and its

application to the Namibian DHS data. Results of the analysis are

given in Section 3. This is followed by the discussion in Section 4

and we conclude.

Methods

Data
This study used data from the 2006/2007 Namibia DHS [6],

which included a household mortality module that has been

implemented in 8 African countries since 2005 under the sub-

theme of ‘‘Support for Persons Who Have Died’’. The DHS are

periodic cross-sectional health surveys funded by the U.S. Agency

for International Development (USAID) Bureau for Global

Health. The DHS have been conducted in over 70 countries

since 1980s, and the data are publicly available at MEASURE

DHS website. The data are completely anonymized before they

are released for general public use. The DHS follows a cross-

sectional multi-stage stratified survey design. In the Namibian

context, a two-stage stratified sampling design was implemented to

collect the data and provide direct estimates of demographic and

health indicators at national and regional level. At first stage, a

total of 500 enumeration areas (EA) from a sampling frame of

3750 EAs as defined in the 2001 Population and Housing Census,

were selected stratified by urban-rural status with sampling

probability proportional to the population of the region. At the

second stage, a fixed number of 20 households were randomly

drawn from each selected EA. From the selected households, all

women of age 15–49 years were eligible for interview. A final

representative probability sample of 10,000 households was

selected. The sample allocation by region is given in the Appendix

A of the Namibian DHS report [6]. The overall women response

rates for urban and rural areas were 90.0% and 94.8%

respectively, while for the 13 regions ranged from 88.4% (Khomas

region) to 96.6% (Omusati region). The household response rate

was 96.8% and 98.5% for urban and rural areas respectively, with

a regional variation of 95.1% (Khomas region) to 99.1% (Oshikoto

region).

The household module enumerated all usual household

members and collected information on their age, gender and

economic activities (education level, or employment status if not in

school). All deaths in the household that occurred in the past

12 months preceding the survey were collected with full informa-

tion on age at death and gender. The questions used to collect

mortality data were: ‘‘Has any usual member of your household

died in the last 12 months’’, and if yes this was followed by ‘‘How

many members died in the last 12 months’’. Information were also

collected on whether any household member was sick, whether

any medical services, emotional or psychological, material or social

support were available to the sick or deceased or any household

member. In addition, approximate time to nearest health facility

and type of health facility where health care was obtained were

equally captured.

Statistical Analysis
The number of household members that died was assumed to

follow two process, which was better envisaged as a two-part

mixture consisting of a point mass at zeros followed by truncated

count data distribution for the non-zero observations. The model

for the count can be either a Poisson or a negative binomial. These

two-part models are also referred to as zero-hurdle models [18;19].

Bayesian Two Part Model for Adult Mortality
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In particular, according to Winkelman [17], a hurdle model

combines a dichotomous model for the binary outcome of the

count being below or above the hurdle (the selection variable),

with a truncated model for outcomes above the hurdle. For the

Poisson hurdle model we have

P(Yij~0)~1{pij , 0ƒpijƒ1 ð1Þ

P(Yij~k)~pij
lke{l

k!½1{e{l� , k~1, . . . , ?,0vlv?, ð2Þ

where Yij indicates the response for household member

j~1, . . . ,n in area i~1, . . . ,S and l is the mean for the truncated

Poisson distribution. An alternative to the Poisson hurdle is a

negative binomial which replacing equation (2) is given by

P(Yij~0)~1{pij , 0ƒpijƒ1 ð3Þ

P(Yij~k)~pij
C(kzh)

k!C(h)
1z

l

h

� �{h

1z
l

h

� �{k

,

k~1, . . . ,?,0vlv?

ð4Þ

with parameters l§0 for the mean and hw0 for over-dispersion.

The component p is a mortality propensity, while the count part

models severity of mortality in the reported household. If one takes

a less strict view of the two-part process then a finite mixture of

two distributions can be assumed. A less strict view is assumed

where zeros are generated from the same underlying process as

positives, thus single-index models e.g. Poisson or negative

binomial may apply. Otherwise, if the zero-generating process is

not subject to such a constraint, then multi-index models are

appropriate [17;19]. In this case the factors that explain whether

death occured in a household within past 12 months may differ

from the factors that determine the number of deaths following the

first death in the same household.

