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Abstract

Recent advances in bioinformatics analyses have led to the development of novel tools enabling the capture and trajectory
mapping of single-cell RNA sequencing (scRNAseq) data. However, there is a lack of methods to assess the contributions of
biological pathways and transcription factors to an overall developmental trajectory mapped from scRNAseq data. In this
manuscript, we present a simplified approach for trajectory inference of pathway significance (TIPS) that leverages existing
knowledgebases of functional pathways and other gene lists to provide further mechanistic insights into a biological
process. TIPS identifies key pathways which contribute to a process of interest, as well as the individual genes that best
reflect these changes. TIPS also provides insight into the relative timing of pathway changes, as well as a suite of
visualizations to enable simplified data interpretation of scRNAseq libraries generated using a wide range of techniques.
The TIPS package can be run through either a web server or downloaded as a user-friendly GUI run in R, and may serve as a
useful tool to help biologists perform deeper functional analyses and visualization of their single-cell data.
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Introduction
Recent advances in single cell RNAseq (scRNAseq) library con-
struction technologies, coupled with decreases in cost of high-
throughput sequencing, have led to a proliferation of new single
cell transcriptome data across a range of species and devel-
opmental/disease contexts. In order to interpret this data, a
slew of new bioinformatics tools and analysis techniques have
been developed. These include network-based methods to infer
cis-regulatory interactions, splicing-informed mapping of RNA-
velocity and inferences on key intercellular interactions based
on receptor-ligand pairs [1–3]. These and other novel tools have
helped to unlock the potential of scRNAseq to provide a plethora
of information that was previously inaccessible to analysis of
bulk sequencing-based datasets.

However, one area in which currently available single-cell
analysis tools are lacking in is in pathway analysis. While
pathways analysis and similar gene-set-based enrichment
analyses are among the most common ways to infer molecular
mechanisms contributing to altered behavior under different
conditions, directly applying bulk-sequencing inspired pathway
analysis methods to scRNAseq data comes with substantial
difficulties. Unlike bulk sequencing profiles, scRNAseq tran-
scriptome tend to have significant dropout, with technical
variation causing false-zero detection of any given gene in a
cell [4, 5]. Chance-driven technical dropout also tends to be
particularly severe for genes with low- to medium-expression
magnitudes, many of which are key components of biological
pathways. Because of this, some approaches (such as Metacell)
have been developed to enable gene set enrichment analyses
across clusters of cells using composite/imputed profiles [6].
However, such an approach sacrifices the single-cell resolution
offered by scRNAseq by using it to approximate bulk sequencing
results. Furthermore, this emphasis on pairwise differential
regulation is less suitable for single cell datasets that encompass
multiple cellular states and functional clusters. Other tools, such
as AUCell and GSVA, preserve single-cell resolution to generate
scored profiles for each cell for a given pathway but are focused
on describing these pathways in terms of absolute expression
level [7, 8]. However, not all pathway changes can be accurately
reflected as absolute increases in expression level; many
curated pathways will also contain genes with weak changes
or decreases in expression as part of known regulatory behavior.
In addition, these approaches cannot provide information on the
temporal order by which pathways (and the genes represented
within) may change during a larger biological process.

In order to implement pathway analysis at single-cell reso-
lution, we present here a novel analytical framework that pro-
vides trajectory inference of pathway significance (TIPS). Our
approach leverages the trajectory mapping principle of pseudo-
time assignment to build pathway-specific trajectories from a
pool of single cells. The pseudotime values for each cell along
these pathway-specific trajectories are then compared to iden-
tify the processes with highest similarity to an overall trajectory
in a simple and intuitive process. This approach differs from
existing pathway analysis methodologies by evaluating expres-
sion dynamics of individual genes, instead of taking an averaged
measure of gross expression. Consequently, this approach allows
for straightforward comparisons of the relative influence of each
pathway, as well as the timing of pathway changes. Furthermore,
key genes that are associated with both the overall trajectory
and/or pathway-specific trajectories are also identified, provid-
ing ready targets for downstream validation work. Direct visu-
alizations are also offered at each of the primary steps, with

customizable options for figure generation for pathways and
genes of interest. The key modules in TIPS incorporate in a num-
ber of leading scRNAseq analysis tools and can be run sequen-
tially within a shiny GUI in R with the source code available on
GitHub (https://github.com/qingshanni/TIPS) or on a dedicated
webserver (http://118.24.236.198:3838/TIPS/). We hope that the
TIPS workflow may help further expand the range of functional
analyses that are possible when working with scRNAseq data,
and help derive new functional insights into complex biological
processes.

Materials and Methods
Overview of the TIPS framework

The TIPS framework is designed as 7 primary modules (described
in detail below) intended to be run sequentially in R as either
a local shiny-based GUI or as online as a webserver. Each
module will automatically generate and format the analysis
results as necessary to permit further analyses without a
need for manual modification. A schematic overview of these
modules is included as Figure 1, and a video walkthrough of the
operation of the shiny-based GUI using demo data is included
as Supplementary Video S1, see Supplementary Data available
online at http://bib.oxfordjournals.org/.

