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Multiscale modeling of collective 
cell migration elucidates 
the mechanism underlying 
tumor–stromal interactions 
in different spatiotemporal scales
Zarifeh Heidary1, Shaghayegh Haghjooy Javanmard2, Iman Izadi1, Nasrin Zare3 & 
Jafar Ghaisari1*

Metastasis is the pathogenic spread of cancer cells from a primary tumor to a secondary site which 
happens at the late stages of cancer. It is caused by a variety of biological, chemical, and physical 
processes, such as molecular interactions, intercellular communications, and tissue-level activities. 
Complex interactions of cancer cells with their microenvironment components such as cancer 
associated fibroblasts (CAFs) and extracellular matrix (ECM) cause them to adopt an invasive 
phenotype that promotes tumor growth and migration. This paper presents a multiscale model for 
integrating a wide range of time and space interactions at the molecular, cellular, and tissue levels in 
a three-dimensional domain. The modeling procedure starts with presenting nonlinear dynamics of 
cancer cells and CAFs using ordinary differential equations based on TGFβ, CXCL12, and LIF signaling 
pathways. Unknown kinetic parameters in these models are estimated using hybrid unscented Kalman 
filter and the models are validated using experimental data. Then, the principal role of CAFs on 
metastasis is revealed by spatial–temporal modeling of circulating signals throughout the TME. At this 
stage, the model has evolved into a coupled ODE–PDE system that is capable of determining cancer 
cells’ status in one of the quiescent, proliferating or migratory conditions due to certain metastasis 
factors and ECM characteristics. At the tissue level, we consider a force-based framework to model 
the cancer cell proliferation and migration as the final step towards cancer cell metastasis. The ability 
of the multiscale model to depict cancer cells’ behavior in different levels of modeling is confirmed by 
comparing its outputs with the results of RT PCR and wound scratch assay techniques. Performance 
evaluation of the model indicates that the proposed multiscale model can pave the way for improving 
the efficiency of therapeutic methods in metastasis prevention.

Cancer cell metastasis is a key step of cancer progression that accounts for the majority of patient deaths1,2. 
Despite the inherent complexity of metastasis stages, recent studies show that not only intracellular reactions in 
cancer cells, but also mutual interactions between cancer cells and tumor microenvironment (TME) orchestrate 
the events during a metastasis cascade3,4. In other words, studying the behavior and characteristics of cancer cells 
without considering their interactions with TME components such as extracellular matrix (ECM), blood vessels, 
immune cells, adipose cells, and fibroblasts does not provide comprehensive information about the causes and 
circumstances of tumor cells movement5,6.

Cancer associated fibroblasts (CAFs) as one of the abundant factors in TME have a major impact on tumor 
behavior and they are known as principal participants in tumor growth and invasion7,8. They directly contrib-
ute to cancer cell proliferation, tumor growth, and invasion through stimulation of various growth factors and 
chemokines such as transforming growth factor β (TGFβ), vascular endothelial growth factor (VEGF), leukemia 
inhibitory factor (LIF), and C-X-C motif chemokine 12 (CXCL12) in context-dependent manner8–10. These 
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factors are responsible for initiation of signaling pathways and consequent biochemical reactions in both cancer 
cells and CAFs -as a principle provocative components of tumor metastasis- which lead to tumor progression 
and metastasis. To address the effects of CAFs on tumor metastasis, it is necessary to investigate the communica-
tions between CAFs and cancer cells, as well as their intercellular interactions which result in tumor invasion.

Cancer metastasis is a complex multiscale process in which reactions occur in different time and space 
scales11. Furthermore, the number of these interactions are relatively high and the related signaling pathways 
usually have crosstalk with each other. Therefore, an advanced tool is required not only for detailed study of 
these interactions, but also for efficient analysis of the involved mechanisms in different stages of metastasis. 
This is where systems biology comes into play and provides useful techniques for investigating the complex bio-
logical behaviors such as mathematical modeling approaches. Using these methods, we obtain the opportunity 
to understand the behavioral kinetics inside the cells as well as communications between different cell types 
in TME. Moreover, mathematical modeling tools enable us to explain how interactions through three different 
scales including molecular, cellular, and population lead to tumor migration.

Over the last decades, various mathematical modeling approaches have been applied for revealing tumor 
initiation and growth mechanisms12–17. However, the number of studies that model metastasis based on commu-
nication of tumor and its milieu, are relatively low. In18, a mathematical model has been presented for describing 
cancer cell intravasation. Using a multiscale approach and a hypothetical framework for biological shape of blood 
vessel, the model represents the effect of cadherin protein pathways in cancer cell migration.

Also, the role of ECM remodeling in cancer cell invasion by means of degradation enzymes has been inves-
tigated in some recent studies19–21. Kim et al.22 developed a hybrid model that incorporates the interactions of 
stromal and cancer cells in TME to show how theses communications play role in early development of tumor 
and its invasion to the stroma. In addition, a number of mathematical models based on agent-based methods 
have been applied for determining the interactions of platelet cells, stem cells, and tumor cells, as well as the role 
of immune cells in cancer metastasis23–26.

It should be noted that there are a limited number of studies based on mathematical modeling that focus on 
the effects of CAFs on cancer cells’ behavior. For example, based on the singular value decomposition approach, 
regulatory rules for interactions of cancer cells and adjacent fibroblasts were modeled in27. In addition, a math-
ematical model for the transformation of fibroblasts into myofibroblasts in TME, as well as the effect of myofibro-
blasts on tumor cell proliferation via Epidermal growth factor (EGF) release, has been presented28. Furthermore, 
in a recent study we presented an agent-based model of fibroblast switching behavior in tumor suppression and 
progression in normal and active states29. Nonetheless, the mutual conversation between CAFs and tumor cells 
at microscopic and macroscopic levels that leads to metastasis has never been mathematically investigated.

