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Abstract
Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting 
responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic 
spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13–Stn1–Ten1 complex, circum-
vents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though 
Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to 
loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative 
DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase 
checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction 
suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, 
imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 
acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity 
at replication forks advancing through challenging templates.
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Introduction

Cells must tolerate various forms of DNA replication stress, 
ranging from extrinsic mutagens to endogenous physiologi-
cal perturbations. A particularly severe form of replication 
stress arises when cellular dNTPs are reduced; this stress 
can be experimentally induced using the ribonucleotide 
reductase (RNR) inhibitor hydroxyurea (HU). Reducing 
dNTPs slows advance of replication forks, greatly increas-
ing the likelihood of replication fork collapse (Poli et al. 

2012). The S phase checkpoint is a stress response pathway 
that is activated to safeguard against such catastrophes. In 
budding yeast, the S phase checkpoint consists of a core 
signaling axis of three protein kinases: Mec1, Rad53 and 
Dun1 (Giannattasio and Branzei 2017; Pardo et al. 2017). 
Mec1 is recruited to single-stranded DNA (ssDNA) that 
accumulates at stressed replication forks, after which Mec1 
phosphorylates and activates Rad53. Rad53 then phospho-
rylates Dun1 to complete the signaling cascade. Dun1 plays 
a multi-faceted role in upregulating RNR, leading to expan-
sion of dNTP pools (Zhou and Elledge 1993; Huang et al. 
1998; Zhao and Rothstein 2002; Lee et al. 2008; Wu and 
Huang 2008). Rad53 controls other aspects of the check-
point, including delaying activation of DNA replication ori-
gins (ORI) that normally fire later in the S phase program 
(referred to here as Rad53-checked ORIs; Santocanale and 
Diffley 1998; Shirahige et al. 1998; Feng et al. 2006), stabi-
lizing replication forks (Lopes et al. 2001; Sogo et al. 2002; 
Cotta-Ramusino et al. 2005; Bermejo et al. 2011; Rossi et al. 
2015; Colosio et al. 2016; Gan et al. 2017; Chappidi et al. 
2019; Devbhandari and Remus 2020; Cabello-Lobato et al. 
2021), and preventing premature extension of the bipolar 
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mitotic spindle that assembles in HU-arrested yeast cells 
(Krishnan et al. 2004; Bachant et al. 2005; Julius et al. 
2019). These responses synergize to allow DNA synthesis to 
proceed at a slow but steady rate in HU (Alvino et al. 2007; 
Poli et al. 2012; Zhong et al. 2013), to circumvent dNTP 
depletion (Morafraile et al. 2015), and to retain the capacity 
for accurate chromosome segregation once the extended S 
phase has been completed (Feng et al. 2009).

In previous work, we identified Stn1 as an additional 
protein connected to the budding yeast S phase checkpoint 
(Gasparyan et al. 2009). Stn1 was initially identified as a 
component of the conserved Cdc13–Stn1–Ten1 (CST) com-
plex (Grandin et al. 1997; Rice and Skordalakes 2016). In 
yeast, CST binds telomere DNA repeats and protects chro-
mosome ends from exonuclease digestion during S phase 
(Garvik et al. 1995; Nugent et al. 1996; Lin and Zakian 
1996; Maringele and Lydall 2002; Jia et al. 2004; Bertuch 
and Lundblad 2004; Zubko and Lydall 2006; Vodenich-
arov and Wellinger 2006; Xu et al. 2009; Dewar and Lyd-
all 2012; Langston et al. 2020). Yeast Stn1 also binds the 
Pol12 subunit of the DNA polymerase α/DNA primase 
complex (Polα; Grossi et al. 2004; Petreaca et al. 2006). 
The Stn1–Polα interaction plays a conserved role in chromo-
some end replication by stimulating Polα priming and fill-in 
synthesis of telomerase-generated ssDNA overhangs (Qi and 
Zakian 2000; Grossi et al. 2004; Petreaca et al. 2007; Puglisi 
et al. 2008; Chen and Lingner 2013). Importantly, however, 
other observations implicate CST in genome-wide aspects 
of DNA replication, particularly under conditions of DNA 
replication stress (Stewart et al. 2018). In a previous publi-
cation, we showed STN1 overproduction (STN1 OP) causes 
yeast cells to become extremely sensitive to HU and other 
replication stressors (Gasparyan et al. 2009). Remarkably, 
STN1 OP also phenocopies rad53 S phase checkpoint defects 
in HU, including activation of later-firing, Rad53-checked 
ORIs and premature spindle extension. Rad53 is activated 
normally in STN1 OP cells, indicating upstream events in S 
phase checkpoint signaling are not perturbed by excess Stn1. 
While this suggests STN1 OP acts downstream or in parallel 
to Rad53 to antagonize checkpoint effector responses, the 
underlying mechanisms remain to be defined.

Rad53 checks the firing of late ORIs through phosphoryl-
ation and inhibition of two proteins, Dbf4 and Sld3, required 
for activation and assembly of the Cdc45–GINS–MCM 
(CMG) replicative helicase (Lopez-Mosqueda et al. 2010; 
Zegerman and Diffley 2010; Duch et al. 2011). Dbf4 is a 
cyclin-like activator for Cdc7, the yeast Dbf4-dependent 
protein kinase (DDK; Jackson et al. 1993; Bousset and Dif-
fley 1998). The DDK plays an essential role in ORI firing 
by phosphorylating paired Mcm2-7 hexamers (MCM) at 
licensed ORIs (Labib 2010). One consequence of MCM 
phosphorylation is to recruit Sld3 (Fang et al. 2016; Deegan 
et al. 2016). Sld3, in parallel, is phosphorylated by S phase 

forms of Cdk1 (S-CDK), leading to phospho-adapted inter-
actions that recruit Cdc45 and GINS (Tanaka et al. 2007; 
Zegerman and Diffley 2007; Muramatsu et al. 2010). MCM 
activation corresponds with conformational changes that 
melt ORI DNA, with each strand entering the interior core 
of one MCM hexamer in the necessary configuration for 
bidirectional DNA unwinding (Georgescu et al. 2017; Doug-
las et al. 2018; Meagher et al. 2019). The DDK and S-CDK, 
thus, control parallel pathways activating MCM. Rad53 
antagonizes both pathways in response to replication stress, 
imposing a robust check on further ORI firing.