Uploading data

TIPS takes as its primary data input a standard gene expres-
sion matrix, wherein each row corresponds to a gene and each
column a cell, from a comma-delimited (.csv) file. Ideally, this
matrix should be pre-processed beforehand to only include in
the cells that are of sufficient quality and which are pertinent
to the intended trajectory analysis. Since preprocessed data
may have been pre-normalized, an option is available to either
log-normalize raw data or to accept it as is. TIPS also accepts
metadata information for each cell (regarding sample quality,
origin, type, etc.), from an additional (.csv) file for further visual-
izations. The user may then choose a list of gene sets to consider
from a dropdown menu (six are built-in, including Reactome,
KEGG, BioCarta, Msigdb) or otherwise upload an additional (.gmt)
file containing the gene lists they wish to analyze [9–11]. This
allowance for built-in options allows for customized analysis of
data derived from other organisms or knowledgebases.

Dimension reduction

TIPS automatically loads and manages the data input as a Seurat
object and runs three different dimension reduction algorithms
(PCA, tSNE and UMAP) to generate 2D visualizations of the
transcriptome similarity between cells [12, 13]. Users may select
cutoff parameters for selecting the list of highly variable genes
(HVGs) to consider for these reductions (both expression and
dispersion cutoffs), and number of nearest neighbors, in order to
optimize the analysis to suit their dataset. The results from the
reduction can be visualized directly, with metadata information
as selectable overlays, while a Louvain clustering algorithm is
run at common resolutions to provide a range of clustering
results.

Primary trajectory analysis

As a matter of principle, the TIPS framework can next be applied
directly to generate a primary trajectory that includes all cells.

http://118.24.236.198:3838/TIPS/
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Figure 1. Overview of TIPS workflow. The TIPS workflow as presented here and as implemented in our GUI and shiny app requires the input of only a gene expression

file and the selection of a reference database for consideration, with an optional option for helping visualize associated metadata. These data are then loaded to create

a Seurat object. Three modes of dimension reduction are then run (PCA, tSNE and UMAP) to generate 2D visualizations of transcriptional similarity between cells

using HVGs. A trajectory is constructed using DDRTree in monocle (run in successive order in our app). Users may then select parameters regarding gene size and

expression to filter for pathways of interest, and additional trajectories are then constructed based on individual pathway gene sets. The statistical significance of

each pathway is computed based on signal relative to background noise from 1000 randomly selected gene lists of the same size. Users may then further select specific

pathways of interest for further analysis. These analyses include temporal ordering of different pathways, as well as selection of the critical genes from each pathway

for downstream validation. All visualizations can be exported as publication-ready PDFs or tiffs with selectable scaling. The Seurat and monocle objects are stored in

a directory to allow for further manipulation by the user if necessary. Full tables of pathways and genes within displaying significant association are also provided as

text files.

However, we strongly recommend that users perform any data
subsetting or sample filtering steps before the trajectory anal-
ysis step to ensure that the analysis can return meaningful
results in practice. In particular, we suggest that users only
select cell types/clusters which have direct temporal relations
and/or transitional potential for downstream analysis in TIPS.
This is because inclusion of irrelevant cell types will signifi-
cantly increase the calculation runtime at the expense of com-
putational accuracy. Inclusion of extraneous clusters introduces
noise to the analysis, which can lead to false positive inferences
for pathways that are not related to the primary trajectory of
interest, while also sacrificing the resolution of pathways with
actual trajectory correlation. As such, users of the TIPS GUI are
given the option to select clusters of interest identified by the
preceding dimension reduction visualization, with access to the
heatmap visualization of the top markers for each cluster.

After selecting the clusters of interest, the HVGs that define
these clusters are then calculated, to ensure representational
accuracy. These HVGs are then passed to Monocle for DDRTree-
based mapping and pseudotime assignment to generate the
primary dataset trajectory [14]. Since the actual assignment
direction for pseudotime values can be arbitrary, an option to
reverse the initial order of cells is provided, such that users
may select an order more intuitive for their question of inter-
est in terms of expected temporal relations between clusters.

This assignment is then treated as the reference pseudotime
trajectory for downstream analysis.

Pathway inference

In order to identify the pathways that are functionally associated
with the overall trajectory of interest, we first load into the TIPS
pipeline the selected reference knowledgebase of pathways for
consideration. We then tailor these reference pathways to the
dataset of interest to remove genes with missing expression
and prune out overly small pathways based on absolute size
(<20 genes). TIPS then iteratively runs the DDRTree algorithm
to generate one trajectory per pathway of interest, considering
all of the expressed genes from the pathway (including ones
where the genes display non-significant variation in expression)
to give a complete picture of pathway dynamics. This process
reduces each pathway to a single linear vector of pseudotime
values. These pseudotime vectors are then compared with the
reference pseudotime trajectory using absolute Pearson’s corre-
lation to assess relative similarity in terms. Notably, absolute
comparisons are used for these measures to avoid potentially
misleading inferences about the direction of trajectory values. In
order to assess the pathways with true significance, DDRTree is
also iterated on randomly generated pathway lists to establish a
false discovery rate (FDR) for genes sets of a given size. Pathways
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at correlation levels below 5% FDR and which have significant
correlation in terms of absolute gene expression (>0.6) are con-
sidered to be significantly associated with the overall trajectory.

