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Using ancestry-informative markers to identify fine
structure across 15 populations of European origin

Laura M Huckins*,1, Vesna Boraska1,2, Christopher S Franklin1, James AB Floyd1, Lorraine Southam1,
GCAN5, WTCCC36, Patrick F Sullivan3, Cynthia M Bulik3, David A Collier4, Chris Tyler-Smith1,
Eleftheria Zeggini1,7 and Ioanna Tachmazidou1,7

The Wellcome Trust Case Control Consortium 3 anorexia nervosa genome-wide association scan includes 2907 cases from 15

different populations of European origin genotyped on the Illumina 670K chip. We compared methods for identifying population

stratification, and suggest list of markers that may help to counter this problem. It is usual to identify population structure in

such studies using only common variants with minor allele frequency (MAF) 45%; we find that this may result in highly

informative SNPs being discarded, and suggest that instead all SNPs with MAF 41% may be used. We established informative

axes of variation identified via principal component analysis and highlight important features of the genetic structure of diverse

European-descent populations, some studied for the first time at this scale. Finally, we investigated the substructure within

each of these 15 populations and identified SNPs that help capture hidden stratification. This work can provide information

regarding the designing and interpretation of association results in the International Consortia.
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INTRODUCTION

Population stratification can be a major cause of concern in genetic
association studies. Specifically, imperfect matching between cases and
controls can lead to spurious associations, or failure to detect true
associations.1 Several ways of accounting for hidden population
stratification have been proposed (genomic control (GC) correction,
adjusting for ancestry-informative principal components (PCs)),
but these approaches are only applicable in genome-wide scale
data. The GC2 approach uses genomic features of the samples to
correct for stratification, and thus avoids inflation in the test statistic.1

Population stratification may lead to ‘overdispersion’ of the statistics
used to test for association; by measuring several polymorphisms
across the genome, the degree of this overdispersion may be estimated
and taken into account. However, GC may not perform well with too
few loci, or may overcorrect and lead to a substantial loss in power.1

Menozzi et al3 described the use of PC analysis (PCA) in human
genetics in 1978. PCA summarizes high-dimensionality data by
capturing the latent variables that best describe a data set, allowing
simple visualization of allele frequency differences among populations.
It is possible to correlate PCs of the data with meaningful geographic
axes. For example, genetic variation in the first two PCs is closely
associated with geographic alignment across Europe.4–6 As with GC,
PCA may also be used to correct for population stratification when
working with a very large number of markers, ideally genome-wide
data sets. However, population stratification is much of a concern in
replication studies or studies focusing on a smaller number of variants,

in which GC or PCs cannot be readily calculated. To circumvent this
problem, adjustment for the genotypes of ancestry-informative
markers (AIMs) has been proposed as an alternative approach.

Shriver et al7 proposed that certain markers with distinct frequency
differences across populations may be highly informative for assigning
ancestry. These markers are referred to as AIMs. A small number of
these AIMs may be used to perform population clustering; between
40 and 80 loci, Rosenberg et al8 demonstrates convergence to five
broad continental clusters. Kidd et al9 used 128 AIMs to characterize
samples from 119 populations into 8 broad clusters, which agree
with continental boundaries. Precalculated lists of AIMs are available,
although these are mostly applicable only to cross-continental
studies,10,11 or require a relatively large set of SNPs.12

A different way to derive AIMs is to identify SNPs that contribute
highly to the significant PCs (PCAIMs), as first discussed by Paschou
et al.13 SNPs that contribute heavily to the underlying axes of
variation will be instrumental in clustering samples along
population lines; it follows that these SNPs may be used to assign
ancestry. A recent study has identified these PCAIMs for samples of
North-Central European and Mediterranean origin, and has shown
that they may be used to assign sample ancestry.14

