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A B S T R A C T   

Background: Tertiary lymphoid structure (TLS) is a unique organ that carries out tumor cell 
elimination at tumor sites. It is continuously stimulated by inflammatory tumor signals and has 
been found to augment immunotherapy response. However, the detailed mechanisms behind it 
still need to be defined. 
Methods: To explore and grasp the whole picture of TLS from a pan-cancer view, we collected nine 
TLS-related genes from previous studies. We performed a comprehensive analysis of 9637 sam-
ples across 33 tumor types accessed from The Cancer Genome Atlas (TCGA) database. EdU, 
Transwell, and flow cytometry were performed on the feature gene PTGDS in U251 cells. The 
regulatory role of PTGDS on PD-L1 expression and macrophage polarization was verified. 
Results: Alteration analysis showed that mutations of TLS-related genes were widespread and 
relatively high. Clustering analysis based on the expression of these nine genes obtained two 
distinct clusters, with high EIF1AY and PTGDS in cluster 2 and better overall survival in cluster 1. 
To distinguish the two clusters, we utilized six machine learning algorithms and filtrated EIF1AY, 
PTGDS, SKAP1, and RBP5 as the characteristic genes, among which the former two genes were 
proved to be hazardous. PTGDS was found to regulate PD-L1 expression and also promoted the 
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proliferation and migration of U251 cells. The knockdown of PTGDS could reduce the migration 
of macrophages and inhibit the polarization of macrophages into M2-phenotype. In addition, we 
established a TLS score to demonstrate patients’ TLS activity. The low TLS-score group over-
lapped with cluster 1 and displayed a better prognosis. Besides, the low TLS-score group was 
related to better immunotherapy responses. The HE staining of histopathological sections 
confirmed that the low TLS-score group exhibited higher infiltration of immune cells. 
Conclusion: This study reveals broad molecular, tumorigenic, and immunogenic signatures for 
further functional and therapeutic studies of tertiary lymphoid structure. The TLS score we 
established effectively predicted immunotherapy response and patients’ survival. Its future 
application and combination await more research.   

1. Introduction 

Cancer development is a fierce war between tumor cells and the human immune system. It has long been believed that adaptive 
immune response against tumor occurs in the secondary lymphoid organs (SLOs) [1]. However, newly published studies revealed 
further insight into the generation of antitumor response. They found that it could also occur directly at the tumor sites within 
organized cell aggregate resembling SLOs under the exposure to long-lasting inflammatory signals [2]. This cell aggregate is called 

Fig. 1. The flow diagram of this study.  

W. Wu et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e23915

3

Fig. 2. The mutation landscape and regulation network of TLS genes. a. Landscape of genomic alterations in the TLS genes in cancer. Each row 
represents a gene, and each column represents a patient. The frequency of alterations in nine genes of TLS is presented. b. Distribution of mutation 
frequencies over cancer types. c. Distribution of amplification of SCNA frequencies over cancer types. d. Distribution of depletion of SCNA fre-
quencies over cancer types. e. Correlation between methylation and TLS genes over cancer types. f. Circos plot showing the regulation of miRNA on 
TLS genes. G. Network plot showing the regulation of miRNA on TLS genes. 
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Fig. 3. Generation of TLS-related clusters. a. Heatmap showing the distribution of TLS genes in two clusters. b. The survival of patients in cluster 1 
was compared with those in cluster 2 using the Kaplan–Meier survival curve in pan-cancer. A log-rank test assessed statistical significance. c. The 
distribution of two clusters in pan-cancer. d. GSVA results are based on GO terms in two clusters. e. GSVA results are based on KEGG terms in 
two clusters. 
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tertiary lymphoid structure (TLS). 
TLS consists of a CD3+ T cell zone containing dendritic cells (DCs) and fibroblastic reticular cells (FRCs) and a CD20+ B cell zone 