A special case of the models above is the zero-inflated Poisson or

zero-inflated Negative binomial. These models have a degenerate

distribution at zero with untruncated Poisson or Negative binomial

distribution. A zero-inflated Poisson is denoted by

Yij jgij ,l*ZIP(gij ,l). Combining zero inflation and over-disper-

sion gives a zero inflated negative binomial defined as

Yij jgij ,h,l*ZINB(gij ,h,l), where g and h are the predictor and

over-dispersion parameters respectively.

The zero-hurdle model can be extended to accommodate

covariates and random effects. Since we have two parts, we

introduced two GLMMs. For the prevalence component, we

assumed a logit link while for the severity component we proposed

a log link:

g~

logit(pij)

log (lij)

0
BB@

1
CCA~

a1

a2

0
BB@

1
CCAzXT

ijl

b1

b2

0
BB@

1
CCA

zZT
ijl

c1

c2

0
BB@

1
CCAz

si1

si1

0
BB@

1
CCAz

ui2

ui2

0
BB@

1
CCA

ð5Þ

where al is the intercept for process l, the terms b = (b1,b 2)T are

vectors of regression parameters corresponding to the set of

covariates, X ijl (Table 1). The non-linear components of

continuous covariates (Z ijl ) were captured through terms

c = (c1,c2)T . The components uil and sil are the unstructured

heterogeneity and spatially structured variation terms, respectively,

Table 1. Summary of household members who died by
selected characteristics.

Variable
Percentage
died Total x2 test (p-value)

Residence

Urban 5.4 10829 157.7 (,0.001)

Rural 9.7 14964

1Nearest health facility

Hospital 6.3 5531 54.5 (,0.001)

Health centre 8.6 1880

Clinic 8.5 17903

2Means to nearest health facilit

Car/motorcycle 4.8 4013 75.6 (,0.001)

Public transport/Animal cart 8.0 4877

Walking 8.7 16021

3ime to nearest health facility

Minutes 6.6 16730 135.9 (,0.001)

Hours 10.6 8174

Day 12.1 612

Sex of household head

Male 6.0 15019 16.6 (,0.002)

Female 10.6 10774

Sex of household member

Male 7.3 12020 12.8 (,0.001)

Female 8.5 13773

4ducation of household member

None 8.5 3876 115.4 (,0.001)

Primary 9.9 8230

Secondary and higher 6.5 13283

5Marital status of household
member

Married 5.4 9464 203.7 (,0.0001)

Never married 8.8 13796

Others 13.4 2162

Wealth quintile

Poorest 12.0 4215 299.2 (,0.0001)

Poor 9.8 4785

Medium 8.8 6126

Rich 6.5 6134

Richest 2.9 4533

Numbers and percentage missing per variable are provided at the foot of the
table.
1Missing: n~479 (1.9%).
2Missing: n~882 (3.1%).
3Missing: n~277 (1.1%).
4Missing: n~404 (1.7%).
5Missing: n~307 (1.3%).
doi:10.1371/journal.pone.0073500.t001
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at regional level. Because of dependence in the binary and count

outcomes, the random effects were correlated and were modelled

using multivariate distributions as explained below.

Model estimation was carried out using the Bayesian approach

and the following prior distributions were specified for all

parameters of the model (5). For the intercept, diffuse priors were

assumed, that is, p(al)!1, while for the other fixed effects, b ,

highly dispersed normal distribution priors were chosen, that is,

p(b)*N(0,10000). The smooth functions of continuous covari-

ates were modelled using a second-order random walk prior given

by p(cl jcl{1,cl{2,s2
l )*N(2cl{1{cl{2,s2

l ) for l~3, . . . ,j with

noninformative priors for the initials. Again s2
l controlled the

amount of smoothing, with larger values leading to less smoothing.

The unstructured spatial effects uil were assumed to follow a

multivariate normal distribution, i.e., (ui1,ui2)T*MVN(0,V),
with covariance matrix V. The spatial structured effects sil were

assigned a multivariate conditional autoregressive (MCAR) prior,

i.e., (si1,si2)T*MCAR(1,S), again S is a covariance matrix

[18;22].