In this work, we investigated the structure across closely related
European populations. We discuss evidence for stratification using
PCA and Fst, a measure of genetic distance among samples. Further,
we identified lists of AIMs and PCAIMs, which are able to correct for
stratification by using a small number of markers.
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We investigated population stratification using data taken from the
Wellcome Trust Case Control Consortium 3 anorexia nervosa (AN)
genome-wide association scan, which includes 2907 cases from 15
different populations of European origin (unpublished data). Thirteen
of these are European, and are divided between Scandinavian
(Finland, Norway and Sweden), North-Central European (Czech
Republic, France, Germany, the Netherlands, Poland and the United
Kingdom) and Mediterranean populations (Greece, North Italy,
South Italy and Spain). Two further populations of European origin
included in this study are United States and Canada. Sample sizes
range from 39 (Swedish samples) to 475 (Germany); numbers of
samples are shown in Figure 1 and Table 1. Populations were
genotyped on the Illumina 670K chip.

We discuss the fine structure within these populations, and identify a
set of informative SNPs. We compare different methods of calculating
these, and assess their usefulness in assigning samples to populations.

MATERIALS AND METHODS

Sample collection
We used samples that had been collected for an AN GWAS. The samples

comprise 15 discovery data sets of European origin. All samples used were

female. All samples met the DSM-IV diagnostic criteria for lifetime AN or

lifetime ‘eating disorder not otherwise specified’, with the exception of the

requirement for amenorrhoea. Samples with a lifetime history of bulimia

nervosa were also included in the data set.

Genotyping
All cases were genotyped using the Illumina 660W-Quad arrays (Illumina Inc.,

San Diego, CA, USA) at the Wellcome Trust Sanger Institute. Quality control

was performed individually on each of the 15 case–control subgroups

(Supplementary Information).

PCA
We calculated PCs using the smartpca software (developed at Harvard School

of Public Health, Boston, MA, USA).15 We identified the top PCs by selecting

those components that explained the greatest variance.

We used the Tracy–Widom (TW) statistic to assess the significance of

each PC. The TW statistic tests whether the average eigenvector coordinates

across all samples within each population differ significantly across

components. We found that the first six PCs differ significantly

(TW statistic4100, Po10�86).

Geographic relevance of PCs
We applied three different tests to calculate the geographic relevance of the

PCs. To do this, we first computed the mean eigenvector coordinates of all

samples within a population. We then compared these to the centre of genetic

variance to the geographic centre. As our samples were obtained from tertiary

referral centres, we define ‘Geographic centre’ as the geographical midpoint of

the country from which the samples were taken. Coordinates were obtained in

the same way by Novembre et al;4 the same coordinates are used here, with the

exception of North Italy, which is assigned Verona as its geographic centre.

We then performed the following correlation tests:

(1) We used a Spearman’s rank correlation coefficient to test for significance of

association. Spearman’s rank correlations were computed using a standard

R package.

(2) We applied a Mantel test. This test calculates the correlation between the

two distance matrices, and then computes an empirical P-value by

randomly permuting the rows and columns of one matrix. We performed

the Mantel test using the ‘ape’ R package16 and used 1000 permutations

(as recommended).

(3) We applied a Procrustes test. This works in the same way as the Mantel test,

but is likely to be more sensitive.17,18 We performed the Procrustes test using

the ‘vegan’ package in R19 with 1000 permutations (as recommended).

FST
Tian et al20 assign a threshold of Fst¼ 0.001, below which populations may not

be said to be genetically distinct.

Fst values were computed using the smartpca software.15

To test the correlation between Fst (genetic distance) and geographic distance

between population centres, we applied a Mantel test, as for the PCA data.

AIMs
AIMs are defined as markers that provide information as to the ancestry of a

sample. Informativeness describes the amount of information that is imparted

by the marker. We use a harmonized data set of 70 samples per population to

calculate informativeness. We selected 70 samples per population to avoid any

sample-size associated bias in the Informativeness calculation.

Samples were selected at random from all populations; note that Sweden

(39 samples) and Canada (54 samples) were omitted owing to small

population sizes. The remaining samples were designated as a testing set, to

validate AIMs. The Swedish population was set aside to test the ability of AIMs

(and PCAIMs) to assign ancestry of samples from a new population.