In the current study, we present a multiscale model of cancer cell metastasis due to their interactions with 
TME components such as CAFs and ECM. At first, a mathematical modeling framework has been developed to 
represent the dynamics of cancer cells and CAFs individually based on ordinary differential equations (ODEs). 
The dynamical models represent biochemical reactions in TGFβ, LIF, and CXCL12 signaling pathways which 
were retrieved from the literature. As a result, each cell type has its own set of ODEs at the molecular level. Similar 
to our previous work in29, hybrid unscented Kalman filter (HUKF) is used to unravel the unknown parameters as 
a reliable parameter estimation approach30. Then, using partial differential equations (PDEs) for describing the 
spatial distribution of molecules throughout the TME, we extended the ODE systems to a coupled ODE–PDE 
system. This coupled system can explain the communications between cancer cells, CAFs and ECM in a three-
dimensional space. The proposed model can explain the nonlinear effect of CAFs on the invasive activity of 
cancer cells at the cellular level.

Moreover, the coupled ODE–PDE system can designate the state of each individual cancer cell as quiescent, 
proliferative, or migratory. The states of each cell are determined due to the concentration level of some signifi-
cant factors in signaling pathways such as CXCL12, and SNAIL. Finally, we developed a multiscale model which 
illustrates the movement of cancer cells in a three dimensions domain using a coupled ODE–PDE system and a 
biomechanical model at population level. This model represents the movement of cells due to the forces applied 
to them. Finally, the model is validated in both molecular and population levels by comparing the simulation 
results with the data extracted from RT PCR and migration assay. The proposed nonlinear multiscale model 
can not only be utilized in determining the role of CAFs in metastasis, but also might pave the way to finding 
advanced cancer treatment methods.

Material and methods
Multiscale model of cancer metastasis.  The proposed model in this study is comprised of multiple 
layers each representing interactions at the molecular (within a cell), cellular (between cells), and population 
levels. The multi-layer model of cancer cell metastasis includes interactions in different components such as 
cancer cells, CAFs, and their mutual interactions in the TME. At the molecular level, nonlinear ODE models are 
used to represent the dynamics of TME components which are based on reactions in some signal transduction 
pathways. Then, the cellular level is basically characterized by the signaling molecules between cancer cells and 
CAFs. These signals show the impacts of cancer cells on CAF functioning and consequently, the effects of CAFs 
on cancer cell invasion. In this level, the dynamics show how the behavior of TME components are controlled 
under the influence of each other. Finally, cancer cell migration is depicted in three dimensions space using a 
Newtonian dynamic at the population level of the model. In order to model the movement of cancer cells, differ-
ent layers are connected to each other appropriately. The various levels of modeling technique are given below. 
Figure 1 depicts the various levels of our multiscale model as well as the actions required at each level to model 
cancer cell metastasis.
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Dynamical modeling of intracellular interactions within cancer cells and CAFs.  At the molecular 
level, we present two unique nonlinear ODE models for characterizing the dynamics of cancer cell and CAF as 
two different cell types in TME. Unlike normal cells, some signaling pathways which are responsible for cell 
growth, proliferation, and motion function abnormally in tumor cells31. As a result, we can obtain abundant 
information from the well-known growth factor expression variations and their linked signaling pathways for 
better understanding cancer mechanisms. Due to vital roles of TGFβ, LIF and CXCL12 signal transduction path-
ways in tumor growth, proliferation, motility, and invasion, the ODE models are based on biochemical reactions 
involved in these signaling pathways32–35. They are also the key activators of fibroblasts in TME and abundant 
within both cancer cells and CAFs36,37.

As demonstrated in Figs. 2 and 3, dynamical models are mathematical representations of biochemical reac-
tions in TGFβ and CXCL12 pathways, as well as TGFβ and LIF signaling cascades with their crosstalk for 
describing the dynamics of cancer cells and CAFs, respectively. TGFβ, as one of the important factors released 
in the TME by both CAFs and cancer cells, binds to its receptors (TGFβRs) and consequently initiates a chain 
of reactions inside the cell. The constitution of active ligand-receptor compounds leads to phosphorylation of 
SMAD2/3 factors. The phosphorylated SMAD2/3 and SMAD4 then link together to create a heterodimeric com-
plex. This complex imports to the nucleus and acts as a transcription factor for downstream genes such as SMAD7 
and Zinc finger protein SNAI1 (SNAIL). SMAD7 inhibits SMAD2/3 phosphorylation upstream in the pathway, 
resulting in a negative regulatory feedback in TGFβ signaling38,39. It should be noted that LIF, C-X-C chemokine 
receptor type 4 (CXCR4), CXCL12, and TGFβ itself are expressed as the target genes of the pathway32,33,40,41. 
Using this fact, we can conclude that TGFβ interferes in LIF and CXCL12 signaling pathways by increasing the 
level of these factors, and also it can drive its pathway in both paracrine and autocrine fashions32,42. These two 
points are reflected in our modeling procedure.