The covariance matrices have their diagonal elements equal to

the variances and the off-diagonals are correlation components

between the outcome processes. Thus, for example Sii is variance

components, while Sij ,i=j are cross-covariance components

between the prevalence of mortality (part 1) and severity of

mortality (part 2). Correspondingly, rij~
Sijffiffiffiffiffiffiffiffiffiffiffi
SiiSjj

p , for example,

gives a measure of spatial correlation between the processes. The

variance components were assigned inverse Wishart priors, i.e.,

V*IW (q,Q), S*IW (r,R) where q, r are scalars, while Q, R are

symmetric and positive definitive matrices. The hyperpriors were

assigned q~r~2, Q = R = 0:01I2|2 where I2|2 is an identity

matrix.

The regression tool for full Bayesian inference was based on the

posterior distribution of all parameters. Markov Chain Monte

Carlo techniques were used to draw samples from the full

conditionals of all parameter distribution which were then

summarized to obtain model estimates in the posterior analysis,

i.e.,

p(a,b,c,u,s,s2,V,Sjy)!Pp(yjg,s2,V,S)

Pp(ujV)p(V)p(sjS)p(S)p(cjs2)p(s2)p(a)p(b)
ð6Þ

where p(a,b,c,u,s,s2,V,Sjy) is the joint distribution of all

parameters in the observation model and the corresponding

priors, and p(yjg,s2,V,S) is the likelihood for all observable data

(y). Gibbs sampler was used to draw samples from the full

conditionals.

Model implementation was carried out in WinBUGS 1.4 [23].

The sample code used for our bivariate problem was adapted from

Neelon et al. [18]. See Appendix S1. We fitted a Poisson and

negative binomial hurdle models. For each model, three separate

chains were run to help assess convergence, starting from different

initial values for the priors. As pointed out by Gelman [24], the

performance of the model is sensitive to the choice of the

hyperparameters. We therefore considered alternative specifica-

tions on variance components hyperparameters, Q and R, and

carried out sensitivity of our model, by assuming

Q = R = 0:001I2|2, Q = R = 0:05I2|2, and Q = R = 0:01I2|2.

The results were similar, therefore, the last choice was maintained.

Convergence was monitored by visual examination of time series

plots of samples for each chain, and confirmed by plotting the

Gelman-Rubin statistic. The first 5,000–10,000 samples were

discarded as a ‘‘burn-in’’ and then each chain was run for a further

30,000 iterations or till convergence was achieved. Models were

compared using the Deviance Information Criterion (DIC:

Spiegelhalter et al. [25]), which was simultaneously computed in

the estimation process. Smaller values of DIC indicated a better

fitting model.

Results

Figure 1 displays the age-specific histogram of adult and old-age

deaths. As proposed the number of reported zero deaths was high

consisting of 92% of the total observations, with 1 death given in

about 6.6% household, while 2, 3 and 6 deaths reported per

household represented 0.8%, 0.3% and 0.01% respectively.

Figure 2 shows the percentage who died by region (panel (a))

and the mean number of persons reported dead per household by

region (panel (b)). Table1 presents a descriptive summary of

percentage who died by socio-demographic covariates. Relatively

small numbers were missing for some variables mainly due to item

non-response. There was significant difference across categories.

In part, there were more deaths in rural households, in female-

headed households and in the poorest of the poor households, and

the nearer the health facility the fewer the deaths reported.

We fitted four models, two were of random effects only based on

the Poisson and Negative binomial, and the other two extended

the two random effects models by including fixed and nonlinear

effects. The DIC was used to for model selection. The DIC values

are given in Table 2. The basic Poisson logit hurdle had a

DIC~10320:97 ( �DD~9625:65, pD~347:66) which was of poor fit

compared to the basic NB logit hurdle (DIC~8577:21).

Comparatively, models with fixed and nonlinear effects outper-

formed the basic models. However, the extended NB logit hurdle

model was superior to the extended Poisson logit hurdle

(DICNBHL = 8439.92 versus DICPHL = 9739.95 respectively).