AIMs were thinned for LD using PLINK.21,22 A threshold of 0.8 was used.

Figure 1 Geographical distribution of samples across Europe.

Table 1 Sample sizes per population

Population Abbreviation Sample size

Canada CA 54

Czech Republic CZ 72

Finland FI 131

France FR 293

Germany DE 475

Greece GR 70

North Italy NIT 203

Netherlands NL 348

Norway NO 82

Poland PL 175

South Italy SIT 75

Spain ES 186

Sweden SE 39

UK UK 213

USA USA 491
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Informativeness was calculated according to Rosenberg et al,8 using the

formula below:

I ¼
XN

j¼1

� pj log pjþ
XK

i¼1

pij

K
logpij

 !

where pj is the mean frequency of allele j over all populations, pj is the relative

frequency of allele j in population i and K is the total number of populations.

PCAIMs
PCAIMs were selected using a weighting system as outlined by Raaum et al.23

SNP contributions to each PC were calculated using smartpca.

Contributions of each SNP to each PC were normalized to the maximum

weight, so that the SNPs that contributed most to a PC was given a weight of 1.

These weights were multiplied by the corresponding eigenvector. To get a rank

for each SNP, weights were summed across all PCs.

AIMs were thinned for LD using PLINK.21,22 A threshold of 0.8 was used.

K-nearest neighbour
K-nearest-neighbour assignments were used to assess how well AIMs and

PCAIMs were able to assign a sample to a certain population. (Here, we used

K¼ 5.). The KNN algorithm identifies the K-nearest genetic neighbours by

computing Euclidean distances between samples. We used PLINK to find each

sample’s K-nearest genetic neighbours, based on only a given number of AIMs.

Clustering samples that are ‘closest’ together according to a genetic similarity

measure, derived by AIMs or PCAIMs, implies that the nearest neighbours

share common ancestry with the sample in question. The ancestry of the

nearest neighbours was used as a ‘majority vote’ to determine the ancestry of

the sample.

In cases where the five nearest neighbours did not reach a majority vote,

only the four nearest were selected, and a majority vote again taken. If this was

still unsuccessful, only the top three were used. If still no majority vote was

reached, the sample was classed as ‘unassigned’.

Ancestry was assigned to a sample based on the result of the majority vote.

Each sample was considered correctly assigned if the result of the majority vote

was either the true ancestry of the sample or a population with a pair-wise

Fsto0.001 with the true population.

RESULTS

Evidence of structure among populations
We performed PCA on the 15 population sets, and plotted the PCs for
all populations as shown in Figure 2. The first two PCs accounted for
25.2 and 12.9% of the variation in the data, as shown in Table 2. We
used the proportion of variance explained, along with the TW statistic
as shown in Table 2, to identify significant PCs.

We tested the geographic relevance of the PCs by calculating the
correlation between PC magnitude and latitude and longitude,
obtained using the geographic centre of each nation, shown in
Supplementary Table 1. Canadian and USA samples were not
included in this aspect of the study, owing to the difficulty of
assigning meaningful geographic locations. We found that the two top
PCs were correlated with perpendicular geographical axes (r¼ 0.90
for PC1 versus latitude, r¼ 0.59 for PC2 versus longitude). After
rotation, PC1 aligns north-northwest/south-southeast (NNW/SSE,
�111, r¼ 0.91). This is remarkably similar to the �161 angle cited
by Novembre et al.4 We see no significant correlation between PC3
and PC4 and geographical axes. We tested for significance between PC
locations and geographic centres, and found that this was significant
for the first and second PCs (Po1e�300 for PC1, P¼ 0.036 for PC2,
using a Mantel test; P¼ 0.001 for PC1, P¼ 0.015 for PC2, using a
Procrustes test).

Figure 2 presents the first three PCs of the data. Populations form
three overlapping subclusters: Finland, central European and South-
ern or Mediterranean populations. Samples form tight subclusters

along population lines, implying that even closely related neighbour-
ing populations are genetically distinct.