CXCL12 signaling pathway begins when this factor reaches its cell surface receptor, CXCR4. The binding of 
CXCL12 to its receptor prompts various gene expression and regulatory mechanisms through different inter-
mediate proteins inside the cells. Phosphoinositide 3-kinases/ protein kinase B (PI3K/ PKB or Akt) mediator 
pathway initiate its activity in response to CXCL12 ligand-receptor phosphorylating action. It performs key 

Figure 1.   Flowchart of necessary steps in each level of multiscale model of cancer cell metastasis.
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functions such as controlling cell growth, proliferation, and migration by stimulating transcription factors such 
as Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)41,43–45. Then, agitation of NFκB leads 
to overexpression of matrix metalloproteinases (MMPs) which are the major destructive factors of ECM46. ECM 
degrading or remodeling is a necessity for cancer cell invasion47,48. Thus, as it turns out, CXCL12-CXCR4 pathway 
is selected as a fundamental pathway for dynamical modeling of cancer cells. In our proposed model, CXCL12 
pathway is governed by inducing CXCL12 and CXCR4 from CAFs and cancer cells, respectively.

LIF is the other abundant pro-invasive factor in the TME whose overexpression associates with poor clinical 
results for cancer patients. It displays strong upregulation as a target gene of TGFβ pathway. Moreover, it mediates 
fibroblasts reprograming into CAFs36,37. So, in the presented model, we consider LIF signaling pathway within 
CAFs in both paracrine and autocrine manners. Janus kinase/ signal transducer and activator of transcription 
(JAK/STAT) intermediate pathway is driven immediately after binding of LIF to its cell surface receptor. Then, the 
activated STAT enters nucleus and consequently contributes in transcription of target genes such as suppressor 
of cytokine signaling (SOCS) and SMAD737,49,50. These two factors both regulate signal transduction by negative 
feedback creation in LIF and TGFβ pathways. As stated above, SMAD7 inhibits phosphorylation of SMAD2/3 
and similarly STAT activation is prevented by SOCS protein51. There is another negative regulator for LIF pathway 
named small heterodimer partner (SHP) proteins which inhibits STAT phosphorylation10. Furthermore, if STAT 
protein undergoes the process of acetylation, it can reduce the expression level of SHP protein10,37. Recent stud-
ies have shown that SMAD3 and STAT3 cooperative positively to enhance epithelial–mesenchymal transition 
(EMT) via SNAIL upregulation52. EMT is an evolutionary process that confers invasion features upon tumor 
cells by changes in cellular phenotype52,53. It is worth noting that in LIF signaling cascade, SMAD7 upregulation 
and positive cooperation of SMAD3-STAT3 are crosstalk points between LIF and TGFβ pathways which are 
considered in our model. To the best of our knowledge, it is the first dynamic model which describes the latter 
crosstalk point in LIF and TGFβ pathways. Moreover, in order to make a comprehensive understanding the roles 
of TGFβ, LIF, and CXCL12 pathways in malignant tumors, the interactions mentioned above are mathematically 
illustrated in their dynamical model.

The dynamical systems unfolding the biochemical interactions in CAFs and cancer cells are based on 
nonlinear ODEs which characterize concentration changes of the involved molecules over time. Biochemical 

Figure 2.   Biochemical reactions involved in dynamical model of TGFβ and CXCL12 pathways as well as 
their crosstalk within a cancer cell. The name of each reaction is shown on the corresponding arrow. More 
information about the mathematical representation of reactions are included in Tables 1, S1, and S3.
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components of signaling pathways and their corresponding states in ODEs for cancer cells and CAFs are shown 
in Tables S1 and S2, respectively. The ODEs are extracted from laws of mass action and Michaelis–Menten 
which are used vastly to analyze reaction kinetics54,55. Mathematical representation of biochemical reactions 
involved in cancer cell and CAF dynamics are shown in Tables 1 and 2. Mathematical expression of a biochemical 
interaction includes multiple parameters as shown in these two tables. In Tables S3 and S4, model parameters, 
values and their references are provided. The values of kinetic parameters are gathered from literature whenever 
possible. Due to the large number of parameters and unavailability of their exact values in previous studies, 
most of the parameters in Tables S3 and S4 were estimated using HUKF approach. HUKF is an accurate and 
robust method designed for state and also parameter estimation of nonlinear systems that use discrete time 
data points as observed measurements. This algorithm relies on transformed statistics of parameters which are 
propagated through main steps including prediction and correction. In the first step, using model structure, 
the desired parameters are estimated and then priory estimates are optimized following the second step. Both 
model and observed data uncertainties are taken into account by the Kalman filtering approach which leads 
to reliable estimations29,56. In this study, we used two different gene expression profiling results datasets of 
time course studies (GSE17708 and GSE129189 for cancer cell and CAF, respectively) from Gene Expression 
Omnibus (GEO) database as observation data for HUKF algorithm57,58. Using these tables, cancer cell and CAF 
dynamics are modeled as state space systems of 21 and 26 nonlinear ODEs, respectively which can be found in 
Supplementary materials.

Mathematical representation of intercellular communications in the TME.  The intercellular 
scale is defined by the communication signals exchanged between cancer cells and CAFs which allow for the 
description of cancer cells’ effecs on CAF functioning and consequently, the impact of CAFs on cancer cell inva-
sion. The basic structure of the model presented in this section is inspired by our previous work in29 with the 
notable exception that here we consider both spatial and temporal changes of signaling molecules in the model. 
As depicted in Fig. 4, TGFβ and LIF molecules transmit from cancer cells to CAFs where they stimulate the cor-
responding signaling pathways and lead to expression of metastatic factors such as CXCL12, SNAIL, TGFβ and 
LIF. Among these molecules, CXCL12 and TGFβ were identified as molecules that communicate signals from 
CAFs to cancer cells. They circulate in TME and once they reach the surface of cancer cells, tend to induce signal 
transduction.