An additional Rad53 checkpoint function circumvented 
by STN1 OP is to prevent defective extension of the mitotic 
spindle during an extended S phase. Restraint of spindle 
extension has generally been considered to be controlled 
through a separate Rad53 cell cycle arrest pathway, unre-
lated to regulation of ORI firing and replication fork stabi-
lization. In a recent study, however, we presented evidence 
that spindle extension in HU-treated rad53 mutants is actu-
ally a consequence of a primary defect in DNA replication 
control (Julius et al. 2019). First, double mutant combina-
tions predicted (rad53 mcm2-1, rad53 mcm5-1) or demon-
strated (rad53 dbf4-zn) to reduce ORI firing in HU, or to sup-
press exonuclease processing of reversed replication forks 
(rad53 exo1-∆), suppressed the rad53 spindle extension 
defect. Second, the dbf4-zn allele was preferentially defec-
tive for initiating ORI firing adjacent to centromeres (CENs). 
Third, unregulated Exo1 activity in rad53 mutants generated 
CEN ssDNA and perturbed kinetochore assembly. Based on 
these findings, we proposed that the critical role for Rad53 in 
restraining spindle extension in HU is to stabilize replication 
forks in proximity to CENs. In the absence of this protective 
function, exonucleolytic degradation of CEN DNA disrupts 
kinetochore integrity and S phase spindle force balancing 
mechanisms. Here we have utilized this revised conception 
of the spindle extension defect in HU as a convenient genetic 
readout to assess pathways through which STN1 OP antago-
nizes the S phase checkpoint. Our results indicate Stn1 is 
likely to act in concert with both the DDK and the MCM 
complex to efficiently activate ORI firing-a function revealed 
most prominently when ORIs fire in an unscheduled manner 
in the absence of the S phase checkpoint.

Materials and methods

Yeast culture

Relevant S. cerevisiae strains and plasmids are listed in 
figure legends. Cells were cultured in standard formula-
tions of yeast extract/peptone/dextrose (YPD) and synthetic 
complete minimal (SC) media, with 2% glucose or 2% 
galactose as a carbon source. Cultures for microscopy were 
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supplemented with 50 μg/mL adenine to quench autofluores-
cence associated with the ade2 mutation in our strain back-
grounds. For  G1 synchronization/release, cells were treated 
with 10 μg/mL α-factor (Bio-Synthesis Corp.), typically for 
1.5 h, washed in water, and released into desired culture 
media. Yeast transformation, strain construction, and other 
genetic manipulations were performed according to stand-
ard techniques (Guthrie and Fink 1991). HU was purchased 
from either Sigma-Aldrich or Fisher Scientific.  Yeast two-
hybrid analysis was performed using strain PJ69-4a (James 
et al. 1996).

Spindle length analysis

Spindle length distributions in fixed cell samples was per-
formed as previously described (Bachant 2005). Cells har-
boring SPC42-GFP were released from  G1 arrest into fresh 
media containing 200 mM HU. After 2.5 h, culture aliquots 
were briefly (1–5 min) fixed either using 1% formalde-
hyde diluted in phosphate buffered saline (PBS). Samples 
were washed into PBS and stored at 4 °C. DNA staining 
was performed using 4′6-diamidino-2-phenylindole (DAPI; 
Vecta-Shield, Vector Laboratories). Cells were visualized 
on either Nikon E-800 or Nikon Eclipse 80i microscopes 
equipped with florescence optics and 100 × (Plan Apo, 1.40 
NA) objectives. The distance between Spc42-GFP spindle 
pole foci and bud circumference measurements were per-
formed using the MetaMorph (Molecular Devices) suite of 
software tools.

Western immunoblotting

To detect Stn1-HA in protein extracts, 25 mL cell cultures 
were grown to logarithmic phase (~  OD600 0.8–1.0). Cells 
were harvested by centrifugation and lysed by bead beating 
(three 1 min bursts on a BioSpec BeadBeater 8) in 300 μL of 
20% trichloroacetic acid (TCA) containing protease inhibi-
tors (1 μg/mL leupeptin, 2 μg/mL aprotinin, 15 μg/mL ben-
zamindine, 100 μg/mL PMSF, 10 μg/mL pepstatin). Lysates 
were centrifuged for 10 min at 3000 rpm at 4 °C to pellet 
proteins, and the TCA supernatant was removed. Protein pel-
lets were resuspended in 100 μL of 1 M Tris base and 100 μL 
of Buffer A (25 mM HEPES, pH 7.5, 5 mM  MgCl2, 50 mM 
KCl, 10% glycerol, 0.5% Triton X-100) supplemented with 
the protease inhibitor cocktail described above. 100 μL of 
20% SDS and 60 μL of Laemmli sample buffer (50 mM 
Tris pH 6.8, 2% SDS, 10% glycerol, 0.1 M DTT, 0.01% 
bromophenol blue) were added to each sample, and the pro-
tein preparations were boiled at 95 °C for 5 min. 100 μL of 
each lysate was fractionated on 10% polyacrylamide gels 
and transferred to nitrocellulose membranes. The primary 
antibody (mouse anti-HA, 12CA5 from Roche) was used at 

a 1:1000 dilution in Tris-buffered saline (TBS) containing 
3% non-fat dry milk, while the secondary antibody (HRP-
conjugated goat anti-mouse from Chemicon) was used at a 
1:25,000 dilution in TBS containing 3% non-fat dry milk.

Chromosome spreads

To detect Stn1-HA on chromatin, 5 mL triplicate cell cul-
tures were grown to logarithmic phase in appropriate selec-
tive media. Cells were collected by brief centrifugation and 
pellets were resuspended in 1 mL ZK buffer (25 mM Tris 
pH 7.5, 0.8 M KCl) supplemented with 40 μL of 1 M DTT, 
incubated for 2 min at room temperature. Samples were 
spheroplasted by addition of 5 μL of zymolyase solution 
(20 mg/mL zymolyase 100 T, 2% glucose, 50 mM Tris pH 
7.5) and 2 μL of BME, and incubated for 15 min at 30 °C. 
The spheroplasted cells were washed with ice cold MES 
solution (1 M Sorbitol, 0.1 M MES pH 6.5, 1 mM EDTA, 
0.5 mM  MgCl2), then resuspended in 300 μL of MES solu-
tion. 20 μL of the cells were spotted onto a pre-cleaned glass 
slide, followed by addition of 40 μL of PFA solution (3% 
paraformaldehyde, 3.4% sucrose) and 80 μL of 1% lipsol. 
After 2 min of lysis, an additional 80 μL of PFA solution 
was added, and lysates were spread across the glass slides 
with a clean glass Pasteur pipette. Slides were dried at room 
temperature overnight. Prior to immunostaining, slides were 
washed with 0.2% Photoflo (Kodak) for 30 s and PBS for 
5 min, then blocked with 350 μL of TBS containing 10 mg/
mL BSA for 15 min at 4 °C. Excess blocking solution was 
drained, and 80 μL of primary antibody (mouse anti-HA, 
12CA5 from Roche) was added at a 1:200 dilution in TBS 
containing 10 mg/mL BSA. Cover slips were applied, and 
slides were incubated at 4 °C in a wet chamber overnight. 
Slides were washed twice with TBS, drained, and 80 μL 
of secondary antibody (FITC-conjugated goat anti-rat from 
Sigma) was added at a 1:500 dilution in TBS containing 
10 mg/mL BSA. Cover slips were added, and slides were 
stored in the dark from this point on. After a 2 h incubation 
at 4 °C, slides were washed with TBS twice, and dried at 
room temperature for 4 h. DNA was stained with DAPI as 
described above, cover slips were applied, and samples were 
visualized by fluorescence microscopy.