Pathway temporal alignment

Individual significantly associated pathways may have distinct
modes of behavior over the course of the pseudotime trajectory,
with some showing rapid changes early on, while others are late-
breaking. In order to provide a temporal understanding of these
pathway dynamics, we further utilized the switchde package
in R to help identify genes with switch-like expression charac-
teristics [15]. We can then visualize the distribution of switch
points with respect to pseudotime for each individual pathway
and subsequently compare these distributions to generate a
temporal alignment.

SOM-based pathway selection

Although the absolute order of pseudotime values may be arbi-
trarily assigned and is not dependent upon a unidirectional
change in expression within a given gene list, researchers may
be interested in focusing on investigating processes that do show
continual increases or decreases expression over time. In order
to accommodate this need, we implemented self-organizing
maps (SOMs) to cluster the cells using the kohonen package
in R [16]. Users can select their pathways of interest from a
dropdown menu to assess the direction while also choosing the
number of nodes for the SOM that would best fit their interest.
Pathways that display monotonic changes in behavior can thus
be visualized in this manner. The SOM can also be used to help
visually distinguish pathways with more complex expression
kinetics.

Individual gene selection

Although the approach outlined above is sufficient for identi-
fying pathways that meaningfully contribute to an overall tra-
jectory, it is oftentimes necessary to further clarify the exact
genes that drive such a contribution. To address this question,
we included three distinct methods for identifying critical genes
within a pathway. First, we consider the genes with switch-like
behavior recovered from switchde, as the singular and abrupt
change in expression within these genes make them good can-
didates for functional screening and validation. Second, since
other critical genes may display milder and monotonic changes
in expression, we also compute the Pearson correlation between
gene expression and pseudotime progression to help identify
genes not found by switchde. Finally, since still other factors
may display more complex changes in expression dynamics
(alternating increases and decreases, or the like), we further
weigh the relative contribution of a given gene on the pseu-
dotime correlation of its parent pathway. Through these three
distinct approaches contained in our final module, we can sub-
sequently narrow down the range of candidate genes to consider
for further validation work.

Analyzed datasets

For our initial analysis of a simulated dataset, we used the splat-
ter package in R with default settings to generate a dataset of 500
cells with 5000 expressed genes per cell via the simulating paths
option [17]. To enable analysis of the impact of technical dropout,

we further used the dropout function in splatter to add in zero-
inflation up through a range of median expression values. To
clarify that these conclusions were also applicable to larger and
more complex datasets, we further simulated datasets with 1,
2 and 3 distinct paths and larger numbers of cells, as well as a
dense dataset of 5000 cells and a pool of 15 000 genes.

scRNAseq library construction and sequencing

In order to provide a direct demonstration of the use of the TIPS
framework on real scRNAseq data, we isolated peripheral blood
mononuclear cells from whole blood provided by a healthy donor
under approval of the Ethics Committee of Southwest Hospital
as part of a pilot study. CD8+ T cells were acquired and FACS-
sorted (Beckmann Coulter) into a 96-well plate following staining
with antibodies against CD3, CD4 and CD8 (BD). Cells were then
lysed, and libraries were prepared using the scSTATseq workflow
that we have previously developed [18]. Libraries were sequenced
using the HiSeq 4500 platform (Illumina) and preprocessed as
previously described. Alignment-free counting of reads relative
to the reference human transcriptome was performed using
Salmon [19]. The resulting gene expression matrix was then
read into the Seurat package in R, where quality control filtering
was performed to remove cells with excess mitochondrial reads
(>10% of all reads), as well as outliers in terms of number of
genes recovered (<5000 or >15 000). The remaining 69 libraries
were then passed to the TIPS framework for further analysis and
visualization.

Additional comparison datasets

Additional data from scRNAseq libraries constructed using alter-
native methods were obtained from GSE133535, a benchmarking
study of different library construction protocols [20]. Since a mix
of cells were used in the study, we individually downloaded
each of the data matrices corresponding to a single method
and filtered them based on metadata annotation to only retain
human cells. Data on these cells were then loaded into Seurat
for UMAP-based clustering in order to identify clusters of CD8+
T cells (based on positive expression of CD8, CD3D and lack
of expression of CD4 and NCAM1). Transcriptome information
from these CD8+ T cells was then passed to TIPS for additional
analysis.

For analysis of single CD8+ T cells from HCC patients, fully
processed sparse matrix files were obtained from GSE98683, and
annotated CD8+ populations were used for further analysis
through TIPS [21]. Data for the HCC samples treated with
immune checkpoint blockade (ICB) were similarly processed
from GSE125449 [22]. For our analysis of endocrine cells from
the pancreatic islets of patients with type II diabetes, data
were obtained from GSE86469 [23]. A summary of the gene
expression characteristics of these datasets is included as
Supplementary Figure S11, see Supplementary Data available
online at http://bib.oxfordjournals.org/.