containing germinal center, plasma cells, and follicular DCs [1]. Being a rich resource of chemokines (including CCL19, CCL21, 
CXCL13, CCL17, CCL22, and IL-16), TLS could help foster an immunoreactive microenvironment recruiting tumor infiltrating lym-
phocytes (TILs), including CD4+, CD8+, CD20+ TILs, and plasma cells [3–5]. These compelling compositions facilitate the coordinated 
actions of CD8+ T cells and B cells, enabling in situ antitumor response and tumor cell elimination [4]. In addition, recent studies 
demonstrated that TLS could be a prognostic factor for complete pathological response and prolonged disease-free survival in 
diversified cancer types [3,6–8]. As for immunotherapy which is now considered an unprecedented breakthrough, a high TLS signature 
was found to predict better response to PD-1 blockade in bladder cancer and melanoma [9–11]. As researchers conclude, there is a 
disparity between the response rate to immunotherapy and the detected status of conventional biomarkers such as PD-L1 [12], PD-1, 
and tumor mutation burden (TMB) because one biomarker alone does not predict therapeutic efficacy perfectly [13]. Therefore, the 
discovery of TLS provides another potential indicator for immunotherapy to be of maximum use. 

The ubiquitous presence of TLS has been unveiled in cancers at all stages, in primary as well as metastasis [14]. However, its 
presence varies from tumor to tumor. Regarding its active regulatory role in antitumor immune response, it is crucial to dig into the 
gene profile, biological function, and predictive value of TLS and understand the whole picture of it in tumors. There are limited studies 
on the pan-cancer analysis of TLS from all aspects mentioned above. Herein, we conducted an in-depth study based on nine TLS-related 
genes (EIF1AY, PTGDS, CD79B, CD1D, CCR6, LAT, SKAP1, RBP5, and CETP) [11], ranging from the alteration landscape in pan-tumor 
to the predictive model of survival, as well as gene function to immunotherapy efficacy (Fig. 1). 

2. Results 

2.1. Alteration landscape of TLS-related genes in pan-cancer 

To understand the gene features of TLS-related genes across diversified malignancies, we analyzed 9637 patients across 33 tumors 
from TCGA and calculated the frequency of alteration, which was defined as mutation and somatic copy number alteration (SCNV) 
[15]. The overall mutation level of TLS-related genes ranged from 1 % to 30 % (Fig. 2a), which was relatively high and quite wide-
spread in 26 types of tumors. Missense mutation constituted the majority of all mutation types, followed by nonsense mutation, 
frameshift deletion, and splice site mutation. Among the nine genes, CD1D exhibited the highest mutation level (30 %), most of which 
came from missense mutation. While EIF1AY showed the lowest mutation level (1 %), with all coming from missense mutation, only 
occurring in esophageal carcinoma (ESCA), cutaneous skin melanoma (SKCM), and stomach adenocarcinoma (STAD). 

Across the 26 tumor types, some were observed to have much higher mutation levels than others. Although the percentage was 
heterogeneous, SKCM and STAD harbored mutations in all nine genes (Fig. 2b). Colon adenocarcinoma (COAD) and uterine corpus 
endometrial carcinoma (UCEC) presented mutations in eight genes, and lung adenocarcinoma (LUAD) had seven out of nine. On the 
contrary, adrenocortical carcinoma (ACC), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), pancreatic adenocarcinoma 
(PAAD), testicular germ cell tumors (TGCT), and thyroid carcinoma (THCA) barely had mutations in these genes. In addition, a co- 
mutated pattern of SKAP1, CETP, CD1D, and CCR6 was observed, especially in COAD and LUAD. 

Further, we analyzed the SCNV (including amplification and deletion) pattern in 26 tumor types. Ovarian cancer (OV) presented 
the highest amplification level in all nine genes, among which the amplification frequency of RBP5 was up to 67.8 % (Fig. 2c). The 
second highest amplification rate was observed in UCEC, which was also a tumor of the female reproductive system. As for deep 
deletion, prostate adenocarcinoma (PRAD) and COAD showed relatively high frequency (Fig. 2d). 

2.2. Regulatory elements, associated biological pathways, and drug sensitivity of TLS-related genes 

DNA methylation is a crucial element among the numerous regulatory factors of gene expression. Hypermethylation of the pro-
moter region is usually associated with loss of expression of the target gene [16]. Although in some rare cases, DNA methylation 
positively correlates with gene expression [17]. Via spearman correlation analysis, methylation of SKAP1 and CD1D was found to 
correlate positively with gene expression in most tumor types. At the same time, EIF1AY, CD79B, and LAT negatively correlated with 
gene expression (Fig. 2e). In addition to methylation, miRNA is another key gene expression modulator. To get a comprehensive view 
of the miRNA regulation network, we screened available databases, and the results are displayed in Fig. 2f and g. The circle’s line 
weight and color depth represent the modulatory intensity. 