Table 3 presents posterior summaries from the Negative

binomial hurdle model. Given are the fixed and random effects

0 1 2 3 6

Number of deaths per household
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Figure 1. Histogram of percentage of reported adult and old-
age mortality in Namibia, 2006/07 DHS.
doi:10.1371/journal.pone.0073500.g001
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for both the logit and negative binomial components. Odds of

death in the family was positively associated with female headed

households (log odds of 0.48, 95% CI: 0.38, 0.59), negatively with

being married (20.48, 95% CI: 20.64, 20.32) and never married

(20.21, 95% CI: 20.38, 20.04), positively with being poorest

(0.95, 95% CI: 0.60, 1.28), poor (0.81, 95% CI: 0.46, 1.11),

medium (0.98, 95% CI: 0.67, 1.26) and rich (0.78, 95% CI: 0.54,

1.04) relative to being the richest, increased when one takes hours

to reach a hospital (0.65, 95% CI: 0.60, 1.28), and positively if the

family head had primary education (0.18, 95% CI: 0.06, 0.23).

With regards to severity of mortality at household level, we

observed that risk of deaths decreased in urban areas (20.35, 95%

Percentage dead

4

6

8

10

12

Mean number dead

1.0

1.1

1.2

1.3

1.4

A

B

Figure 2. (a) Percentage of household with at least one member dead within 12 months of the survey date by region; (b) Mean
number of household members reported dead by region.
doi:10.1371/journal.pone.0073500.g002
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Table 2. Model comparison values based on Deviance Information Criterion (DIC) for the Poisson logit hurdle and negative
binomial (NB) logit hurdle models.

Model Description �DD pD DIC

Poisson logit hurdle Region (Random effects: RE)+ Cluster (RE) 9625.65 347.66 10320.97

Poisson logit hurdle Fixed + Nonlinear + Region (RE) + Cluster(RE) 9008.61 365.67 9739.95

NB logit Hurdle Region (RE) + Cluster(RE) 7799.10 339.06 8577.21

NB logit Hurdle Fixed + Nonlinear+ Region (RE) + Cluster(RE) 7741.38 349.27 8439.92

doi:10.1371/journal.pone.0073500.t002

Table 3. Posterior means (post. mean) for Fixed and Random effects estimates with corresponding 95% credible intervals (CI) from
the spatial negative binomial hurdle model of adult mortality.

Variable Bernoulli Negative binomial

Post. Mean Post. 95% CI Post. Mean Post. 95% CI

Fixed effects

Constant 24.73 (25.44, 24.22) 24.45 (25.02, 23.91)

Urban 20.23 (20.54, 0.08) 20.35 (20.66, 20.07)

Rural 0 0

Hospital 0.21 (20.06, 0.61) 0.09 (20.20, 0.41)

Clinic 0.29 (20.01, 0.61) 0.15 (20.11, 0.42)

Health centre 0 0

Walk 0.05 (20.14, 0.31) 0.16 (20.05, 0.35)

Public transport 0.17 (20.06, 0.38) 0.23 (0.02, 0.43)

Car/motorcycle 0 0

Female head 0.48 (0.38, 0.59) 0.33 (0.23, 0.42)

Male head 0 0

Female member 0.005 (20.08, 0.16) 0.02 (20.07, 0.09)

Male member 0 0

Married 20.48 (20.64, 20.32) 20.37 (20.54, 20.21)

Not married 20.21 (20.38, 20.04) 20.14 (20.30, 0.02)

Other (married) 0 0

Poorest 0.95 (0.60, 1.28) 0.75 (0.47, 1.09)

Poor 0.81 (0.46, 1.11) 0.75 (0.47, 1.05)

Medium 0.98 (0.67, 1.26) 0.83 (0.58, 1.12)

Rich 0.78 (0.54, 1.04) 0.73 (0.51, 0.99)

Richest 0 0

Time to facility (Min) 0.33 (20.17, 0.90) 0.29 (20.17, 0.79)

Time to facility (Hr) 0.65 (0.14, 1.27) 0.62 (0.18, 1.12)

Time to facility (Day) 0 0

No education 20.001 (20.19, 0.16) 20.03 (20.19, 0.08)

Primary education 0.18 (0.06, 0.31) 0.12 (0.01, 0.23)

Secondary and higher education 0 0

Random effects

Spatial structured

(S11,S22) 0.13 (0.002, 0.58) 0.44 (0.06, 1.58)

(S12) 0.88 (0.59, 1.31) -

Spatial unstructured

(V11, V22) 1.69 (1.25, 2.04) 1.77 (1.40, 2.20)

(V33) 0.34 (0.21, 0.59) -

doi:10.1371/journal.pone.0073500.t003
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CI: 20.66, 20.07), increased if public transport was used (0.23,

95% CI: 0.02, 0.43), increased in female headed households (0.33,

95% CI: 0.23, 0.42), was higher in all socio-economic strata other

than in the richest stratum, was positively associated with primary

education (0.12, 95% CI: 0.01, 0.23), and increase if time to

facility was in hours (0.62, 95% CI: 0.18, 1.12).