Results
Testing of the TIPS workflow using simulated data

In order to assess the robustness of the analysis workflow
described, we first simulated a medium-sized scRNAseq dataset
of 5000 genes and 500 cells ordered along a single path. We then
compared the performance of different correlation metrics for
comparing pathways to a common trajectory using 1000 ran-
domly selected gene lists and 100 HVG lists. Since the baseline
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pseudotime trajectory was generated based on a complete list
of HVGs, we anticipated that subsets of the HVG list would show
true signal, while the completely random lists would reflect
the range of noise. Interestingly, we observed that the HVG lists
were essentially indistinguishable from random background
when mean pathway gene expression level was considered
(Figure 2A). However, pseudotime-to-pseudotime correlations
showed a clear separation between HVG lists and background
(Figure 2B). This phenomenon suggested that the TIPS workflow
will highlight pathways as being highly significant regardless
of average expression (Figure 2C). Furthermore, this pattern
held when datasets of larger size and containing multiple
independent paths were considered, suggesting that it is highly
robust (Supplementary Figure S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Instead, we
observed that the constituent genes from the highly correlated
lists displayed balanced distribution, with a similar number
of genes having increasing or decreasing expression (and
changes of similar magnitude) over the course of the pseudotime
trajectory (Figure 2D). This trend could also be clearly identified
in terms of specific genes from a single pathway (Figure 2E).
At the same time, we also observed a clear pattern wherein
the addition of additional information from more HVGs led to
higher correlation with the overall pseudotime (Figure 2F). As
such, these results suggest that pseudotime correlation provides
a sensitive method for comparing trajectories, by accounting for
genes with both increasing and decreasing expression.

At the same time, we also assessed the potential influ-
ence of other factors on the accuracy of pseudotime mapping
to clarify its range of applicability. Since scRNAseq libraries
may vary greatly in terms of number of cells recovered, genes
recovered and in sequencing quality, we controlled for each of
these factors in turn. Interestingly, pseudotime mapping using
subsampled cells demonstrated that decreasing the size of the
dataset did not have a strong of an effect on correlation accu-
racy, such that a correlation above 0.9 could be maintained
even when the dataset was downsampled to 10% of its orig-
inal size (Figure 2G). This trend held when we repeated this
analysis in a much larger dataset of 5000 cells and 15 000
genes (Supplementary Figure S2, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/). This result sug-
gests that sequencing a smaller number of representative cells
may be sufficient to map a trajectory. Since real scRNAseq data
often face practical limitations regarding the numbers of cells
recovered from a population of interest and can include multiple
paths, these results show that the accuracy trajectory mapping
will not be constrained by these limitations.

However, the gene detection quality of the cells sequenced
had a substantial impact on accuracy, as increasing the degree
of technical dropout in the data led to a clear deterioration in
the correlation (Figure 2H). This deterioration demonstrates that
pseudotime assignment is sensitive to information loss. In a
similar vein, we observed that the number of genes considered
for pseudotime assignment also had significant influence on
its accuracy; larger sets of randomly selected genes tended to
have significantly higher background noise than their smaller
counterparts (Figure 2I). Since a given dataset may only feature
significant expression in a subset of all genes assigned to a
given pathway, the relative size and representation rate of a
pathway may also influence correlation interpretation. As such,
we elected to run independent calculations of background noise
using random lists for each pathway in order to control for
differences in gene list size and representation. These latter
two limitations are important caveats to consider for trajectory

analysis as a whole and are not unique to using the TIPS frame-
work. However, since TIPS relies on iterating the trajectory map-
ping process, TIPS is unlikely to infer many significant pathways
from datasets with relatively poor quality in these two metrics.

TIPS confirms existing knowledge of CD8+ T cell
differentiation

To validate the utility and biological relevance of our work-
flow, we then analyzed 69 single-cell libraries of peripheral
blood CD8+ T cells from a healthy donor using the scSTAT-
seq method. UMAP clustering of the cells readily identified
two prominent clusters of cells of similar size (Figure 2A),
and marker analysis demonstrated that cluster0 was com-
posed of antigen-experienced effector cells positive for the
effector molecules IFNG and GZMB, while cluster1 included
naïve/memory cells that displayed high levels of CCR7 and
S1PR1 (Figure 2B). Pseudotime trajectory mapping based on
the dispersed genes yielded a relatively simple arc, with
the effector cells being assigned higher pseudotime values
along this reference trajectory (Figure 2C). We then generated
iterated trajectory mappings using the curated hallmark
signatures from three separate knowledgebases (Msigdb, KEGG,
Reactome) and performed paired correlation analysis of the
pseudotime values against the reference trajectory to identify
pathways with close association and significant signal over
noise based on gene set size (Figure 2D). Consistent with our
expectations, a relatively small portion of pathways showed
significance, alleviating concerns about overfitting from our
method (Supplementary Table S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Of note, no
correlation was found between the number or percentage
of HVGs in a given pathway and its inferred significance
(Supplementary Figure S3A and B, see Supplementary Data
available online at http://bib.oxfordjournals.org/), demonstrating
that the results obtainable from this approach are distinct from
enrichment of the HVGs list. Instead, we observe that even
pathways without an HVG can still be inferred to be functionally
important, as a result of weaker, but consistent, changes in
expression across large numbers of genes, while some lists con-
taining large numbers of HVGs may still have insignificant con-
tribution (Supplementary Figure S3C and D, see Supplementary
Data available online at http://bib.oxfordjournals.org/).