2.3. Two distinct clusters revealed by the NMF algorithm provided potential prognostic value 

We then carried out a cluster analysis based on TLS-related gene expression via the NMF algorithm in pan-cancer perspective. The 
tumor was classified into two clusters, with high expression of EIF1AY and PTGDS in cluster 2 and the other seven genes in cluster 1 
(Fig. 3a). Moreover, patients in cluster 1 exhibited better overall survival (OS) compared with patients in cluster 2 (p < 0.001) 
(Fig. 3b). As shown in Fig. 3c, out of 33 tumor types were overrepresented in cluster 1, and 16 tumor types in cluster 2, while cervical 
squamous cell carcinoma, endocervical adenocarcinoma (CESC) and TGCT were equally abundant in both clusters. The tumor types 
were uniformly distributed, indicating that this clustering method could distinguish tumors characterized by TLS-related genes. 

Further, we performed GO and KEGG enrichment analysis and obtained accordant results (Fig. 3d and 3e). Based on available data 
from GO, antigen processing and presentation, as well as MHC I complex, which are foundations of effective immune response [13], 
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Fig. 4. Excavation of feature genes using machine learning. a. Feature genes between two clusters defined by the LASSO-LR algorithm. b. The pamr 
algorithm defines feature genes between two clusters. c. The SVM algorithm defines feature genes between two clusters. d. A random forest al-
gorithm defines feature genes between two clusters. e. The Xgboost algorithm defines feature genes between two clusters. f. The Boruta algorithm 
defines feature genes between two clusters. g. Venn diagram showing the intersected feature genes defined by six machine learning algorithms. h. 
Forest plot showing the prognostic value of feature genes in pan-cancer. 
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Fig. 5. a and b. Western blots demonstrated an increase of PD-L1 in PTGDS-knockdown U251 cells. The full images of Western blots are provided in 
the Supplementary files (Figs. S4–7). c. EdU showed a decrease in cell proliferation in PTGDS-knockdown U251 cells. d. Flow cytometry showed an 
increase of cell apoptosis in PTGDS-knockdown U251 cells. e. Transwell showed a reduction of cell migration and invasion in PTGDS-knockdown 
U251 cells. f. Transwell showed a reduction of cocultured HMC3 cell migration with PTGDS-knockdown U251 cells. g. Flow cytometry showed a 
reduction in M2 polarization of cocultured HMC3 cells with PTGDS-knockdown U251 cells. 
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Fig. 6. Generation of TLS score. a. Venn diagram showing the intersected genes after dimension reduction based on six machine learning algo-
rithms. b. Correlation coefficients of intersected genes based on LASSO-LR algorithm for the generation of TLS score. c. The survival of patients with 
high TLS-scores was compared with those with low TLS-scores using the Kaplan–Meier survival curve in pan-cancer. A log-rank test assessed sta-
tistical significance. d. Forest plot showing the prognostic value of TLS score in pan-cancer. e. The butterfly plot shows the correlation between TLS 
score, metabolism, and cancer immunity cycle. 
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were upregulated in cluster 1. In contrast, the non-canonical WNT signaling pathway was upregulated in cluster 2, associated with 
neoplastic progression [18]. Upon KEGG analysis, an activated pattern of carcinogenesis pathway was observed in cluster 2. For 
example, MAPK signaling pathway, ERBB signaling pathway, and WNT signaling pathway were significantly upregulated [19,20]. 

2.4. Characteristic genes for accurate clustering and their profiles 

Next, we performed machine learning and prediction on the two populations to screen out the characteristic genes and accurately 
distinguish the two clusters. As shown in Fig. 4a–f, via LASSO-LR, pamr, SVM, random forest, Xgboost, and Boruta machine learning 
algorithms, we filtered 9, 9, 8, 6, 9, and 9 genes, respectively. The following Venn diagram displayed an intersection of the six al-
gorithms, including four genes (EIF1AY, PTGDS, SKAP1, RBP5) (Fig. 4g), representing the characteristic genes that best classify the 
two clusters. By univariate regression analysis, the forest plot displayed an excellent association between these genes and prognosis 
(Fig. 4h). EIF1AY and PTGDS were both hazardous factors, while SKAP1 and RBP5 were favorable. 