Figure 3.   Biochemical reactions involved in dynamic model of TGFβ and LIF pathways as well as their 
crosstalk within the CAFs. The name of each reaction has been shown on the corresponding arrow. More 
information about the mathematical representation of reactions are included in Tables 2, S2, and S4.
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To come up with a compendious view of signal transmission through the TME, we consider a three-dimen-
sional space as tumor volume and its microenvironment. The mathematical representation for each signal is 
then provided using PDEs. Since gene expression of the signals, as well as their other regulatory activities occur 
within the cells, a number of terms in ODE systems of cancer cell and CAF will appear in PDEs.

On the other hand, when the transmission molecules circulating in the TME come into contact with the 
target cell, they are integrated onto the cell surface. The amount of reached factors on the cell is computationally 
modeled by an integral over the cell surface area. As a result, we have a coupled ODE–PDE framework which 
describes how CAFs and cancer cells interact in TME.

As it is shown in Table S1 and S2, our model includes four signaling molecules, xu1 − xu4 . Spatial–temporal 
changes of the i th molecule ( ui ) is modeled using reaction–diffusion equation in (1):

where ∂t and � indicate first time derivative and Laplacian of diffusing signal ( ui )‚ respectively. Also, �r is space 
vector �r =

(

xyz
)

∈ � and fi denotes the kinetics of ui interactions with other factors ( uj ) in domain � and time 
duration of [kTs(k + 1)Ts] where Ts is the simulation step and is defined later.Di is a positive constant which rep-
resents diffusion coefficient of ui . The values of Di for each of the signals are shown in Table S5. In our model, � 
is assumed to be a sphere with a radius of 2 cm59,60 showing a three-dimensional space for the tumor. The Eq. (3) 
in Supplementary files shows the PDEs and complete form of fi dynamics for each signaling molecules, as well 
as their initial concentration. When solving a PDE, an initial condition and a boundary condition are typically 
needed, both of them are determined by the problem’s time and space situations. We defined a constant value 
for initial condition ( ̂u0 ) of each signal at the first step of simulation, [0,Ts ]. Then, at the end of each cycle, û0 is 
updated and used for the next step. In addition, boundary condition on � which shows the physical nature of 
signaling molecules on TME boundaries is considered as Dirichlet boundary condition.

As it is indicated in Fig. 4, signaling factors are integrated on each cell surface once they reached them and 
thus initiate the biological pathways within the cells. For determining the concentration level of molecules that 
is integrated ( ui ) at the exact part of the domain ( A ), we use the integral relation of (2):

(1)∂tui(t, �r) = Di�ui(t, �r)− fi
(

ui , uj
)

∈ �× [kTs (k + 1)Ts] , kǫN

(2)ui =

∫

A

ui(t, s)ds

Table 1.   Biochemical reactions and their mathematical representations in cancer cell dynamics.

Description of the interaction Mathematical expression

Production of TGFβ receptor v1 = k+1 x1

Degradation of TGFβ receptor v2 = k−1 x1

Association of TGFβ-TGFβR complex v3 = k+2 xu3x
2
1

Dissociation of TGFβ-receptor complex v4 = k−2 x2

Production of cytoplasmic SMAD3 v5 = k+3 x3

Degradation of cytoplasmic SMAD3 v6 = k−3 x3

Production of cytoplasmic SMAD4 v7 = k+4 x5

Degradation of cytoplasmic SMAD4 v8 = k−4 x5

Phosphorylation of SMAD3 v9 = k+5 x2
x3

x3+Ks1

Dephosphorylation of SMAD3 v10 = k−5 x4

Association of pSMAD3-4 Complex v11 = k+6 x4x5

Dissociation of pSMAD3-4 Complex v12 = k−6 x6

Nuclear import of pSMAD3-4 Complex v13 = ki7x6

Nuclear export of pSMAD3-4 Complex v14 = ke7x7

Degradation of pSMAD3-4 Complex v15 = k−7 x7

Production of SMAD7 in the pathway v16 = k+8 x7

Degradation of SMAD7 v17 = k−8 x8

Inhibitory effect of SMAD7 on pSMAD3 v18 = k−8i x8

Production of TGFβ in the pathway v19 = k+9 x7

Degradation of TGFβ v20 = k−9 xu1

Association of TGFβ-TGFβR complex v
′

3 = k+2 xu1x
2
1

Production of LIF in the pathway v21 = k+10x7

Degradation of LIF v22 = k−10xu2

Production of CXCR4 in the pathway v23 = k+11x7

Degradation of CXCR4 v24 = k−11x9
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In the next step of the intercellular level, (1) and (2) are used for describing the distribution of signaling mol-
ecules in TME. Then, with the exception of ODEs describing the signaling factors variations, we incorporate the 
obtained four PDE-integral systems for xu1 to xu4 with the previous dynamical systems. Eventually, a coupled 
ODE–PDE dynamical system emerges that is able to mathematically explain the conversations among a CAF 
and a cancer cell, as well as their intracellular dynamics at the intercellular level.

Biomechanical modeling movement of cancer cells in the TME.  Cancer cells movement is occurred 
when they are prepared to detach from the tumor tissue and then leave the primary tumor under the influence 
of various intracellular and extracellular signal transduction pathways, as well as other TME components such 
as CAFs and ECM. ECM is one of the main TME components that is involved in metastasis. During the progres-
sion of metastasis, ECM is remodeled through a series of quantitative and qualitative modifications by degrading 
enzymes such as MMPs released by cancer cells61. So, in order to get a comprehensive view of cancer cells’ migra-
tion, we used an ODE adapted from62 that included ECM generation and degradation to model the function of 
ECM in the TME as (3):

where [ECM] and [MMP] are ECM and MMP concentrations, and a1 and a2 are generation and degradation 
coefficients of ECM, respectively.