Cell viability assays

5 mL cell cultures were grown to logarithmic phase. Cell 
concentration was determined by hemocytometery, after 
which cells were diluted into fresh media containing 
200 mM HU. An aliquot of the culture was immediately 
removed and diluted as calculated so that 100 μL of the 
dilution yielded ~ 500 colony forming units when plated on 
solid media, providing an initial time point. At desired times, 
additional culture aliquots were removed, diluted in a similar 
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fashion and plated to determine colony forming units. Colo-
nies were counted after incubation for 3–5 days, and the 
fraction of surviving cells relative to the initial timepoint 
was determined.

In situ Klenow primer extension on chromosomal 
ssDNA and Southern blotting

To detect ssDNA regions of chromosomes, we modified a 
previously described in situ ssDNA labeling method (Feng 
et al. 2011). Logarithmic phase cultures were washed and 
resuspended in 50 mM EDTA, and the cell concentration 
of each sample was determined by hemocytometery. For 
each sample, ~  109 cells were placed in a final volume of 
500 μL. Cell suspensions were warmed to 55 °C and mixed 
with 500 μL of low melt agarose (Invitrogen) that had been 
dissolved in a 1:100 dilution of 1× TBE. The agarose/cell 
mixture was pipetted into plug molds and allowed to solid-
ify at room temperature for 15 min. Solidified plugs were 
treated with 5 mL of spheroplasting solution (1 M sorbitol, 
20 mM EDTA, 10 mM Tris pH 7.5, 14 mM BME, 0.5 mg/
mL Zymolyase 20 T) for 4 h at 37 °C. Plugs were washed 
with SDS solution (1% SDS, 100 mM EDTA, 10 mM Tris 
pH8) twice for 15 min each, and incubated in SDS solution 
at 37 °C overnight with gentle rocking. The following day, 
plugs were washed with NDS solution (1% sarkosyl, 10 mM 
Tris base, 0.5 M EDTA pH 9.5) 3 times for 30 min each, fol-
lowed by 5 washes with TE for 30 min each, then stored in 
4 °C. Multiple plugs were prepared for each sample.

To perform the Klenow reactions, two plugs per sample 
were each pre-equilibrated in 5 mL of TMB (50 mM Tris pH 
6.8, 5 mM  MgCl2, 10 mM BME) for 30 min at room tem-
perature. One plug was mixed with 400 μL of TMB buffer, 
10 μL of dNTPs (10 μM each dNTP), 10 μL of random 
hexamer primers at 10 μM (Thermo Scientific), 100 units 
of  Exo− Klenow polymerase (New England BioLabs), and 
50 μL of 10 × Klenow buffer. The second plug was treated 
identically, but no Klenow was added. The samples were 
incubated at 37 °C for 2 h and then washed with TE. Plugs 
were then pre-equilibrated with 1 × β-agarase buffer for 
30 min on ice, heated to 65 °C to melt agarose, and treated 
with 5 units of β-agarase (New England BioLabs) for 1 h at 
42 °C. The salt concentration was adjusted to 0.5 M NaCl, 
0.8 M LiCl, 0.3 M NaO-Ac, samples were cooled on ice for 
15 min, and DNA was precipitated with isopropanol. The 
DNA was then washed with cold 70% ethanol, dried, and 
resuspended in 40 μL of TE.

Prior to electrophoresis, reaction products were dena-
tured by addition of 10 μL of 1 M NaOH and 1 μL of 0.5 M 
EDTA, followed by boiling at 95 °C for 5 min. Samples were 
cooled on ice for 5 min then electrophoresed on large format 
1% agarose gel overnight at 50 V. DNAs were transferred to 
a nylon membrane (Hybond-XL, Amersham) overnight and 

crosslinked with 120 mJ of UV (Stratagene). The membrane 
was blocked with Church’s buffer (1% BSA, 1 mM EDTA, 
0.5 M phosphate buffer, 7% SDS) overnight at 55 °C with 
gentle rocking. 25 μL of  P32 radiolabeled  TG1–3 probe was 
added, and the blot was incubated overnight at 55 °C with 
gentle rocking. The following day, the blot was washed three 
times with 1 L of washing solution (4 × SSC, 0.1% SDS), 
and exposed to X-ray film for 5 days at −80 °C. After devel-
opment, the membrane was stripped by boiling in 0.1% SDS 
three times for 15 min each, then blocked with Church’s 
buffer as before. 25 μL of  P32 radiolabeled rDNA probe was 
added, and the blot was processed for autoradiography as 
before.

Results

STN1 overproduction displays genetic interactions 
with DUN1, RNR2 and MCM

To identify genetic pathways affected by STN1 OP, we chose 
an approach based on our previous finding that STN1 OP 
checkpoint defects could be suppressed in a pol12–40 mutant 
(Gasparyan et al. 2009). The Pol12–40 mutant protein is 
partially defective for binding Stn1 (Petreaca et al. 2006; 
see schematic of Stn1 domains and interactions, Fig. 1A), 
and retention of excess Stn1 on chromatin spreads is greatly 
reduced in pol12–40 mutants (Gasparyan et al. 2009), imply-
ing STN1 OP acts through POL12. Extending this logic, we 
over-expressed STN1 under control of the galactose-induc-
ible GAL promoter in a collection of mutants defective for 
DNA replication control or tolerating DNA replication 
stress. Transformants were evaluated on galactose media 
for enhancement/suppression of mutant growth defects or 
enhancement/suppression of STN1 OP HU sensitivity. One 
interaction we identified was that STN1 OP was synthetically 
lethal with a dun1-∆ mutant, even in the absence of HU 
(Fig. 1B). Synthetic lethality with dun1-∆ was also observed 
following OP of a Stn1 fragment  (Stn1288−494; amino acids 
288–494) comprising two C-terminal winged helix domains 
(Fig. 1A). stn1288−494 OP was assessed because this is the 
minimal STN1 region required for OP checkpoint pheno-
types (Gasparyan et al. 2009). We additionally examined 
the effect of STN1 and STN1288−494 OP in a recessive loss 
of function rnr2-1 temperature sensitive mutant (Zhou and 
Elledge 1992). OP of STN1 and STN1288−494 strongly inhib-
ited rnr2-1 growth on galactose media, even at a permissive 
temperature of 23 °C (Fig. 1C). These observations suggest 
STN1 OP imposes an essential requirement for Dun1-medi-
ated upregulation of RNR.