USA samples cluster loosely across North-Central European and
Scandinavian populations, with some samples clustering with the
Mediterranean population. As expected, we see little overlap between
Finnish and USA samples. Canadian samples tend to cluster with
North-Central European and Scandinavian populations. We per-
formed a PCA using only USA, Canadian, North-Central and
Scandinavian populations (therefore removing Mediterranean and
Finnish samples), to illustrate this more clearly, as shown in
Supplementary Figure 1. This figure confirms the substantial overlap
between USA, Canadian and North-Central and Scandinavian
populations.

We calculated genetic distance among populations by means of the
Fst statistic (Table 3). Fst correlated well with distance inkilometres
between populations (Figure 3) when using the geographic centres of
the populations given in Supplementary Table 1. We found a
significant correlation between distance in kilometres and Fst (using
a Mantel test, Po1e�300).

It is clear from Table 3 that a number of pair-wise comparisons
between populations show only a very low Fst value. We used a
threshold Fst value of 0.001 to identify pairs of populations that are
not genetically distinct; this may be owing to recent admixture or
shifting of national borders. Pairs of populations that fall below this
threshold are shaded in Table 3.

AIM derivation
We extracted a list of AIMs using Rosenberg’s informativeness
calculation,8 for a harmonized data set of 70 samples per
population (for a brief description see the Materials and Methods
section). We used 70 samples per population to avoid over-
representing populations with larger sample sizes. Populations with
fewer than 70 samples were not used to calculate AIMs.

We calculated AIMs using all SNPs with average minor allele
frequency (MAF) across all populations 41%. Although it is usual to
take 5% as a lower boundary, we find that this risks removing highly
informative markers. For example, consider the ‘perfect’ marker, which
appears in every sample of one population, and not at all in others.
For the harmonized set of 13 populations, this marker would have an
average MAF of 3.8% across all populations, and would be dismissed
under a 5% threshold. We show the top 25 most informative markers
in Supplementary Table 2, along with their average MAF. Note that
7 out of these top 25 markers have an average MAF o5%.

One caveat when using AIMs is that populations might not
contribute evenly to the choice of markers. A large number of our
samples originated from central Europe; although these are classified
into distinct populations, we have already shown that some of these
populations are very closely related (eg, France and Germany);
meanwhile, there were a smaller number of samples from an outlying
population (Finland). To ensure that AIMs were chosen evenly to
represent all populations, we computed the AIMs using only 12 of 13
populations. We repeated this 13 times, leaving a different population
out each time. For each new set of AIMs, we computed the Spearman’s
rank correlation coefficient with the original list (Table 4). We found
an average r¼ 0.97, although it may be noted that the correlation is
slightly lower (r¼ 0.907) for the set excluding Finland. The high
correlations indicate that no single population is over-represented. The
lower correlation when excluding the Finnish samples is owing to the
greater genetic distance between Finland and other populations.

We use a weighting system as discussed by Raaum et al23 to select
PCAIMs; the top 25 are shown in Supplementary Table 3. We noted
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that a number of these SNPs fall into clusters (15 of the top 25 cluster
on chr. 2, 4 cluster on chr. 15). These locations are associated with
geographically restricted positive selection throughout Europe,
implying that many of these SNPs may be reflecting the same past
event, and may thus not be truly independent. To select SNPs that
provide the maximum possible information, we selected only the
most informative SNP from each cluster, as shown in Supplementary
Table 4.

Validation of AIMS/PCAIMS
We validated the top AIMs and PCAIMs by testing their ability to
assign ancestry to new samples. We used the samples not included in
the 70-sample per population harmonized data set; any population with
more than 10 samples remaining was included in the validation set.

We used K-nearest-neighbour algorithms to identify possible
ancestry of the samples (for a brief description see the Materials
and Methods section.

Both AIMs and PCAIMs were able to assign ancestry to samples
with a high accuracy, even at small numbers of markers. For example,
both AIMs and PCAIMs predicted about 90% of the total samples
correctly using only 25 markers, although some populations are not
predicted well (Spain, Finland and Poland) (Figure 4a).