We upgraded the model of intercellular interactions between one cancer cell and CAF to a population level 
as a necessary step before mathematical modeling of metastasis. Then, the status of each cancer cell was assessed 
by tracking each cell individually. In this case, each cancer cell is thought to be able to choose between quiescent, 

(3)
d

dt
[ECM] = a1[ECM]− a2[MMP][ECM]

Table 2.   Biochemical reactions and their mathematical representations in CAF dynamics.

Description of the interaction Mathematical expression

Production of CXCL12 in the pathway v23 = k+11x7

Degradation of CXCL12 v24 = k−11xu4

Production of LIF receptor w1 = h+1 x10

Degradation of LIF receptor w2 = h−1 x10

Association of LIF-LIFreceptor complex w3 = h+2 x10xu2

Association of LIFcaf-LIFreceptor complex w3 = h+2 x10x9

Dissociation of LIF-LIFreceptor complex w4 = h−2 x11

Production of JAK w5 = h+3 x12

Degradation of JAK w6 = h−3 x12

Phosphorylation of JAK by LIF-receptor complex w7 = h+4 x11
x12

x12+Ks2

Dephosphorylation of Pjak w8 = h−4 x13

Production of STAT​ w9 = h+5 x14

Degradation of STAT​ w10 = h−5 x14

Phosphorylation of STAT by pJAK w11 = h+6
x14

x14+Ks3

Dephosphorylation of pSTAT​ w12 = h−6 x15

Acetylation of pSTATn w13 = h+7 x16

Deacetylation of pSTATn w14 = h−7 x17

Inhibitory effect of pSTATnac on SHP1 w15 = h−7ix17

Nuclear import of pSTAT​ w16 = hi8x15

Nuclear export of pSTAT​ w17 = he8x16

Production of SOCS3 downstream the pathway w18 = h+9 x16

Degradation of SOCS3 w19 = h−9 x18

Production of SMAD7 downstream the pathway w20 = h+10x16

Inhibitory effect of SOCS3 on STAT phosphorylation w22 = h−10ix18

Production of SHP1 w23 = h+11x19

Degradation of SHP1 w24 = h−11x19

Inhibitory effect of SHP1 on STAT phosphorylation w25 = h−11ix19

pSMAD3-pSTAT binding z1 = g+1 x4x15

pSMAD3-pSTAT unbinding z2 = g−1 x20

Translocation of pSMAD3-pSTAT to nucleus z3 = gix20

Translocation of pSMAD3-pSTAT to cytoplasm z4 = gex21

Production of SNAIL in the pathway z5 = g+2 x21

Degradation of SNAIL z6 = g−2 x22
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proliferative, or migratory states with regards to the concentration levels of certain effective biochemical factors 
including SNAIL, ECM and CXCL12. These factors are chosen because of their key roles in EMT, cancer cell 
adherence to the primary tumor, and tumor cells growth and proliferation, respectively53,63,64. The variations of 
CXCL12 and ECM in intercellular level of our model have already been modeled, but concentration of SNAIL 
in the TME must also be considered. Thus, we used (4) to mathematically represent how SNAIL is diffused in 
the TME following its upregulation in CAFs.

where DSNAIL is the diffusion coefficient of SNAIL and its value is shown in Table S5.
As it is depicted in Fig. 5, the modeling framework for designating the status of cancer cells is based on the 

newly implemented coupled ODE–PDE dynamical system in the previous sections, as well as (3) and (4). During 
the [kTs(k + 1)Ts], kǫN time interval, the combined dynamical system is solved and the levels of ECM, SNAIL 
and CXCL12 factors are determined at each kTs , kǫN . Then, they are compared to a certain threshold value, and 
each cancer cell decides whether to keep or change its condition.

After assessing the status of cancer cells, we used an intuitive force-based biomechanical model based on 
the equation of motion to model movement of cancer cells. Cancer cells in migratory state will move in the 
population due to forces exerted in the TME as a result of interactions with other cells and the environment. 
In our model, cancer cells and CAFs are represented by spheres with radii of 8 and 7 µm, respectively65,66 and 
it is assumed that the forces are applied to their centers. Also, the trajectory of each cell in the TME is specified 
by an equation of motion resulting in a Newtonian dynamic. The basic equation that governs the cancer cells 
movement is described as (5):

where Frep and Fadh are repulsive, and adhesive forces between each two cancer cells, respectively. Also, Fhap 
stands for haptotaxis force which is the directional motility of cells in response to gradients of adhesive surfaces 
such as ECM67,68. Moreover, Fact denotes the active force that is driven by SNAIL concentration as the determin-
ing factor in metastasis. We also denote the friction between cancer cells, and the TME by Ffric69. Mathematical 
representations of these forces are shown in Table 3. More details about the constants and parameters of Table 3 
can be found in Table S9. In each time interval [kTs(k + 1)Ts], kǫN , the velocity of cancer cells and consequently 
their displacement are calculated using (5) and Newtonian dynamic ( �r = V .�t).

Experimental approaches
Cell preparation.  MCF-7 cells were cultured in Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 
(DMEM/F12, Bio Idea; Iran) supplemented with 10% fetal bovine serum (FBS; Viva, Iran), 100 mg/ml strepto-
mycin and 100 U/ml penicillin in 5% CO2 atmosphere at 37 °C. When cultured cells reached more than 90% of 
confluence degree, cell culture supernatants were collected and stored at − 80 °C.