We also identified genetic interactions between STN1 OP 
and mcm2-1, mcm5-1 and mcm7-1, recessive, temperature 
sensitive alleles that compromise MCM activity and DNA 



169Current Genetics (2022) 68:165–179 

1 3

synthesis (Tye 1999). As MCM is a multimeric complex, it 
is notable that both mcm mutations and altered MCM expres-
sion produce a complex assortment of genetic interactions, 
including co-suppression and dosage enhancement (Yan 
et al. 1991). Additionally, MCM7 has a second function 

as a cell cycle regulated transcriptional repressor, with the 
mcm7-1 mutation increasing the expression of other MCM 
genes (Fitch et al. 2003). Against this backdrop, we observed 
that STN1 OP in mcm2-1 and mcm5-1 partially alleviated the 
extreme HU sensitivity associated with STN1 OP, allowing 
growth at up to 25 mM HU at a mcm semi-permissive tem-
perature of 30 °C (Fig. 2A). Moreover, mcm2-1 and mcm5-1 
STN1 OP transformants showed a marked improvement in 
their ability to recover from transient exposure to 200 mM 
HU at 30 °C (Fig. 2B). Immuno-blotting revealed simi-
lar amounts of OP Stn1 accumulated in WT, mcm2-1 and 
mcm5-1 transformants (Fig. 2C). The ability of mcm2-1 and 
mcm5-1 to allow STN1 OP cells to recover from transient 
HU exposure is notable, as our prior work indicates that a 
dramatic loss of survival following acute HU exposure is 
typically a consequence of simultaneously deregulating ORI 
firing and destabilizing replication forks (Desany et al. 1998; 
Alcasabas et al. 2001; Julius et al. 2019).

As a further connection between STN1 and MCM, we 
found STN1 OP acted as a dosage suppressor of mcm7-1 
(Fig. 2D); a similar suppression of mcm2-1 or mcm5-1 was 
not observed (not shown). mcm7-1 suppression did not occur 
following OP of either N- or C-terminal Stn1 regions, indi-
cating the effect required full length Stn1 (Fig. 2D). In sum, 
these results indicate STN1 OP exhibits complex interac-
tions with MCM. On the one hand, reduced MCM function 
alleviates STN1 OP HU toxicity. On the other, STN1 OP 
partially restores viability to at least one MCM loss of func-
tion mutant strain.

STN1 OP acts through MCM to induce S phase 
checkpoint defects

As described in the Introduction, we previously character-
ized mcm2-1 and mcm5-1 as mutations that suppressed the 
spindle extension phenotype of HU-treated rad53 mutants 
(Julius et al. 2019). To see if a similar relationship was 
observed with STN1 OP, WT, mcm2-1 and mcm5-1 STN1 OP 
strains were released from a  G1 block into media containing 
200 mM HU. Spindle length distributions were evaluated in 
fixed cells after 2.5 h using a GFP tagged spindle pole body 
protein (Spc42-GFP; representative micrographs of WT, 
rad53 and STN1 OP spindle morphologies in HU can be 
found in (Bachant et al. 2005; Gasparyan et al. 2009; Julius 
et al. 2019). As expected, WT cells transformed with a vec-
tor control displayed the short (1–2 μm) spindles character-
istic of HU-arrested cells (% spindles ≥ 3 μm = 6), while 53% 
of WT/pSTN1 transformants exhibited a heterogenous range 
of spindle lengths ≥ 3 μm (Fig. 3A; 3 μm is our threshold for 
an extended spindle). In comparison, mcm2-1/pSTN1 and 
mcm5-1/pSTN1 transformants exhibited 1% and 5% spindle 
extension, respectively (Fig. 3A), a similar extent of sup-
pression to that of HU-treated mcm2-1 rad53 and mcm5-1 

Fig. 1  STN1 OP is toxic to dun1-∆ and rnr2-1 mutants. A The 
Stn1 protein includes an essential N-terminal OB fold domain and 
two winged helix (WH) domains at the C-terminus. Known pro-
tein of nucleic acid interactions mapping to these domains are indi-
cated. stn11−186 is a truncation allele that only expresses the first 186 
codons. stn11−186 and stn1288−494 refer to OP constructs that encode 
the indicated fragments of the Stn1 protein. In all three cases, lines 
in diagram indicate STN1 codons that are expressed. B WT (Y300) 
or dun1-∆ (Y286) cells were transformed with Vector, pGAL-STN1 
(STN1 on figure) and pGAL-stn1288−494 (stn1288−494 on figure). Trans-
formants were grown to saturation in selective media. Tenfold serial 
dilutions (black triangles) were stamped onto selective glucose or 
galactose solid media containing the indicated concentrations of HU. 
Duplicate sets of plates were cultured at 23°, 30° and 36 °C. C rnr2-1 
(Y221) cells were transformed and analyzed as in (B)
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rad53 strains (Julius et al. 2019). Unlike the situation with 
pol12-40 suppression of STN1 OP defects (Gasparyan et al. 
2009), mcm2-1 and mcm5-1 did not reduce Stn1 binding to 
spread chromatin preparations (Fig. 3B).