From direct inspection of the top pathways displaying
significant association via TIPS analysis, we found a number
of well-characterized processes known to influence CD8
behavior, such as chemokine signaling and IL12 family signaling
(Figure 2E). At the same time, we also observed significance in
less appreciated processes such as the Myd88-mediated, TLR-
cascaded and SLC-mediated transmembrane transport. Overall
temporal alignment of these four pathways of interest based on
the order of their switched-on genes demonstrated that each
of these pathways had factors that changed across multiple
points of the overall pseudotime trajectory, although most of the
changes were centered at an intermediate timepoint marking
a changeover from memory to effector status (Figure 2F).
When we focused in on each pathway, we could observe
that these changes included relatively critical constituents,
such as the signaling kinase IRAK1 in the Myd88-mediated
cascade. Many of these molecules have also previously been
demonstrated to be of functional importance in the context
of T cell immunity, such as the co-stimulatory molecule ICOS,
the large neutral amino acid transporter SLC7A5 and the
chemokine receptor CXCR1 [24–26]. We also recovered several
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Figure 2. Parameter testing using simulated data for parameter testing, we used a simulated dataset of 500 cells and 5000 genes per cell, comparable in information

amount to most real single-cell datasets. We then generated 1000 lists of 100 genes each for background measurement and 100 lists of 100 genes each from the subset of

HVGs (527 total) as our signal of interest. (A) Average gene expression is commonly used as a metric for identifying significantly associated pathways in bulk analyses.

(B) When the lists were instead run through DDRTree to generate individual pseudotime vectors, pseudotime vectors derived from HVG lists showed very high levels of

correlation, while few random lists showed significance. P-values shown in A and B are for the Pearson correlation statistic. (C) Dotplot of pseudotime correlation versus

expression correlation demonstrates that the majority of HVG lists that showed high levels of pseudotime correlation had very little correlation in terms of expression

(R < 0.2). (D) Dotplot of the expression profiles of all HVGs of the simulated dataset derived from switchde. mu0 indicates the half-peak expression of a gene prior to

the switch event, while k indicates the magnitude of the switch event, and t0 the timepoint along the trajectory at which the switch event takes place. (E) Taking one

significantly associated HVG list as an example, we can observe that a given pathway may also include individual genes with increasing and decreasing expression.

(F) By increasing or decreasing the size of the gene list considered, we can observe that the magnitude of the pseudotime correlation is highly sensitive to the size and

amount of information considered. These results confirm that the method is sufficiently sensitive. (G) Real scRNAseq datasets can vary greatly in the numbers of cells

sequenced. By subsetting the simulated set, we sought to measure the influence of changes in dataset size. Interestingly, while the smaller sets did display reduced

correlation between the new pseudotime assignments for the cells subsetted and their original pseudotime values, most subsets retained a representative capability

with R > 0.9 at 50 cells. (H) Real scRNAseq may also display zero-inflation as a result of technical dropout or transcriptional burst. By artificially adding in zero-inflation

to splatter, we observed that an increase in dropout could drive a sharp decrease in pseudotime correlation. Indeed, past a certain threshold, trajectory analysis would

be essentially meaningless. (I) Real scRNAseq datasets may also measure and consider gene sets of different sizes. By changing the size of a randomly selected gene

set, we also observed significant changes in the distribution of pseudotime correlation values; larger datasets naturally tended to have higher noise.

interesting molecules not characterized in this context, such
as the iron exporter ferroportin (SLC40A1) and zinc importer
SLC39A2. Taken together, these results demonstrate that the
TIPS workflow can successfully recapitulate existing knowledge
of a biological context while also yielding novel candidates for
further validation.

In order to put these pathway inferences relating to
CD8+ T cells in context, we also further analyzed three
additional scRNAseq datasets of CD8+ T cells generated using
other library construction methods. From direct inspection,

we noted that of the pathways of interest we described
above, four were found to be conserved across at least
three of the four datasets, with particularly strong conser-
vation of the chemokine signaling pathway we highlighted
(Supplementary Figure S4A, see Supplementary Data available
online at http://bib.oxfordjournals.org/). This conservation could
be found despite sharp differences between datasets in terms of
information recovered (Supplementary Figure S4B, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
For instance, we could observe sharp differences in dropout rate
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and background noise levels between the scSTATseq and 10X
libraries (Supplementary Figure S5, see Supplementary Data
available online at http://bib.oxfordjournals.org/). As such, we
believe that the pathway inferences drawn through TIPS may be
reproducible across multiple independent datasets.