To isolate breast cancer-associated fibroblasts (CAFs), breast tissues were minced in DMEM/F12 supple-
mented with 10% FBS, and 1% Penicillin/Streptomycin. The tissues were cut into small pieces (1–2 mm3) and 
cultured in the same media at 37 °C for about 2 weeks until Fibroblasts grew out of the tissue. Then, cells were 

(4)
d

dt
[SNAIL(t �r)] = DSNAIL�[SNAIL(t �r)]

(5)Frep + Fadh + Fhap + Fact = Ffric

Figure 4.   Intercellular interactions between CAFs and cancer cells in the TME. TGFβ, LIF and, CXCL12 
pathways are responsible for the release of communicating signals in the TME. TGFβ and LIF molecules are 
circulating from cancer cells to CAFs, as well as CXCL12 and TGFβ from CAFs to cancer cells.
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removed and cultured in T25 flask at 37 °C in a humidified atmosphere with 5% CO2. When cancer-associated 
fibroblasts (CAFs) cells reached more than 90% of confluence, cell culture supernatant was collected and stored 
at − 80 °C.

Experiment.  The CAFs were divided into two groups: group 1 (control, no treatment), and group 2 (cells 
treated with culture supernatant of MCF-7 cells). The CAFs were then incubated with DMEM F12 medium 
containing 10% FBS (250 µl) and supernatant collected from MCF-7 cells (750 µl) in a ratio of 1: 3 for 24 h, 48 h 
and 72 h. Also, MCF-7 cells were divided into two groups: group 1 (control, no treatment), group 2 (cells treated 
with culture supernatant of CAFs). MCF-7 cells were incubated with DMEM F12 medium containing 10% FBS 
and supernatant collected from CAFs in a ratio of 1: 3 for 24 h, 48 h and 72 h.

Wound scratch assay.  Briefly, the MCF-7 cells, and CAFs (1 × 106 cells/well) were plated in 12-well plates for 
48 h to a confluence of about 90%, then wounded by scratching with a p100 pipette tip. Then, the debris was 
removed and the cells were washed once with 1 mL of the growth medium to assure the edges of the scratch 
were smoothed by washing. As mentioned above, the cells were cultured for 24 h, 48 h and 72 h. After different 
time courses, cells were washed twice with PBS and the wound was observed under a microscope. Cells were 
photographed before and after 24, 48 and 72 h of incubation and images were analyzed with ImageJ software to 
calculate the area of each scratch. Images of each well at different times were compared to comprehend the effect 
of treatments on cell migration71.

Figure 5.   The multi-structure model for determining each cancer cell status. In this figure, u indicates the 
communicating signals which are transferred between cancer cells and CAFs in the tumor microenvironment 
(TGFβ and LIF molecules from cancer cells to CAFs, and CXCL12 and TGFβ from CAFs to cancer cells). Also, 
u4 , u5 , and u6 represents CXCL12, ECM, and SNAIL concentration in the model. Furthermore, letter A indicates 
the surface area of a cancer cell or CAF which received a transduction signal and T implies the threshold 
amount of each signal which is indexed.

Table 3.   Mathematical representations of forces in the multiscale model.

Force Mathematical representation Reference

Repulsive force Frep = 4
3
Êi
√

R̂iδ
3/2
ij

69

Adhesive force Fadh = −πWR̂ 69

Haptotaxis force Fhap = −χ∇[ECM]
13

Active Force Fact = η An

An+An
0
n̂ 70

Friction force Ffric = −ŴcsV 18
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RNA extraction and cDNA synthesis.  As mentioned above, the cells were cultured for 24  h, 48  h and 
72  h. After each time course, total RNA was extracted from CAFs, and MCF-7 cells using the BioFACT™ 
Total RNA Prep Kit (BioFACT, South Korea), according to the manufacturer’s recommendations for cultured 
cells. RNA quantity was assessed using NanoDrop spectrophotometer. The average RNA yield was 0.5 μg RNA 
per 106 cells. RNA was subsequently reverse-transcribed to cDNA using the BioFact™ RT Series (BioFACT, South 
Korea) according to the manufacturer’s recommendations. Then, they were incubated for 60 min at 42 °C and 
were terminated the reaction for 5 min at 95 °C.

Real‑time polymerase chain reaction (PCR).  Quantitative PCR was performed in a Rotor-Gene 6000 (Corbett 
Life Science, Sydney, Australia). For mRNA quantification, the 2X Real-Time PCR Master Mix (BioFACT™, High 
ROX, Korea) was used in combination with pre-designed primers for Leukemia inhibitory factor (LIF), Trans-
forming growth factor beta (TGF-β), SMAD7, C-X-C motif chemokine 12 (CXCL12) and for the reference gene 
GAPDH as the internal control, were designed using the Allele ID software and BLAST (NCBI online server).

All real-time PCR reactions were performed in duplicate at a final volume of 10 μl per well using a qPCR 
Master mix (Jena Bioscience, GmbH) and a Rotor-Gene 6000 (Corbett Life Science, Sydney, Australia). The 
following thermal cycling conditions were applied: polymerase activation/denaturation at 95 °C for 15 min, 
and 45 amplification cycles at 95 °C for 20 s, 60 °C for 20 s and 72 °C for 30 s. The mRNA fold increase or fold 
decrease with respect to control well was determined and Relative quantification (ΔΔCT) method was employed. 
The relative quantification of mRNAs was calculated using the 2 −ΔΔct method and according to the formula 
normalization ratio (N.R.) = 2−ΔΔct.