It may be noted that PCAIMS predict outlying populations better
than AIMS. A key example of this is the performance of both sets of
markers when predicting Finnish samples (Figure 4b); AIMs predict
no samples correctly, even at larger numbers of markers. This failure
is due to the way in which AIMs are assigned. We observe high
genetic similarity between some central European populations, for
example, Czech Republic, France, Germany and Netherlands (as
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Figure 2 Fine structure between the 15 European populations studied. (a) Fine structure across all populations: PC1 versus PC2. (b) The distribution of

samples is shown for each population. Outlying samples (deviating in location by more than 3 SDs from the mean) were excluded. A three-point moving

average filter was used to smooth outlines. (c) Fine structure across all populations: PC2 versus PC3. (d) The distribution of samples is shown for each

population, calculated as in (b). CA, Canada; CZ, Czech Republic; DE, Germany; ES, Spain; FI, Finland; FR, France; GR, Greece; NIT, North Italy;

NL, Netherlands; NO, Norway; PL, Poland; SE, Sweden; SIT, South Italy; UK, United Kingdom; USA, United States of America
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illustrated by low pair-wise Fst values in Table 3). This indicates that a
marker that predicts a French sample well will also predict a German
sample well. As a sample is considered to be correctly assigned if the
final assignment is the original population, or a population with pair-
wise Fst o0.001, markers that predict French samples well will also

predict German samples well, and will thus increase the number of
samples correctly assigned for these populations. In this way, we
effectively have 280 samples contributing to ‘Czech/French/German/
Dutch’ ancestry, as opposed to just 70 Finnish samples. This ties in
well with Table 4, as removing any of these four populations still gives
a very high correlation of AIMs (r¼ 0.98). PCAIMs, on the other
hand, predict Finnish samples better as they take into account the
underlying variation of the data, rather than just the entropy of allelic
frequency across samples.

Figure 4c shows the proportion of samples correctly assigned for
Dutch populations as a function of the number of markers used. Note
that samples are predominantly assigned to neighbouring populations
when using PCAIMs, especially Germany and France. A large
proportion are assigned correctly, to the Netherlands. When using
AIMs, the majority of samples are assigned to Germany, while only a
small number are assigned to the Netherlands, and a similar number
are left unassigned.

Finally, we considered the assignment of Swedish samples
(Figure 4d). This population was not included at all when originally
calculating AIMs and PCAIMs; thus, these samples provided an
opportunity to see how well a ‘new’ population could be assigned
using the derived AIMs and PCAIMs. Using PCAIMs, all samples

Table 3 Pair-wise Fst calculated between all populations

CZ DE ES FI FR GR NIT NL NO PL SIT UK

CZ

DE 0

ES 0.003 0.002

FI 0.006 0.007 0.011

FR 0.001 0.001 0.001 0.008

GR 0.004 0.004 0.003 0.013 0.003

NIT 0.005 0.004 0.002 0.014 0.003 0.001

NL 0.001 0.001 0.003 0.007 0.001 0.005 0.006

NO 0.002 0.001 0.004 0.006 0.002 0.007 0.007 0.001

PL 0 0.001 0.005 0.006 0.003 0.006 0.007 0.002 0.003

SIT 0.003 0.002 0.001 0.011 0.001 0.001 0.001 0.003 0.004 0.004

UK 0.001 0 0.002 0.007 0 0.005 0.005 0 0.001 0.002 0.002

USA 0.001 0 0.002 0.007 0 0.004 0.004 0 0.001 0.002 0.002 0

Swedish and Canadian samples are not included here owing to small sample sizes. Population pairs falling below the Fst¼0.001 threshold are in pink.

Figure 3 Genetic distance correlates with geographical distance. We computed pair-wise Fst between all populations, and compared this to the geographic

distance in kilometres between the midpoints of each population. R2¼0.465.