PTGDS has been found to be involved in lipid metabolism, cell self-renewal, tumorigenesis and tumor infiltrating immune cells in 
multiple cancer types [21–24]. Given the potential value in clinical use as a hazardous factor for prognosis and the relatively adequate 
studies of PTGDS [25], we performed preliminary experiments to verify the relationship between PTGDS and existing immunotherapy 
biomarkers. The results showed that the knockdown of PTGDS by siRNA led to increased expression of PD-L1 in U251 cells (Fig. 5aand 
5b), indicating the potential regulatory correlation and possible combined therapeutic targets for immunotherapy. Moreover, the 
knockdown of PTGDS impaired cell proliferation, migration, and invasion and promoted cell apoptosis in U251 cells (Fig. 5c-e), adding 
to the tumor-killing efficacy of this potential target. We also found that the knockdown of PTGDS could reduce the migration of 
macrophages and inhibit the polarization of macrophages into M2-phenotype (Fig. 5f and 5g), indicating the potential impact of 
PTGDS on remodeling tumor immune microenvironment, which is crucial to the formation of TLS and anti-tumor immune response. 

2.5. Establishment of TLS-score 

Based on the two clusters we got, we independently analyzed differential genes and the dimension reduction via the previous six 
algorithms (Fig. 6a). PTGDS, RBP5, SKAP1, ST6GALNAC1, and XIST were picked out, on the strength of a scoring system we estab-
lished via the LASSO algorithm. The coefficient of each gene is displayed in Fig. 6b. Next, we divided the patients into a high TLS-score 
group and a low TLS-score group by the median score. It turned out that the low TLS-score group had a significantly better OS than that 
of the high TLS-score group (p < 0.001) (Fig. 6c). We further validated the effectiveness of the scoring system in pan-cancer and 
individual tumors. The forest plot showed that the score was hazardous in most tumor types (Fig. 6d), confirming the result of the 
Kaplan-Meier curve. As expected, TLS-score negatively correlated with multiple steps in anti-tumor immune response, including the 
release of cell antigens, recruiting of critical immune cells such as CD4+ T cell, CD8+ T cell, dendritic cell, NK cell, macrophage cell, 
Th1 cell, and Th17 cell, as well as infiltration of immune cells (Fig. 6e). 

2.6. TLS-score: an effective predictor for immunotherapy response and prognosis 

We then calculated the TLS score accordant to the two clusters to verify it. We compared the two score groups and the two clusters 
in pan-cancer and six immune subtypes [26]. As expected, the low TLS-score group almost all corresponded to cluster 1 and had a 
better OS (Fig. 7a). Furthermore, cluster 1 exhibited a higher percentage of inflammatory immune subtypes, while the quiet immu-
nological subtype only occurred in cluster 2. According to Thorsson et al. the inflammatory subtype was defined by elevated Th17 and 
Th1 genes, low to moderate tumor cell proliferation, and the best prognosis. On the contrary, the quiet immunological subtype dis-
played the lowest lymphocyte infiltration level and the strongest M2 macrophage response [26]. Consistent with the above results, a 
low TLS score was validated with better OS and superior immunotherapy response in GSE35640, IMvigor, GSE165252, GSE78220, and 
GSE91061 (Fig. 7b–f). The TLS score was a good predictor for individual tumors for OS (Fig. S1). 

Diving deeper into the mechanisms, we observed a significant positive association between TLS score and hypoxia, exosome, 
immune suppressive cell, and M2 ratio. In contrast, PD-1 signaling and T-cell signaling were negatively correlated with the TLS score 
(Fig. 8a). Via ssGSEA immune cell analysis, a trend of negative correlation was also observed in pan-cancer (Fig. S2a). The heatmap of 
immune checkpoints echoed the above results (Fig. S2b). 