To further compare the genetic requirements for spindle 
extension in HU-treated rad53 and STN1 OP cells, pADH-
STN1 was transformed into exo1-∆ and dbf4-zn strains. Pre-
viously, we found rad53 exo1-∆ and rad53 dbf4-zn double 
mutants reduced the percentage of HU-treated cells with 

Fig. 2  Genetic interactions between STN1 and MCM2–7. A WT/
Vector (hc2110), WT/pADH-STN1 (pSTN1 or pSTN1-HA on figure, 
hc2109), mcm2-1/Vector (hc2425), mcm2-1/pADH-STN1 (hc2426), 
mcm5-1/Vector (hc2427) and mcm5-1/pADH-STN1 (hc2428) strains 
were grown to saturation in selective media. Tenfold serial dilutions 
(black triangles) were stamped onto selective media containing the 
indicated concentrations of HU at 30°. The ADH promoter induces 
high levels of transcription and is constitutively active in glucose 
media. B Strains in (A), along with a rad53-21 control (hc27), were 
grown to logarithmic phase in selective media and diluted into fresh 
media containing 200 mM HU (T = 0) and incubated at 30°. At indi-

cated times aliquots were plated on media lacking HU to quantify 
recovery. Legend: 1, WT/V; 2, mcm2-1/V; 3, mcm5-1/V; 4, mcm2-
1/pADH-STN1; 5, mcm5-1/pADH-STN1; 6, WT/pADH-STN1; 7, 
rad53-21. C Strains in (A) were grown to logarithmic phase in selec-
tive media at 30°. Protein extracts were analyzed by immunoblotting 
with α HA to detect exogenous OP Stn1. D mcm7-1 cells were trans-
formed with Vector, pADH-STN1 (pSTN1 on figure), pADH-stn11−186 
(pstn11−186 on figure) or pADH-stn1288−494 (pstn1288−494 on figure) 
plasmids. Tenfold serial dilutions of saturated cultures were stamped 
and incubated at indicated temperatures
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Fig. 3  mcm2-1 and mcm5-1 suppress STN1 OP-induced spindle 
extension in HU. A WT/Vector (hc2110), WT/pADH-STN1 (pSTN1 
or pSTN1-HA on figure, hc2109), mcm2-1/Vector (hc2425), mcm2-1/
pADH-STN1 (hc2426), mcm5-1/Vector (hc2427), mcm5-1/pADH-
STN1 (hc2428) and rad53-21 (hc27) strains harboring SPC42-GFP 
were arrested in  G1 and released into 200 mM HU at 30 °C. At 2.5-h 
post-release, the distance between Spc42-GFP spindle pole foci was 
evaluated in ≥ 100 cells. Numbers on each histogram show percentage 

of spindles ≥ 3 μm. B Strains in (A) were cultured in selective media 
to logarithmic phase at 30  °C, lysed, and chromatin was spread on 
glass slides. Stn1 localization was monitored by α HA immunofluo-
rescence and DNA counterstaining with DAPI. Micrographs show 
representative images. C Quantification of Stn1 OP chromatin bind-
ing. For each sample in (B), at least 100 DAPI-positive spreads were 
scored for α-HA Stn1 staining. Graph depicts average of three experi-
ments ± one standard deviation
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extended spindles by  ~ threefold and  ~sevenfold, respec-
tively, compared to rad53 controls (Julius et al. 2019). In 
response to STN1 OP in HU, 20% of exo1-∆/pSTN1 cells 
exhibited spindles ≥ 3 μm, a 2.6-fold reduction compared 
to WT/pSTN1 (Fig.  4). Thus, loss of EXO1 suppresses 
spindle extension in rad53 and STN1 OP cells to a fairly 
similar extent. With respect to the effect of dbf4-zn, 26% 
of HU-treated dbf4-zn/pSTN1 cells showed spindles ≥ 3 μm 
(Fig. 4). While this is a significant (p < 0.001, t-test) twofold 
reduction compared to WT/pSTN1, the suppressive effect of 
dbf4-zn on STN1 OP was not as extensive as what we had 
observed for dbf4-zn rad53. Overall, however, these results 
reveal a remarkable congruence in the genetic requirements 
for spindle extension in HU-treated rad53 and STN1 OP 
cells. Thus, loss of RAD53 and gain of STN1 appear to act 
through similar mechanisms to induce spindle extension.

Loss of STN1 function suppresses rad53 S phase 
checkpoint defects

The results presented so far are consistent with the idea that 
STN1 OP activates the MCM complex to induce firing of 
checked ORIs in HU. In this regard, it is interesting that 
OP of DBF4 is similar to OP of STN1 in being sufficient 
to circumvent Rad53 control of both checked ORI firing 
and spindle extension in HU (Mantiero et al. 2011; Tanaka 
et al. 2011; Julius et al. 2019). Furthermore, in searching for 
potential physical interactions between Stn1 and DNA repli-
cation factors we identified a two-hybrid interaction between 

Stn1 and Dbf4 (Supplemental Fig. 1). From this, one pos-
sibility is that excess Stn1 circumvents the Rad53 check on 
ORI firing in HU through DDK activation of MCM, prompt-
ing us to examine the consequences of eliminating DBF4 in 
STN1 OP cells. Such a genetic test is possible using a gain of 
function mcm5 allele, mcm5-bob1, that bypasses the require-
ment for the DDK in ORI firing, allowing cells to proliferate 
in the absence of either Dbf4 or Cdc7 (Hardy et al. 1997; 
Hoang et al. 2007; Miller et al. 2014). Importantly, however, 
the Rad53 check on late ORI firing remains largely intact in 
mcm5-bob1 mutants due to the necessity of also circumvent-
ing Rad53 inhibition of Sld3 (Zegerman and Diffley 2010), 
and ~ 90% of mcm5-bob1 cells arrest with short spindles in 
HU (Fig. 5C). Thus, STN1 OP in dbf4-∆ mcm5-bob1 permits 
an epistatic test of whether STN1 OP defects are directed 
exclusively through DBF4.

We observed mcm5-bob1 dbf4-∆ cells displayed con-
siderable sensitivity to HU, failing to grow at 10 mM HU 
(Fig. 5A). This sensitivity, however, was further exacerbated 
by STN1 OP, with mcm5-bob dbf4-∆/pSTN1 cells exhibiting 
only weak growth on 2.5 mM HU. Additionally, whereas 
mcm5-bob1 dbf4-∆ and mcm5-bob1 dbf4-∆/pDBF4 cells 
largely recovered following transient 200 mM HU treat-
ment, mcm5-bob1 dbf4-∆/pDBF4, pSTN1 and mcm5-bob1 
dbf4-∆/pSTN1 cells failed to recover, exhibiting a defect that 
was comparable, although not quite as severe, as that dis-
played by rad53 mutants (compare strains 3, 4 with strain 
5, Fig. 5B). As described above, a dramatic loss of viabil-
ity following acute exposure to HU is indicative of S phase 
checkpoint deregulation, associated with unscheduled ORI 
firing and replication fork catastrophes. Associated with 
HU sensitivity, 9% of mcm5-bob1 dbf4-∆ cells displayed 
extended spindles in HU, a slight (but significant, p < 0.001, 
t-test) increase over mcm5-bob1 dbf4-∆/pDBF4 controls 
(Fig. 5C). In comparison, 52% of HU-treated mcm5-bob1 
dbf4-∆/pSTN1 cells, 40% of mcm5-bob1 dbf4-∆/pDBF4, 
pSTN1, and 48% of MCM5 DBF4/pSTN1 cells displayed 
extended spindles (Fig. 5C). The spindle length distributions 
of mcm5-bob1 dbf4-∆/pSTN1, mcm5-bob1 dbf4-∆/pDBF4, 
pSTN1, and MCM5 DBF4/pSTN1 were all statistically com-
parable (mcm5-bob1 dbf4-∆/pSTN1 vs. mcm5-bob1 dbf4-
∆/pDBF4, pSTN1, p = 0.15; mcm5-bob1 dbf4-∆/pSTN1 vs. 
MCM5 DBF4/pSTN1 = 0.53; mcm5-bob1 dbf4-∆/pDBF4, 
pSTN1 vs. MCM5 DBF4/pSTN1 = 0.12). To summarize: (1) 
Stn1 interacts with Dbf4 in the two-hybrid assay; (2) dbf4-zn 
partially alleviates STN1 OP spindle extension in HU; and 
(3) the absence of DBF4 in mcm5-bob1 does not suppress 
STN1 OP in HU compared to mcm2-1 and mcm5-1. Thus, 
the DDK cannot be the only target of STN1 OP.