Individual gene selection

In the results described above, we relied on picking genes with
significant changes in switch-like expression as representative
genes in a given pathway. However, it is well appreciated that not
all genes may display this type of expression characteristic. As
such, in order to develop a broader mechanism for identifying
critical genes in a given pathway, we further explored using
two other scoring approaches to assess gene significance. One
approach is to perform a direct Pearson correlation between gene
expression level for each cell with its assigned pseudotime, to
capture genes with steady and monotonic expression changes.
The other is to further iterate the DDRTree algorithm on a
pathway-level and calculate the impact removing a single
given gene would have on the strength of the pseudotime
correlation (DDRTree influence). When applied to the simulated
dataset described above, we found that the correlation metric
was highly associated with the switchde-based results and
did not help to discover more significantly associated genes
(Supplementary Figure S6A, see Supplementary Data available
online at http://bib.oxfordjournals.org/). However, we found
that the DDRTree influence metric recovered an indepen-
dent pool of genes that did not follow switch-like behavior
(Supplementary Figure S6C, see Supplementary Data available
online at http://bib.oxfordjournals.org/). These results were
even more pronounced when applied to real data, as assessing
DDRTree influence led to the identification of genes with
complex expression dynamics (alternatively increasing then
decreasing) (Supplementary Figure S7, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Since these
two metrics captured distinct pools of genes that are meaningful
in different context, we elected to incorporate both of these
methods for gene selection to help maximize the amount of
information obtainable from TIPS and assist in downstream
screening.

TIPS analysis of complex progression trajectories

While differentiation trajectories may sometimes involve a sim-
ple progression from one dominant state to another, real biolog-
ical trajectories are oftentimes more complex and involve multi-
ple stable intermediate states. In order to understand if the TIPS
workflow is sufficiently robust to handle these complex trajecto-
ries, we next applied it to analyze the differentiation trajectory
of CD8+ tumor-infiltrating lymphocytes (TILs). TILs reside in a
complex tumor-immune microenvironment, wherein different
types of cellular and metabolic interactions may influence their
behavior. CD8+ TILs in particular have been demonstrated to
become functionally exhausted in many types of solid tumors,
and prevention/reversal of exhaustion has been the focus of
intensive research. To examine the processes underlying CD8+
TIL behavior, we applied the TIPS workflow to a dataset of CD8+
TILs derived from hepatocellular carcinoma (HCC) patients that
were generated using the plate-based SMARTseq2 library con-
struction.

From our initial dimension reduction via UMAP, we were
able to observe a number of separate clusters that roughly
corresponded to the published cellular annotations (Figure 4A).

These cell types progressed in our trajectory analysis in a
somewhat irregular manner, with an undefined population
of cells marking the pseudotime endpoint (Figure 4B and C).
A relatively small portion of curated pathways (51/1114) were
found to have significant association with this trajectory
(Supplementary Table S2, see Supplementary Data available
online at http://bib.oxfordjournals.org/), from which we could
identify a few pathways that have been previously validated,
such as receptor-tyrosine kinase signaling and TLR cascade
(Figure 4D and E). From further exploration of the unanno-
tated cluster, we found that the cluster was dominated by
ribosomal signatures, explaining the inclusion of significant
correlations with ribosome-related pathways in our inference
(Supplementary Figure S8, see Supplementary Data available
online at http://bib.oxfordjournals.org/). More interestingly,
however, we also uncovered pathways that have been reported
to influence CD8+ T cell behavior in other contexts, such
as the ROBO receptors and ERBB2 signaling pathways [27,
28]. These pathways largely underwent substantial changes
in gene expression early on in the pseudotime trajectory,
although a portion of the ROBO receptor pathway shifted
later on (Figure 4F). Manual inspection of the genes within
these pathways demonstrated that while the expression of
ROBO receptors themselves did not show strong changes with
respect to pseudotime, we could observe increases in the
chemokine receptor CXCR4 that has been shown to rely on
ROBO cooperation (Figure 4I). Similarly, while ERBB2 itself did
not show significant changes in expression, we did note a
decreased expression in its downstream signal mediator KRAS
at the endstage of the pseudotime trajectory (Figure 4J). Taken
together, these results suggest that both of these pathways may
also play significant roles in regulating CD8+ TIL behavior.

TIPS analysis of CD8+ TIL trajectory during
checkpoint blockade

The recent development of ICB antibodies targeting PD-1/PD-L1
and CTLA-4 has opened a new avenue for cancer therapy. While
these inhibitors are expected to have a significant impact on the
behavior of TILs, the exact molecular mechanisms and processes
that are altered as a result of their application are not yet fully
understood. To extend our analysis of TIL behavior in HCC from
above, we next analyzed a droplet-based dataset of TILs taken
from patients who had undergone direct surgical resection only,
or otherwise received anti-PD-L1 and anti-CTLA4 or anti-PD-1
treatment prior to resection. After subsetting out the population
of CD8+ T cells from the dataset, we observed from dimension
reduction that there was substantial separation between cells
taken from the patients who had received differential treatment.
This separation was also clear in our trajectory construction,
where cells derived from untreated patients marked the end
stage, while those from patients treated with anti-PD-L1 and
anti-CTLA4 marked the start point.