Ethics declaration.  We confirmed that all experiments were performed in accordance with relevant guide-
lines and regulations. Cancer-associated fibroblasts (CAFs) were isolated from surgical specimens taken from 
the tissue of patients with breast cancer at Seyed-al-Shohada Hospital, Isfahan. A written informed consent was 
taken from all participants. This study was approved by Isfahan University of Medical Sciences (the registration 
number: IR.MUI.MED.REC.1398.727).

Results
Nonlinear ODE modeling of cancer cell and CAF dynamics explains SMAD7, TGFβ, LIF and 
CXCL12 gene expression profiles.  Mathematical modeling of intracellular interactions in cancer cells 
and CAFs allows determining gene expression variations of biochemical species involved in the reactions. The 
models presented in supplementary files were simulated using MATLAB ODE toolbox 2020a72. Figures 6 and 
7 indicate the expression of fate-determining factors such as TGFβ, LIF, and CXCL12 increases in both can-
cer cells and CAF throughout the first three time periods. Also, simulation results succeeded to reproduce the 
behavior of SMAD7, TGFβ, LIF, and CXCL12 molecules in both cancer cell and CAF. This may be explained 
by looking at the goodness of fit criteria in Tables S5 and S6, which show how well our model outputs explain 
the variation in experimental data. Moreover, Bland–Altman graphs were provided for output genes as supple-
mentary figures (Figs. S1 and S2) to highlight the agreement between two different datasets (model output and 

Figure 6.   Experimental data and model outputs of ODE modeling of cancer cell. Gene expression profiles of 
SMAD7, TGFβ, LIF, and CXCL12 molecules in MCF-7 cell over four time points (0, 24, 48, and 72 h) and their 
corresponding behavior in the dynamic model are depicted by red dots and black curves, respectively.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16242  | https://doi.org/10.1038/s41598-022-20634-5

www.nature.com/scientificreports/

experimental data). Generally, the reported values and graphs for performance evaluation of output genes over 
four time points indicate a close enough proximity for model validation. Furthermore, using Morris method, 
we performed a global sensitivity analysis to evaluate the parameter effects on the model outputs73. Due to the 
large number of parameters, we selected a set of parameters which are directly affect the model outputs. In this 
method, selected parameters are changed over the entire range of probable values and the differences of the 
desired elements during these variations are calculated. Then for each parameter, mean and variance values are 
computed which are the indicators of effectiveness and nonlinearity of the parameter on the outputs, respec-
tively. Sensitivity analysis showed that expression of TGFβ and its receptor, as well as expression of SMAD7 in 
this pathway are among the principle reactions that have the biggest effect on the outputs. More details on the 
selected parameters and also their mean and variance values obtained during the sensitivity analysis could be 
found in the Supplementary files.

A force‑based scheme incorporating the coupled ODE–PDE model and biomechanical forces 
describes cancer cells’ movement in population level.  In order to investigate the cellular level of 
communication between cancer cells and CAFs, several PDEs are combined with ODE dynamics of each indi-
vidual cell to model the interacting signals between cancer cells and CAFs circulating within the TME. The cou-
pled ODE–PDE system is solved using finite element method (FEM) in MATLAB PDE toolbox 2020a. FEM is a 
numerical technique to solve PDEs over a defined space by dividing it into smaller parts74. The primary tumor in 
our model is a sphere with a radius of 2 cm that has been preprocessed by meshing to around 1000 subdomains. 
Also, the position of cancer cells and CAFs are randomly determined in the tumor. Then, using PDEs described 
as (1), TGFβ and LIF signals from cancer cells as well as TGFβ and CXCL12 molecules from CAFs release into 
the TME. Immediately after reaching these signals to the opposite cell type, signaling pathways within each 
cell get started according to the dynamics of cancer cell and CAF during a [kTs(k + 1)Ts], kǫN time interval. 
Furthermore, initial values of the next time step are updated in each kTs . So, the cellular conversations between 
cancer cells and CAFs in a three dimensional domain are modeled using a coupled ODE–PDE dynamic system.

Then at the population level, the model has been developed to display movement of cancer cells as a result 
of their interactions with TME components and the designated status of each cell. In this scenario, cancer cells 
in migratory condition are under the influence of biomechanical forces that result from local interactions with 
neighbor cancer cells, CAFs and cancer cells. In summary, after solving coupled ODE–PDE dynamical system 
in a time interval, the level of diffused signals on each cell at kTs , kǫN are identified. Then, status of each cancer 
cell is determined in one of the quiescent, proliferating or migratory condition by the instruction illustrated 
in Fig. 5. Eventually, based on (5) and the defined forces in Table 3, displacements of cancer cells in migratory 
status are calculated. These events are repeated every Ts seconds and at the end of each time step, initial values 
are updated for the next modeling step.

Starting with 20 CAFs and 20 cancer cells randomly placed in a sphere as the primary tumor, this multiscale 
model is simulated using MATLAB 2020a. The process is repeated every Ts = 0.05s and the results are depicted 
in Fig. 8. Initial cancer cells in the TME are considered to be in quiescent state and their primary arrangement 
is randomly selected. To validate the model, a wound scratch assay has been performed to evaluate MCF-7 
cells migration while they are co-cultured with CAFs and the movement are assessed using Image J software. 
Comparison of the average displacement in wound scratch assay and model outputs are shown in Table 4, and 

Figure 7.   Experimental data and model outputs of ODE modeling of CAF. Gene expression profiles of SMAD7, 
TGFβ, LIF, and CXCL12 molecules in CAF over four time points (0, 24, 48, and 72 h) and their corresponding 
behavior in the dynamic model are depicted by red dots and black curves, respectively.
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Figure 8.   Simulation results of multiscale model of cancer cells movement during 10 time steps. Cancer cells 
and CAFs are depicted by red and black dots, respectively. Primary arrangement of cancer cells is randomly 
selected and it is shown in k = 0. After 10 repetitions, not only has the number of cells increased, but also they 
have been moved in space and left the primary tumor. The x–y-z axes have been scaled in centimeters.