If STN1 acts through a partially separable pathway 
from the DDK to activate MCM, an additional genetic 
test is to ask whether loss of Stn1 acts similarly to mcm2-
1 and mcm5-1 in suppressing rad53 phenotypes. stn11−186 

Fig. 4  Exo1-∆ and dbf4-zn suppression of STN1 OP-induced 
spindle extension in HU. WT/Vector (hc2110), WT/pADH-STN1 
(pSTN1 on figure, hc2109), exo1-∆/Vector, exo1-∆/pADH-STN1, 
dbf4-zn/Vector (JJY063, JJY065), and dbf4-zn/pADH-STN1 (JJY064, 
JJY066) strains harboring SPC42-GFP were arrested in  G1 and 
released into 200 mM HU at 30 °C. After 2.5 h post-release, the dis-
tance between Spc42-GFP spindle pole foci was evaluated in ≥ 100 
cells. Box and whisker plots show spindle length distributions. Num-
bers above each plot show percentage of spindles ≥ 3 μm. The WT/
Vector and WT/pADH-STN1 distribution is from the same experi-
ment shown in Fig. 3A
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is a loss of function truncation allele expressing the first 
186 N-terminal codons of STN1 (Petreaca et al. 2007) 
(Fig. 1A). stn11−186 fails to suppress the temperature sen-
sitivity of mcm7-1, suggesting it defective for this aspect 
of STN1 function (Fig. 2D). Moreover, stn11−186 mutants 
arrest in HU with short spindles, indicating they are pro-
ficient for the S phase checkpoint (Fig. 6A, B). We there-
fore constructed a rad53-21 stn11−186 double mutant and 
evaluated spindle extension in HU. We observed rad53-
21 stn11−186 mutants exhibited 11% spindle extension 

compared to 53% for rad53-21, a significant reduction 
(p < 0.001, t-test, Fig. 6A). In a related experiment we 
correlated spindle length with bud circumference in HU-
treated cells, using bud circumference as a metric for 
elapsed time in S phase. HU-treated rad53 mutants typi-
cally initiate spindle extension shortly after S phase entry, 
when bud circumference is ~ 10–12 μm (Julius et al. 2019). 
This early period of spindle extension was completely 
rescued in rad53-21 stn11−186, suggesting a restoration in 
the delay of spindle extension (Fig. 6B). STN1, therefore, 

Fig. 5  DBF4 is not required for STN1 OP to antagonize the S 
phase checkpoint. A mcm5-bob1 dbf4-∆ was transformed with either 
a vector control (Vec) or a low copy plasmid expressing DBF4 under 
control of the native promoter (pDBF4). The strains where then trans-
formed with either a vector control (Vec) or pADH-STN1 (pSTN1 
on figure) for STN1 OP. mcm5-bob1 dbf4-∆/pDBF4, Vec (hc2405); 
mcm5-bob1 dbf4-∆/pDBF4, pADH-STN1 (hc2406); mcm5-bob1 
dbf4-∆/Vec, Vec (hc2407); and mcm5-bob1 dbf4-∆/Vec, pADH-STN1 
(hc2408) strains were cultured to saturation in selective media. Ten-
fold serial dilutions (black triangles) were stamped onto plates con-
taining the indicted concentrations of HU and incubated at 30 °C. B 
Strains in (A), along with a rad53-21 control (hc27) were grown to 

logarithmic phase and diluted into fresh media containing 200  mM 
HU (T = 0) at 30 °C. Culture aliquots were removed at indicated times 
and plated onto media lacking HU to quantify recovery. Legend: 1, 
mcm5-bob1 dbf4-∆/pDBF4, Vec; 2, mcm5-bob1 dbf4-∆/Vec, Vec; 
3, mcm5-bob1 dbf4-∆/pDBF4, pADH-STN1; 4, mcm5-bob1 dbf4-∆/
Vec, pADH-STN1; 5, rad53-21. C Strains in (A), along with WT/Vec 
(hc2110), WT/pSTN1 (hc2109) controls, all containing SPC42-GFP, 
were arrested in  G1 and released into 200 mM HU media. The dis-
tance between Spc42-GFP spindle pole foci was evaluated in ≥ 100 
cells at 2.5 h post-release. Spindle length distributions are represented 
as box and whisker plots. Numbers above each plot show percentage 
of spindles ≥ 3 μm
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appears to be a genetic effector of the spindle extension 
phenotype.

stn1 mutants accumulate ssDNA at telomeres, aris-
ing from defects in telomere replication and chromosome 
end protection (Grandin et  al. 1997). If Stn1 functions 
more globally in DNA replication, we hypothesized Stn1 
might also prevent accumulation of ssDNA at interior chro-
mosomal regions. To test this, we modified a previously 
described procedure for in situ labeling of chromosomal 
ssDNA (Feng et al. 2011). stn11−281, WT and mec1–21 
cells were embedded in agarose, permeabilized, and DNAs 

complementary to ssDNA regions were synthesized using 
random oligonucleotide primers and Klenow DNA poly-
merase. After a denaturation step and nucleic acid recovery, 
short primer extension products were separated from the 
larger mass of chromosomal DNA by electrophoresis and 
analyzed by Southern blotting. As expected, stn11−281, but 
not WT or mec1 controls, displayed a ssDNA signal when 
the blots were probed with a telomeric DNA repeat sequence 
 (TG1–3 panel, Fig. 7A). Re-probing the blot with a repeti-
tive sequence within the rDNA locus revealed stn11−281 also 
accumulated ssDNA at this internal chromosomal region 