Application of TIPS using the Reactome and KEGG knowl-
edgebase once again yielded a small pool of (52 out of
965) pathways with significant associations (Supplemen-
tary Table S3, see Supplementary Data available online at
http://bib.oxfordjournals.org/). As a whole, these pathways were
significantly different from those recovered from the previous
analysis of HCC samples above. However, we were able to
recover pathways such as cellular senescence and TCA cycle,
which have been previously implicated to be altered as a result
of ICB [29, 30] (Supplementary Figure S9, see Supplementary
Data available online at http://bib.oxfordjournals.org/). At the
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same time, we also uncovered a number of pathways that have
not characterized in this context, such as WNT signaling and
estrogen-dependent gene expression. Whether these pathways
and their downstream molecules may also be important
contributors to ICB success remains an open question for future
validation.

Identification of pathways involved in beta cell
dysfunction in T2D

To further demonstrate the applicability of the TIPS workflow
in other biological contexts, we additionally analyzed a dataset
of endocrine cells derived from pancreatic islets of patients
with type II diabetes (T2D) or healthy controls. UMAP clustering
of the dataset cleanly stratified the seven annotated popula-
tions, with visible stratification in the beta cell cluster based
on patient condition (Supplementary Figure S10A, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
Through trajectory analysis, we were able to observe that beta
cells derived from T2D patients tended to be separate from
controls and occupy the end of the trajectory, a phenomenon not
seen in alpha cells (Supplementary Figure S10D–I, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
Via pathway inference, we observed contribution by pathways
involved in physiological beta cell function (such as ion channel
transport and IRS-related events triggered by IGF1R), as well as
others associated with inflammation (such as cytokine signal-
ing and adaptive immunity) (Supplementary Figure S10K, Sup-
plementary Table S4, see Supplementary Data available online
at http://bib.oxfordjournals.org/). Of note, direct inspection of
the cytokine signaling pathway demonstrated that the genes
displaying changes included downstream effectors, such as the
transcription factor FOXO3 and cell death regulator CASP3, sug-
gesting that the inference was due to the influence of cytokine
stimulus on beta cells, and not direct beta cell production of
cytokines (Supplementary Figure S10L, see Supplementary Data
available online at http://bib.oxfordjournals.org/). These findings
are consistent with previous reports and show that our TIPS
analytical framework can provide pathway inferences in other
settings [31].

Extension of TIPS using other trajectory inference
algorithms

While the results above utilize the DDRTree algorithm for
trajectory mapping, many other trajectory inference algorithms
also exist, and some researchers may have preferences for
alternative algorithms [32]. On a conceptual level, the TIPS
workflow is not reliant on any particular trajectory infer-
ence algorithm, so long as the algorithm returns accurate
pseudotime mapping results. As such, we also compared
the results from application of the TIPS workflow using
DDRTree with results obtainable using other trajectory inference
algorithms. Using five previously benchmarked algorithms
in the dynverse collection (Slingshot, Embeddr, Component1,
MATCHER and Angle) for comparison, we analyzed the cor-
relations seen between KEGG pathways and random gene
lists in the scSTATseq CD8 + T cell dataset described above in
Figure 3. On a general level, we observed that two approaches
(Component1 and MATCHER) yielded the highest number of
pathways with inferred contribution but also had the highest
background signal when used to analyze randomly selected lists
(Supplementary Figure S12A and B, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Angle, which

is intended to recover cyclical trajectories, showed no correlation
with the other methods. Since the dataset itself is not expected
to display cyclical behavior on a biological level (effector CD8 + T
cells are not expected to have the capability to revert back into
naïve CD8 + T cells), its application here is improper. Two other
approaches (DDRTree and Slingshot) showed relatively similar
results (Supplementary Figure S12C and D, see Supplementary
Data available online at http://bib.oxfordjournals.org/), with
Slingshot detecting more pathways at higher correlation values,
but also having somewhat higher background noise. From these
analyses, we observe that the signal-to-noise tradeoff may be
an important component to consider when selecting trajectory
inference algorithms for TIPS and that DDRTree use in this case
appears to offer high sensitivity for pathway inference. However,
the ideal algorithm in each use case may vary because of the
contextual influence and other advantages/disadvantages of
each algorithm (runtime, stability, accessibility, etc.). As such, we
recommend users of the TIPS workflow to also consider alter-
native trajectory inference algorithms based on dataset fit. For
reference, the runtimes using DDRTree for the datasets analyzed
in this manuscript are included as Supplementary Table S5.

Discussion
While a large number of methods have been developed in recent
years to help order cells along a single and/or multiple trajec-
tories, obtaining information of biological significance of from
such analysis has somewhat lagged behind [33]. In particular,
although it has been demonstrated through a number of meth-
ods that trajectory analysis can recapitulate the known order
of cellular maturation over the course of hematopoiesis, few
studies have been able to discover novel transcription factors
and/or biological processes that influence this process. In an
attempt to redress this deficiency, we have presented the TIPS
framework as described above to help uncover these molecu-
lar mechanisms. By relying on pseudotime trajectories as our
point of comparison, we can maintain the single-cell nature
of the data and thereby identify pathways that change across
multiple clusters. Furthermore, we can leverage existing tools
for identifying gene changes with respect to pseudotime to give
an overview of the temporal order in which pathways undergo
significant changes. This latter form of temporal information
is an additional vantage point that may of particular use in
examining interdependent pathway relationships.