The variance components for the random effects, in Table 3,

showed strong spatial correlation in the prevalence estimated as

0.13 (95% CI: 0.002, 0.58), while severity correlation was 0.44

(95% CI: 0.06, 1.58). The covariance was estimated as 0.88 (95%

CI: 0.59, 1.31) showing a strong correlation between prevalence

and severity. For the unstructured variance component we

obtained 1.69 (95% CI: 1.25, 2.04) and 1.77 (95% CI: 1.40,

2.20) for the logit and NB parts respectively. The unstructured

covariance for the two components (prevalence and severity) was

0.34 (95% CI: 0.21, 0.59). The calculated correlation coefficients

for the structured and unstructured components were 0.04 and

0.09 respectively.

Figure 3 displays age curves for the household head and

household member for the count component [since the logit and

count components yield similar curves]. In both panels we

observed a significant departure from zero, as well as from

linearity, although this was more pronounced in age of household

head (Figure 3a). In the left panel, the risk of mortality increased

between 15–20 years and then decreased up to age 30 years, then

rose again steadily up to age 65 years, with a little dip at age

50 years. A similar pattern of up and down continued from age of

65–70 years with a final decrease at age of 80 years. From age of

15 years to 55 years, the risk of death lied below zero, suggesting a

reduced mortality risk in such households, while at 60 years to the

end we observed a risk of above 0, indicating an increased risk of

mortality. Overall the dip in risk was at age of 30 years, and a peak

in risk was at 65 years. For the age of household member

(Figure 3b), there was an overall decreasing risk with increasing

age. Up to age 30–35 years the risk was significantly above zero,

an age of increased mortality among household members. From

age of 40 years, although the risk remained below zero, this

remained non-significant based on the confidence bands. Overall a

drop in risk was noted at age of 50 years, while a peak in mortality

was displayed at age 80 years.

Figure 4 presents residual spatial effects for both model

components. As the patterns from the two plots suggest there

were similarity in risk between the logit (prevalence) model and

negative binomial (severity) model. The increased odds or risk of

mortality were observed in the Caprivi and Kavango regions,

while decreased odds and risk of mortality were predicted in

Erongo and Omaheke regions. The other regions clearly showed a

predicted risk not different from zero i.e si~0. Figure 5 displays

the significance map corresponding to the spatial effects given in

Figure 4. The significance map displays three colour schemes:

black, white and grey. Black colour denotes regions with strictly

negative credible intervals, whereas white denotes regions with

strictly positive credible intervals and grey denotes regions with no

significance association with the outcome. For the logit spatial

effects (Figure 5a), only two regions, Caprivi and Kavango, had

significant positive effects implying that the odds of adult mortality

were significantly higher in these regions than in others. For the

NB part (Figure 5b), we obtained both positive and negative

significance areas. Positively significant effects were obtained in

Caprivi, Kavango, Ohangwena and Omusati regions suggesting

that severity of mortality was higher in these regions compared to

others. Regions with negatively significant effects were in Erongo,

Khomas, Otjozondjupa and Omaheke. This means the risk of

adult mortality was relatively lower in these four regions than in

others.

Discussion

We presented a bivariate or two-part model estimating risk

factors of adult and old-age mortality in Namibia based on a

nationally representative health survey, 2006/07 DHS, which

captured mortality and survivorship data of all members in

sampled households. This is a rich source of data, which produced

consistent mortality estimates when compared to the census or

indirect estimates of WHO and UNDP, despite limitations due to

sampling errors and selection bias. We refer interested readers to

the work by Bendavid et al. [3] which presented tables showing
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Figure 3. Nonlinear effects of: (a) age of household head; and
(b) age of household member, given by the solid centre line as
log relative risk (RR) with corresponding 80% confidence band
(dotted outer lines).
doi:10.1371/journal.pone.0073500.g003
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comparison of various estimates using WHO, UNDP and this

source.