Fig. 6  stn11–186  is a suppressor of rad53 spindle extension in HU. 
A stn11−186, rad53-21 (hc2804) and rad53-21 stn11−186 (hc2806) 
strains harboring SPC42-GFP were released from a  G1 arrest into 
200 mM HU media. The distance between Spc42-GFP spindle pole 
foci was evaluated at 2.5-h post-release. Numbers on histograms indi-
cate the percentage of cells with spindles ≥ 3 μm. B The same strains 
were processed as in (A), except in this experiment both bud circum-

ference (as a metric for elapsed time in S phase) and spindle length 
were quantified. Color coding on graphs: cells with spindles ≤ 3 μm, 
green; cells with spindles ≥ 3  μm and bud circumferences ≤ 15  μm 
(small- to medium-budded cells), red; cells with spindles ≥ 3 μm and 
buds ≥ 15 μm (medium- to large-budded cells), orange. The percent-
age of total cells with extended spindles is shown on the right-hand 
side of each graph
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(rDNA panel, Fig. 7A). ssDNA at the rDNA locus was also 
observed in mec1–21, which is known to accumulate repli-
cative DNA damage (Feng et al. 2011). Treating stn11−281 
cells with HU showed that blocking DNA synthesis consid-
erably reduced both telomeric and rDNA signals. In contrast, 
mec1−21 cells, which fail to check ORI firing and experi-
ence replication catastrophes in HU, did not display such 
a reduction. HU-treated mec1−21 samples also showed a 
fainter rDNA signal in the absence of Klenow (Fig. 7B). 
To explain this, chromosome fragmentation and nuclease 
assault in HU-treated mec1 cells (Cha and Kleckner 2002; 
Feng et al. 2009, 2011) may generate rDNA fragments that 
are small enough to enter the gel and be visualized by our 
method. stn11−281 was used for the experiment shown in 
Fig. 7A because this allele causes a more severe growth 
defect than stn11−186. However, stn11−186 was subsequently 
found to also accumulate ssDNA at the rDNA locus (not 
shown).

To determine if ssDNA accumulation in stn1 mutants 
was physiologically relevant, we examined whether Rad6-
dependent post-replication DNA repair was required for the 
viability of stn1 cells. Initial crosses indicated it was not 
possible to isolate viable stn11−281 rad6-∆ double mutant 
segregants. We repeated this analysis using a stn11−281 
parental strain harboring STN1 on a low copy URA3 plas-
mid, allowing stn11−281 rad6-∆/pSTN1-URA3 segregants 
to be obtained. stn11−281 rad6-∆ double mutants harboring 
pSTN1-URA3 failed to grow on 5’-FOA containing media, 
which selects against cells unable to lose the URA3 plasmid. 
The dependency of stn11−281 rad6-∆/pSTN1-URA3 strains 
on the covering STN1 plasmid indicates stn1 mutants require 
Rad6-mediated DNA repair.

Discussion

In this study, we used premature spindle extension in HU 
to assess the genetic basis for S phase checkpoint defects in 
STN1 OP cells. This approach was predicated on our recent 
observations that mutations that suppress rad53 checkpoint 
defects in DNA replication control (mcm2-1, mcm5-1, dbf4-
zn, exo1-∆) co-suppress defective spindle extension, suggest-
ing a mechanistic coupling between these phenotypes (Julius 
et al. 2019). Based on this previous study, we proposed spin-
dle extension is an indirect consequence of replication fork 
catastrophes in the vicinity of centromeres. These catas-
trophes occur due to simultaneously deregulating two key 
Rad53 effector responses: loss of the check on ORI firing, 
which exacerbates nucleotide depletion, and loss of replica-
tion fork stability, which generates ssDNA. A key finding 
of the work presented here is that spindle extension induced 
by STN1 OP in HU is suppressed by the same set of DNA 
replication and nuclease mutations that suppress rad53, indi-
cating gain of STN1 and loss of RAD53 deregulate similar 
processes in DNA replication control. As discussed below, 
our data cumulatively suggest DNA replication functions for 
Stn1 likely converge on the MCM complex.

Relationships between STN1, RAD53 and the DDK 
in the S phase checkpoint

In STN1 OP cells, Rad53 exhibits the electrophoretic mobil-
ity shift characteristic of Rad53 auto-phosphorylation, indi-
cating checkpoint signaling upstream of Rad53 is not dis-
rupted by excess Stn1 (Gasparyan et al. 2009). Since we 
show Stn1 likely binds Dbf4, it remains possible that STN1 
OP interferes with the ability of Rad53 to complex with 
and phosphorylate this effector substrate. Alternatively, 
STN1 OP could interfere with the checkpoint indirectly, by 
circumventing Rad53 regulatory mechanisms. Our obser-
vations lead us to favor the latter interpretation, with Stn1 

Fig. 7  Accumulation of ssDNA damage in stn1 mutants. A WT 
(hc160), stn11−281 (hc671) and mec1–21 (hc30) strains were grown 
to logarithmic phase at 30 °C or additionally treated with media con-
taining 200 mM HU for 3 h. For each sample, a fixed number of cells 
were suspended in agarose plugs, spheroplasted, and either treated or 
not treated with hexameric primers and Klenow DNA polymerase. 
Extension products corresponding to chromosomal ssDNA were ana-
lyzed by Southern blotting with either telomeric (upper panel,  TG1–3) 
or rDNA (lower panel) probes. B WT (hc160), stn11−281 (hc671), 
rad6-∆ (JBY285), stn11−281rad6-Δ (hc2636) strains all harboring 
pSTN1-URA3 (pVL1046) were grown to saturation in selective media 
and tenfold serial dilutions were stamped onto either  Ura− or 5’-FOA 
containing media. Plates were incubated for 4 days at 30 °C
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functioning as an accessory replication factor rather than 
a Rad53 anti-checkpoint. First, STN1 OP is lethal to dun1 
and rnr2 mutant strains, suggesting an increased demand 
on dNTP pools even in the absence of HU. Second, a non-
essential role for Stn1 in DNA replication is supported by the 
observations that stn1 mutants accumulate ssDNA outside 
of telomeres and impose a requirement for post-replication 
DNA repair. Third, STN1 OP acts as a dosage suppressor of 
mcm7-1. The basis for this suppression remains to be deter-
mined. Since mcm7-1 abolishes transcriptional repression of 
other MCM genes, it is possible overproduced Stn1 may sup-
press mcm7-1 through processes other than restoring Mcm7 
activity within the Mcm2-7 hexamer. Fourth, the epistasis of 
the stn11−186 phenotype in rad53-21 in stn11−186 rad53-21 
double mutants indicates that Stn1 is necessary to manifest 
rad53 HU phenotypes. One genetic interpretation is that—
like Dbf4, Sld3, and Exo1—Stn1 is another effector that is 
negatively regulated by Rad53, with the absence of inhibi-
tion leading to deregulated ORI firing and fork destabiliza-
tion at centromeric regions (Supplemental Fig. 2). Whether 
Stn1 is a direct target of Rad53 in the S phase checkpoint 
will be important to assess in future studies.