Although our current pseudotime workflow is built upon the
DDRTree algorithm implemented in Monocle, the TIPS workflow
is not limited to this method for pseudotime assignment.
Instead, the relative simplicity of our conceptual framework
allows it to be readily implemented with other assignment
algorithms and thus provides flexibility for further optimization
through trajectory mapping algorithms with faster runtimes
and improved accuracy. We hope to be able to continually
update our TIPS server to incorporate these newer methods
for pseudotime assignment and develop a recommendation
scheme for trajectory inference algorithms based on dataset
metrics in the future. Similarly, we currently rely on the
switchde concept of finding genes with single, abrupt changes
in expression, to define the order at which a pathway may
be activating. This approach may be particularly suitable for
genes with pronounced burst [34]. However, not all genes will
follow this pattern of expression; some may have substantially
more gradual increases in response to stimuli as a result of a
higher basal level of expression, while others may display more
complex expression kinetics with multiple on/off switch points.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab124#supplementary-data
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Figure 3. TIPS workflow applied to CD8+ T cells. (A) UMAP reduction and clustering of the sorted CD8+ T cells identifies two prominent clusters reflective of effector and

naïve/memory like populations. (B) Violin plot of four prominent markers of T cell state demonstrate that the effector cluster features high expression of the functional

molecules GZMB and IFNG, while the memory cluster shows elevated expression of CCR7 and S1PR1. (C) Trajectory mapping of these cells reveals a simple arcing path

with ordered progression from memory to effector cells. (D) Volcano plot of the distribution of pseudotime correlation values and FDRs for all pathways derived from

three databases considered. Notably, a number of larger pathways do display high levels of pseudotime correlation, but at a level functionally indistinguishable from

randomly selected gene sets of matching size. (E) Dotplot visualization of 10 pathways of interest that had significant correlation. While TIPS includes a default option

for picking the top10 pathways, users may also wish to highlight specific pathways of interest. (F) Temporal ordering of four pathways of interest using the switch points

of significant genes along the trajectory. While the majority of the switch events occur at the point of change between memory and effector populations, a significant

portion also occurs at earlier and later points, indicating that the changes do not simply describe DEGs between the two clusters. (G–J) Plots of the scaled expression

of specific genes of interest from each pathway visualized over the course of pseudotime progression. These include genes that changed late in the trajectory, such as

CXCR1 from the chemokine signaling pathway, as well as genes that change earlier on, such as IL12A from the IL-12 family signaling pathway.

Further development of gene kinetic modeling and regulatory
inference algorithms may be able to identify ways to successfully
capture the signal of these genes with respect to pseudotime
and help refine our understanding of pathway kinetics [35].
Additional developments in systems to calibrate single-gene
weight within pathway gene sets may also help to further refine
the sensitivity of our kinetic inference results.

In short, our conceptual approach is not limited by the type of
single-cell library construction method used; we present worked
examples of TIPS analysis as performed on multiple different
datasets from independent sources and generated with different
workflows. These datasets vary significantly in the numbers of

cells sequenced, the numbers of genes detected per cell and in
their rate of technical dropout. This latter source of variation
may have particularly significant ramifications on the accuracy
of pseudotime alignment. A number of informatics tools have
been designed to impute and correct for this variation [36].
However, as further advances in library construction lead to
increasingly precise and accurate single-cell profiles, technical
dropout may also be significantly ameliorated. Together with
further refinement and expansion of knowledgebase data, we
anticipate that the analytical framework we describe in this
manuscript will only improve in accuracy and predictive power
over time.
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Figure 4. Application of TIPS to identify pathways associated with CD8 TIL function. (A) UMAP reduction of the subset of CD8+ TILs taken from tumor regions (annotated

as TTC in original data) shows relatively clean separation between the 5 types of annotated cell populations described in the original analysis, with some overlap

caused by differences in dimension reduction method and HVG selection. (B and C) Trajectory mapping of these cells shows some stratification between cell states

along the pseudotime trajectory, with a relatively prominent placement of unannotated cells at the end point of the trajectory. (D) Distribution of pathways according to

pseudotime correlation and FDR shows relatively few significant pathways. (E) Dotplot visualization of several significant pathways. (F) Temporal ordering of selected

pathways shows that most changes occur early on along the trajectory, although the ROBO receptors pathway includes a secondary peak of changes at the middle of

the trajectory. (G–J) Plots of the scaled expression of specific genes of interest from each pathway visualized over the course of pseudotime progression.

Key Points
• The TIPS framework can be used to infer which bio-

logical pathways are significantly associated with pro-
gression along a central pseudotime trajectory.

• Additional contextual information on the relative
order of pathway changes, and the specific genes
driving such changes, can also be identified.

• TIPS opens up new modes of information recoverable
from trajectory analysis.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.

Data Availability

All publicly available scRNAseq data analyzed in this study
are available through GEO under the accessions GSE133535
(CD8+ T cell libraries constructed using other methods),

GSE98683 (SMARTseq2 sequencing of CD8+ TILs from HCC
patients) and GSE125449 (10X Genomics sequencing of
CD8+ TILs from HCC patients after immune checkpoint
blockade). scSTATseq sequenced libraries of CD8+T cells are
available through the Genome Sequence Archive (accession
HRA000723).
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