Table 2 Significance of principal componentsa

Principal

component

% Variance

explained

Tracy–Widom

statistic P-value

1 0.14 1333.1 o1E�300

2 0.09 603.3 o1E�300

3 0.07 294.9 o1E�300

4 0.06 121.2 o1E�300

5 0.05 100.9 1.40E�295

6 0.05 43.7 9.79E�86

7 0.05 10.9 3.20E�12

8 0.05 10.0 5.08E�11

9 0.05 10.2 3.24E�11

10 0.05 6.9 5.30E�07

The Tracy–Widom statistic is calculated using the smartpca software package.15

aProportion of variance explained by the top 10 principal components.
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were assigned to geographically close populations, including
Germany, the Netherlands and France. We were not able to assign
all the samples using AIMs. Further, one sample was assigned to
South Italy. All other samples were assigned to geographically close
populations using AIMs.

Substructure within populations
We investigated within-population substructure by performing PCA
on each population individually. K-means clustering was then used to
assign samples to separate subclusters (Supplementary Figure 2). We
found evidence of subclustering in the USA and Canadian popula-
tions, and a small number of outliers in the Spanish population. USA
samples cluster into three broad groups.

We further investigated substructure within the USA samples by
testing nearest-neighbour assignments for the USA samples, using all
markers (see Supplementary Material for methods). Each USA sample
may then be assigned a ‘nearest’ European population, as shown in
Supplementary Figure 3. We observe that the majority (74%) of the
USA samples cluster with North-Central Europeans, while a further
25% cluster with the Mediterranean populations. We find only a very
small number of samples (1%) assigned to Finland, as would be
expected.

Substructure within Canadian samples is likely to be due to the
large French-Canadian population component. We found that
Canadian samples were divided into two groups: a tight cluster and
a number of outliers. We plotted Canadian samples alongside French
samples, and found that the tight Canadian cluster overlapped the
French cluster; outlying samples, on the other hand, did not intersect
the French cluster at all (Supplementary Figure 2A).

DISCUSSION

Population stratification can have a major negative impact on genetic
association studies, whether by creating spurious results or by
obscuring true associations. This stratification may be corrected using
the GC approach, or by adjusting for PCs; however, these methods are
only applicable on a genome-wide scale. An alternative approach to
this problem is to correct for stratification using AIMs.

We investigated evidence of population stratification across 15
populations of European origin using genome-wide methods such as
PCA and Fst. This represents one of the largest studies of this kind,
and includes some populations that have not previously been used to

assign AIMs (such as Canada and the Czech Republic). Further, these
populations are more closely related than those used previously and
span a wider geographic range than those seen in recent studies.14 For
example, we include two Scandinavian populations (Norway and
Sweden) and two eastern European populations (Czech and Polish),
which are usually clustered into one population. We saw a
geographical alignment of our first three PCs. Further, populations
cluster along meaningful geographic and cultural lines. We see three
broad clusters consisting of Finland, North-Central Europe and
Scandinavia, and Mediterranean populations. USA samples cluster
largely with North-Central European and Scandinavian samples, with
a few clustering with Italian samples, consistent with migratory
patterns from Europe to North America.

It appears that Canadian samples cluster closely with French samples;
we investigated this in more detail and found that Canadian samples fell
into two groups: a tight cluster, which corresponded with the French
samples, and a loose cluster, which did not lie close to French samples.
This is consistent with some of our samples being of French-Canadian
heritage, rather than simply of central European backgrounds.

We also found evidence for substructure within the USA popula-
tion. We found three broad clusters when performing a PCA plot.
We found that most samples cluster with the North-Central European
populations (likely to correspond to the largest cluster on our PCA
plot), but that there is also a distinct group stemming from
Mediterranean populations. This is likely to be due to immigration
patterns to the United States. Our third and smallest cluster on the
PCA plot is likely to represent a mix of Finnish samples and samples
with joint Scandinavian and North-Central European heritage.

We found a correlation between genetic distance, Fst, and the
geographic distance between populations. This fits well with the
clusters obtained using PCA, and is likely due to admixture between
neighbouring populations. In addition, we see very low Fst values
between certain pairs of populations, for example, France, Germany
and the Netherlands. It is likely that this is due to a lack of significant
geographical boundaries in these regions, for example, the Pyrenees or
the Alps, and due to shared territories and shifting empire boundaries.