One possibility we addressed in this study is that STN1 
OP might activate ORI firing in HU by promoting DDK 
activity towards MCM substrates. This is because, first, 
we detected a likely physical interaction between Dbf4 
and Stn1, and, second, to our knowledge, only STN1 OP 
and DBF4 OP have been shown to be sufficient to over-
ride Rad53 inhibition of ORI firing (Gasparyan et al. 2009; 
Mantiero et al. 2011; Tanaka et al. 2011; Julius et al. 2019). 
How increased DDK activity circumvents the parallel Rad53 
check on Sld3 is not clear. The minimal essential role for 
the DDK in activating MCM is to relieve an auto-inhibitory 
activity with the N-terminus of Mcm4 (Sheu and Stillman 
2010). However, deletion of this domain  (Mcm4∆74–174) is 
not sufficient to bypass the Rad53 check on late ORI firing; it 
is also necessary to simultaneously bypass Rad53 inhibition 
of Sld3 (Sheu et al. 2016). The same pattern is observed with 
mcm5-bob1, which is also proficient for the Rad53 check on 
ORI firing (Zegerman and Diffley 2010). DBF4 OP enriches 
Sld3 and other initiation factors at late firing ORIs (Tanaka 
et al. 2011). Such enrichment could conceivably circumvent 
the Rad53 block on Dbf4 and Sld3 at the S phase checkpoint.

Although Stn1 may function in a positive-acting man-
ner with the DDK, the findings presented here indicate that 
the ability of STN1 OP to force checked ORI firing in HU 
cannot be directed exclusively through the DDK. dbf4-∆ 
mcm5-bob1/STN1 OP cells still exhibit spindle extension 
in HU which, from a genetic standpoint, argues STN1 OP 
must have an additional target(s). We therefore propose Stn1 
acts in a parallel, potentially reinforcing, pathway with the 
DDK to activate ORI firing (Supplemental Fig. 2). This is 
supported by the observation that mcm2-1 and mcm5-1 are 

the strongest suppressors of HU spindle extension in both 
rad53 mutants and STN1 OP cells, suggesting STN1 and 
RAD53 ultimately converge on MCM. In sum, our genetic 
analysis of gain and loss of STN1 function is consistent with 
Stn1 participating in a nexus of interactions involving MCM/
CMG, POL12/Polα, and the DDK. During HU challenge, 
the effect of excess Stn1 within this network is to counteract 
key aspects of Rad53 DNA replication control. Conversely, 
when Stn1 fails to act within this network, cell accumulate 
ssDNA indicative of replicative DNA damage, even in the 
absence of exogenous replication stress.

Speculative roles for Stn1 in MCM function

While our study does not address the molecular basis for 
how Stn1 activates MCM, several observations warrant dis-
cussion. In a potentially related manner to budding yeast, 
OP of Stn1 in human cells stimulates firing of dormant ORIs 
during HU recovery (Wang et al. 2014), while Stn1 deple-
tion decreases ORI activation after replication stress (Wang 
et al. 2012). Additionally, in a recent study human Stn1 was 
shown to bind to Mcm4 and Mcm7, as well as to Ctf4/And1 
(Wang et al. 2019). Ctf4/And1 functions as an adaptor that 
links Polα to the replisome and also potentially tethers bidi-
rectional replisomes together (Yuan et al. 2019). In yeast, 
the Ctf4–Polα linkage is preferentially involved, although 
not essential, for initiating lagging strand synthesis (Porcella 
et al. 2020). Knockdown of human Stn1 was found to reduce 
And1 chromatin association during recovery from replica-
tion stress, leading to a model where CST provided a backup 
mechanism to recruit And1/Polα, thereby stimulating ini-
tiation of lagging strand synthesis under challenging firing 
conditions (Wang et al. 2019). Stn1 has also been shown to 
stimulate Polα priming/catalysis and replication of ssDNA 
templates in vitro (Goulian and Heard 1990; Nakaoka et al. 
2012), and, from our previous work, disruption of Stn1 bind-
ing to the Pol12 subunit of Polα rescued STN1 OP S phase 
checkpoint defects (Gasparyan et al. 2009). It, therefore, 
seems likely that there is a conserved role for Stn1 in ORI 
firing that is closely coupled to Pol12/Polα.

If Stn1 plays a conserved role in stimulating Polα activ-
ity during stress-related ORI firing, how might a connec-
tion with MCM be involved? One possibility is that STN1 
facilitates a coupling between CMG activation and Polα 
recruitment and priming. As revealed in human cells, this 
may involve bridging interactions between Stn1, MCM and 
And1/Ctf4 (Wang et al. 2019). Given our finding Stn1 likely 
also interacts with Dbf4, a related possibility is that Stn1 
helps maintain an activated status for MCM. DDK-mediated 
phosphorylation of MCM is counteracted by the Glc7/PP1 
phosphatase, which is recruited to ORIs through the Rap1-
interacting factor Rif1 (Boos and Ferreira 2019). Thus, 
Stn1 may be recruited to the replisome not just to facilitate 
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lagging strand synthesis under challenging conditions but 
also to counteract Rif1 and maintain MCM phospho-activa-
tion (Supplemental Fig. 2). Recent evidence suggests DDK 
activity towards MCM is involved not just in the initial 
activation of MCM during ORI firing, but also in maintain-
ing CMG activity at challenged replication forks (Cabello-
Lobato et al. 2021; Dolson et al. 2021). The role of Rad53 in 
stabilizing replication forks in HU is also be closely coupled 
to CMG, with Rad53 blocking CMG advance beyond the site 
of leading strand synthesis during replication stress (Gan 
et al. 2017; Devbhandari and Remus 2020). Although the 
Rad53 mechanism enforcing this coupling is not yet clear, 
Rad53 docking sites within CMG are likely to be involved 
(Can et al. 2019). We therefore speculate the similarities 
between gain of STN1 and loss of RAD53 encompasses both 
functional populations of MCM. In this view, Stn1 plays 
an accessory role in activating MCM conversion to CMG 
during ORI firing and stimulates CMG advance through dif-
ficult templates. Disruptions to these functions could lead 
to the accumulation of ssDNA gaps during S phase and the 
requirement for post-replication DNA repair we detected in 
stn1 mutants.
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