Table 4.   Average displacement of cancer cells in wound scratch assay versus model outputs.

Time (hour) Displacement (mm) in wound scratch assay Displacement (mm) in the model

0 0 0

24 0.158 0.180

48 0.223 0.264

72 0.672 0.634
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the performance evaluation criteria in Table S8, as well as Bland–Altman graph in Fig. S3, indicate a proper 
performance of the applied techniques to model cancer cell metastasis.

Discussion
It is well understood that cancer cells’ invasive features are highly dependent on their interactions with TME com-
ponents, and thorough understanding of the communications could contribute to the design of new therapeutic 
approaches for preventing metastatic progression. Biological pathways, transmission signals, and mechanical 
forces occurring at different physical scales all influence the migration of cancer cells. In this paper, we have 
presented a multiscale model of metastasis with an emphasis on the impact of TME components such as CAFs 
and ECM. The model consists of three principle regulatory scales including intracellular, intercellular, and popu-
lation levels which are validated against experimental data.

In the first step, biological pathways within the cancer cells and CAFs are modeled using ODE-based dynami-
cal systems. TGFβ and CXCL12 pathways, as well as their crosstalk have been considered as the main regulatory 
mechanisms of cancer cell dynamics. In addition, an ODE model of CAF dynamic is derived using the math-
ematical depiction of physiological events involved in TGFβ and LIF signaling pathways. Since there are no 
exact values for several number of kinetic parameters, they are estimated using the HUKF algorithm. Moreover, 
the dynamical models produced results that are very similar to the experimental data of SMAD7, CXCL12, LIF, 
and TGFβ gene expression profiles. In this study, two different sets of experimental data have been used for the 
procedure of parameter estimation and model validation. Despite the fact that model yielded results in a close 
agreement to experimental data, small number of data points could be considered as a limitation of the study. 
However, it is inevitable that mathematical modeling of biological phenomena might be compelled to apply the 
limited number of data points, due to this fact that determining a large number of experimental data points can 
be impractical or impossible for a variety of reasons. To ensure meaningful results, we used technical methods 
such as HUKF algorithm which considers the uncertainty not only in the model parameters but also in the 
measurement datasets.

In order to describe how LIF, CXCL12, and TGFβ molecules which are considered as communicating signals 
circulate within the TME, we have considered a system of PDEs in a three-dimensional domain. The PDE system 
depicts the concentration variations of signaling molecules over time and space. Then, ODE models of cancer 
cells and CAFs are coupled to these PDEs through the mathematical statements utilized for evaluating the amount 
of signals received on the cell surfaces. As a result, a coupled system will be developed that can demonstrate the 
conversations of CAFs with cancer cells as well as their effect on tumor progression and invasion. Furthermore, 
by combination of coupled ODE–PDE modeling framework with ECM characteristics, the model succeeded to 
determine the status of each cancer cells in one of quiescent, proliferating or migratory conditions. Consequently, 
proliferating and migratory cells begin to replicate and migrate, causing tumor growth and invasion, respectively. 
Cancer cells’ movement are regulated by an equation of motion that includes adhesive, repulsive, haptotaxis, 
active, and friction forces applied to cancer cells. To demonstrate the functionality of the multiscale model, we 
performed a wound scratch assay test for measuring the displacement of MCF-7 cells co-cultured with CAFs at 
specific time points, and favorably acceptable accordance is observed when measured displacement in wound 
scratch assay and model outputs are compared. Although there are various methods of measuring directional 
collective cell migration, this assay was performed for measuring the tumor cells displacement due to its versatile 
application to fibroblasts and tumor cell types, simple and fast protocol, and easy analysis method. Moreover, 
not also cell migration, but also cell proliferation contribute to the wound healing, and these phenomena both 
has been considered in our modeling framework96.

Despite the fact that a number of experimental studies looked into the function of CAFs in malignant tumor 
metastasis, the mechanisms behind their influences on the invasiveness of cancer cells remained elusive, espe-
cially in the case of their mutual interactions in the TME. The proposed mathematical model is able to provide 
a comprehensive framework to illustrate not only the internal dynamics of CAFs and cancer cells, but also their 
interactive conversations throughout the TME. Furthermore, regulatory feedback loops that play a vital role in 
cancer cell and CAF phenotype change have been considered in the current study, which have not been inves-
tigated quantitatively so far. The model also shed more light on motility of cancer cells by taking into account 
ECM remodeling and its critical features in EMT. ECM as a TME component provides structural support to 
surrounding cells, but during advanced stages of metastasis, it undergoes some modifications and fails to keep 
cancer cells adhered together. As a result, cancer cells detach from the tumor tissue and leave the primary tumor. 
Moreover, the ability of the model to designate the cancer cells states makes an alive structure that is proliferating 
and moving, as well as allowing us to track the behavior of each cell during the simulation. Therefore, consider-
ing the fact that findings of the current multiscale model have been confirmed by experimental evidence, this 
paper can be regarded as a pioneer in the study of complicated phenomena such as tumor metastasis. From both 
empirical and computational point of view, our approaches pave the way for further studies and designing more 
therapeutic methods in cancer cell metastasis.

Data availability
The experimental datasets generated and analyzed by real time PCR and wound scratch assay during the current 
study, as well as simulation files are available from the corresponding author on reasonable request. All other 
relevant data related to the mathematical modeling are within the manuscript and its Supplementary files.
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