We obtained two lists of AIMs: one list was calculated using
Rosenberg’s informativeness calculation, and the other using Raaum’s
PCAIMs. Our initial list of 25 PCAIMs shows that SNPs cluster
around three loci, corresponding to lactase and pigmentation-
associated loci, HERC2 and OCA2. These genes are classic examples
of positively selected genes in European populations, indicating that
some of our PCAIMs are picking up high levels of differentiation due
to geographically restricted positive selection, rather than due to
neutral genetic drift.

Using only a small number of markers, both AIMs and PCAIMs
were able to predict sample origin accurately. A key difference between
the two sets is the ability to predict ancestry of outlying populations;
in this case, PCAIMs outperform AIMs. This is likely to be due to how
AIMs and PCAIMs are identified. For example, PCAIMs are chosen to
represent the underlying variance of all samples; for our data set, a
large part of this variance exists between central European populations
and outlying populations (eg, Finland and Spain). As PCAIMs are
chosen to explain this variance, even a small number of markers are
able to predict outlying populations well.

AIMs, on the other hand, are chosen from markers with a high
variance across populations. In this instance, we treat individual
populations as independent, and select markers, which explain equally
well the difference between all these populations. This is obviously a
problem with closely related populations; we can see from PCA
graphs that central European populations are in fact not independent;

Table 4 Correlation between AIMs when calculated using all 13

populations, and when leaving one population out

Missing population r

CZ 0.9773

DE 0.9810

ES 0.9635

FI 0.9070

FR 0.9795

GR 0.9605

NIT 0.9564

NL 0.9760

NO 0.9713

PL 0.9682

SIT 0.9745

UK 0.9774

USA 0.9771

We calculated AIMs for 13 sets of 12 populations, and computed the Spearman’s rank
correlation coefficient (r) in each instance.
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further, we have a much larger number of central European
populations than outlying populations, causing a skew towards
markers that predict central European populations well.

This difference between the two sets becomes more pronounced
when looking at larger numbers of markers. For example, using 500
or 1000 AIMs performs better than PCAIMs in predicting central
European nations (ie, in very fine detail), but lag significantly in
predicting the ancestry of outlying populations.

We used our lists of markers to assign ancestry to samples from a
new population (Sweden), and assessed the ability of our markers to
assign ancestry to these samples. Both sets of markers performed well,
although PCAIMs perform better than AIMs.

A small proportion of Swedish samples are unassigned using AIMs,
whereas all are assigned using PCAIMs. This is likely to be due to the

fact that AIMs have been chosen to explain specific differences between
a certain set of populations – they may be thought of as discrete
measures of differences between populations. PCAIMs, on the other
hand, are chosen to represent the continuum of variation. In this
respect, we conclude that PCAIMs are better able to explain the
ancestry of a new population, as long as it lies on the same continuum.

It is worth bearing in mind the intrinsic limitations of our data set,
which consists of clinical samples, obtained by the WTCCC3 for an
AN GWAS. Although we have a large number of samples, these have
been collected for clinical purposes, rather than for use in population
genetics. For this reason, detailed information on ancestry is not
always available. Further, samples have been accepted, or excluded,
based on clinical relevance and guidelines, rather than based on
information about their ancestry. For these reasons, our data may not
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be as evenly distributed or as well defined as that used in previous
population differentiation studies, in which it is usually required that
all four grandparents of the sample are also from the region. Further,
many anthropological studies focus on rural samples, whereas our
samples are statistically more likely to be urban rather than rural. This
can also be considered a strength of the study, showing the power of
the method to assign ancestry even in a clinically based sample series,
which perhaps would not be expected to display the population
structure seen in grandparental sampling schemes.

In summary, we derive a set of 25 PCAIMs that can be used to
adjust for population stratification within European samples. By
genotyping these markers in replication experiments of large-scale
genetic association studies, spurious associations arising owing to
ancestry differences can be identified and corrected.
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