Our approach used the two-part model by assuming two

processes governing mortality observed at households. We

conjectured that the process of death occurring (extent) would

be different from those influencing multiple deaths (intensity) in

the households reporting deaths. We therefore postulated that the

risk set, although similar, will have different association for the two

processes. Indeed, the different significance covariates obtained in

the two sets shows that this is the case. For example ‘‘urban’’ and

‘‘public transport’’ were not significant on the logit model, yet

these were significant on the count model (Table 3). Similarly,

variable like ‘‘not married’’ was significant on the logit model but

was not on the count model. The significance of ‘‘urban’’ under

the severity model indicates that that although death may occur at

a particular household, the risk of repeat within a year is

significantly lower in urban areas than in rural areas. Moreover,

the difference in magnitude of the estimates between the logit and

count model (Table 3), suggests that the odds of death occurring is

relatively higher than the risk of observing multiple deaths in same

household.

In estimating risk factors of adult mortality, we have included

both individual and household variables as demand-side factors,

and clinic factors as supply-side factors within the conceptual

framework of health care [26]. That is, here we assumed that adult

mortality is aggravated by availability and access to health care

[27;28]. However, the epidemiology of adult mortality is not this

simplistic. It is an interaction of a myriad of factors, be it health

care, socio-economic, demographic and behavioural factors.

Despite limited variables in the DHS we have included variables

that fall within all these risk categories. In fact, we extended our

model to include spatial random effects, purporting that unob-

served or unmeasured covariates present other potential source of

risk to mortality. The significance of spatial effects does support

our proposition that disparities in health are engrossed in

Namibian regions [9;10]. These results should generate further

research to unearth potential risk factors of varied adult health in

the country.

From a statistical point of view, several issues arise here. First,

we used a bivariate conditional autoregressive process with permits

correlation between the logit and count model. Without such an

approach, a two-part model would give biased estimates [18;21].

Second, we applied a structured additive regression (STAR) model

in an attempt to explain the complex relationship between adult

mortality risk and various risk factors. The use of such models is

increasingly being applied in epidemiology. See Kazembe [10];
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Figure 4. Regional model estimates of residual total spatial effects for the logit part (left panel) and the negative binomial count
part (right panel).
doi:10.1371/journal.pone.0073500.g004
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Figure 5. Significance effects of region for a nominal level of
80%. (a) Posterior probabilities for logit part; (b) Posterior probabilities
for NB part. Black denotes regions with strictly negative credible
intervals. White denotes regions with strictly positive credible intervals.
Grey denotes regions with no significance association with the
outcome.
doi:10.1371/journal.pone.0073500.g005
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Neelon et al. [18]; Fahrmeir and Lang [29] and references therein.

STAR models simultaneously model spatially structured random

effects, unstructured random effects, nonlinear effects of metrical

covariates, together with the usual fixed categorical variables.

Third, with respect to the likelihood, the zero-augmented models

show a better fit to the data, moreover, the observed zero counts

are well captured in Hurdle and ZINB as discussed in Zeileis et al.

[30].

Our analysis, however, has the following limitation. While the

use of structured and unstructured spatial effects provides robust

spatial estimates when the locations are many, in this analysis, we

only have 13 provinces to estimate spatial effects and most of the

provinces do not have more than one neighbour. This may bias

the spatial pattern observed here. Moreover, the large regional

areas may conceal or over-step variability of risk within that region

in which all areas within are depicted as having common risk of

mortality. An ideal analysis would be to use small-areas (districts or

constituencies) to assess spatial variability in adult mortality,

unfortunately these spatial units were not available at the time of

this analysis, but would be worthwhile to pursue this further.

Nevertheless, the results of this study has various important

implications. First, it might assist epidemiologists with understand-

ing potential risk factors of adult mortality that needs to be

factored in when planning interventions. Second, it could help

understand the health consequences of social inequality, human

behaviour and demographic factors on adult mortality, which in

turn is crucial towards comprehending population dynamics [8].

Third, it might help social planners with understanding where

resources should be targeted. Fourth, it might generate hypotheses

as to factors explaining spatial variability in adult mortality, be it

HIV epidemic which has a strong age-specific impact on adult

mortality [2;4].

In conclusion, this paper explored the use of advanced

structural additive models to study adult mortality risks. Our

study used the most recent data, although six years old,

notwithstanding provide a glimpse of multivariate relationship

existing between various factors. It provides a natural picture of

forces affecting adult mortality, in contrast to the UNDP/WHO

indirect estimates. There is need to consider the risk of cause-

specific adult mortality. For example, it may be of interest to

ascertain what is the spatial distribution of HIV related mortality

as this is the major cause of adult mortality in Namibia [2].

However, the lack of HIV related factors in data in general, and in

the model in particular, is possibly missing a lot of information and

makes it difficult to assess the significance of such factors which is

crucial toward informing further public health effort. Be as it may,

multilevel models can be used to incorporate reliable HIV related

data often aggregated at areal level. Furthermore, multivariate

models that categorize death into communicable, non-communi-

cable and accidents/injuries will be worthwhile investigating to

explicitly display the spatial variability of risk of adult mortality by

cause.

Supporting Information

Appendix S1 WinBugs Code.

(DOCX)

Acknowledgments

We acknowledge permission granted by Macro International to use the

2006/2007 Namibia DHS data.

Author Contributions

Conceived and designed the experiments: LNK. Analyzed the data: LNK.

Wrote the paper: LNK.

References

1. Jamison DT, Feachen RG, Makgoba MW, Bos ER, Baigana FK, et al. (2006)

Disease and mortality in sub-Saharan Africa. 2nd Edition. Washington DC: The

World Bank.

2. Bendavid E, Holmes CB, Bhattacharya I, Muller G (2012) HIV development

assistance and adult mortality in Africa. J Am Medical Assoc 307:2060–2067.

3. Bendavid E, Seligman B, Kubo J (2011) Comparative analysis of old-age

mortality estimations in Africa. PLoS ONE 6(10): e26607.

4. Ngom P, Clark S (2003) Adult mortality in the era of HIV/AIDS: Sub-Saharan

Africa. Workshop on HIV/AIDS and Adult mortality in developing countries.

Department of Economic and Social Affairs. United Nations Secretariat. New

York, 8–13 September, 2003.

5. INDEPTH Network (2004) In depth model life tables for sub-Saharan Africa.

Aldershot: Aldershot Ashgate Publications Ltd.

6. Ministry of Health and Social Social Services (MoHSS) [Namibia] and Macro

International Inc. (2008) Namibia Demography and Health Survey 2006–

2007.Windhoek, Namibia and Claverton, Maryland: MoHSS and Macro.

7. Rogers RG, Hummer RA, Nam CB (2000) Living and dying in the USA:

Behavioural, health and social differentials of adult mortality. San Diego:

Academic Press.

8. Rogers RG, Hummer RA, Krueger PM (2002) Adult mortality. In: Poston Jr.

Handbook of Population. pp: 283–309.

9. Namibia Statistics Agency (2012) Namibia household income and expenditure

survey 2009/2010. Windhoek: NSA.

10. Kazembe LN (2012) Analysis of non-food household expenditures using a

multivariate structured additive regression. Proceedings of 54th Conference of

South African Statistics Association (SASA). Nelson Mandela Metropolitan

University, Port Elizabeth, South Africa. 7th-9th Nov, 2012.

11. Obermeyer Z, Rajaratnam JK, Park CH, Gakidou E, Hogan MC, et al. (2010)

Measuring Adult Mortality Using Sibling Survival: A New Analytical Method

and New Results for 44 Countries, 19742006. PLoS Med 7(4): e1000260.

12. Houle BC (2011) Bio-social Determinants of Child and Adult Mortality in South

Africa [PhD thesis]. University of Washington. pp. 320.

13. Ali M, Jin Y, Kim DR, De ZB, Park JK, et al. (2007) Spatial risk for gender
specific adult mortality in an area of southern China. Int J Health Geogr 6:31.

14. Turra CM, Goldman N (2007) Socio-economic differences in mortality among
U.S. adults: insights into the Hispanic paradox. J Gerontol B Psychol Sci Soc Sci

62(3): S184–92.
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