To be more detailed, we compared the high TLS-score and low TLS-score groups with multiple indicators and presented the results 

Fig. 7. Prediction of TLS score in immunotherapy response. a. Circos plot showing the distribution of six immune subtypes in two clusters and TLS 
score groups in pan-cancer. b. Box plot showing the TLS score in patients with or without immunotherapy response in the GSE35640 dataset. The 
Wilcoxon rank test evaluated statistical importance. c. Overall survival of patients with high TLS-scores was compared with those with low TLS- 
scores using Kaplan–Meier survival curve in IMvigor210 dataset. A log-rank test assessed statistical significance. Box plot showing the TLS score 
in patients with complete response/partial response and stable disease/progressive disease. The Wilcoxon rank test assessed statistical significance. 
d. Box plot showing the TLS score in patients with or without immunotherapy response in the GSE165252 dataset. The Wilcoxon rank test evaluated 
statistical importance. e. The survival of patients with high TLS-scores was compared with those with low TLS-scores using the Kaplan–Meier 
survival curve in the GSE78220 dataset. A log-rank test assessed statistical significance. Box plot showing the TLS score in patients with complete 
response/partial response and stable disease/progressive disease. The Wilcoxon rank test assessed statistical significance. f. Box plot showing the 
TLS score in patients with complete response/partial response and stable disease/progressive disease in the GSE91061 dataset. The Wilcoxon rank 
test assessed statistical significance. 
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in a boxplot. MSI, CD8+ T cell, and TCR richness, landmarks of the immunoreactive tumor microenvironment (TME), were signifi-
cantly higher in the low TLS-score group (Fig. 8b–e). The HE staining of histopathological sections confirmed that the low TLS-score 
group exhibited higher infiltration of immune cells (Fig. 9a–d). Transforming growth factor-beta (TGF-beta), which exerted immune 
suppression and inhibited host immunosurveillance was higher in the high TLS-score group (Fig. 8f) [27]. T cell-inflamed gene 
expression profile (GEP) was higher in the low TLS-score group, indicating a superior response to PD-1 blockade (Fig. 8g) [28]. Besides, 
the low TLS-score group exhibited a lower aneuploidy score, altered fraction, number of segments, nonsilent mutation rate, homol-
ogous recombination deficiency (HRD), and intratumor heterogeneity (Figs. S3a–f), all of which are clues for genomic instability. As 
researchers proposed, excessive genomic instability could lead to high intratumor heterogeneity and impair the efficacy of immu-
notherapy in the end [13]. In addition, the antigen-presenting mechanism (APM) score showed more elevated levels in the low 
TLS-score group (Fig. S3g). Cancer testis antigen (CTA), a biomarker of tumor proliferation and progression [29], was also lower in the 
low TLS-score group (Fig. S3h). Moreover, leukocyte fraction and IFNG-related signatures were higher in the low TLS-score group 
(Fig. S3i-l), suggesting a better footstone for effective immunotherapy. 

3. Discussion 

Located in the peripheral region of tumor nests, TLS is sustained by long-lasting tumor-associated inflammation and is privileged to 
kill tumor cells [30]. It has been demonstrated that TLS could facilitate immunotherapy and promote survival in multiple cancers [11, 
14,31]. The most important thing right now is to define a group of markers which could best characterize TLS to maximize the value of 
it as potential biomarker. Machine learning plays a critical role in this part. Gene-based signatures are mathematical models that use 
various data inputs, such as patient characteristics, genetic information, and clinical data, to predict the outcome or prognosis of a 
disease. Machine learning algorithms are used to analyze and identify patterns within these data inputs, allowing researchers to 
develop accurate prognostic models. In this study, to grasp the whole picture of TLS-related genes in cancer, we performed a 
comprehensive analysis from appearance to essence, including the alteration landscape, the modulators, clustering ability, associated 
biological pathways, and potential value as biomarkers. For the ultimate goal, we established a TLS score and proved its predictive 
potency in various ways. 

Mutations of TLS-related genes were widespread and exhibited relatively high frequency in cancers. SKCM, STAD, COAD, UCEC, 
and LUAD had the highest mutation levels. And OV presented the highest amplification level in all nine genes. Interestingly, TLS- 
related genes displayed a significantly activating effect on ER and PR, which are both hormone receptors, and may be involved in 
the carcinogenesis of UCEC and OV. 

Based on the expression of TLS-related genes, pan-cancer samples fell into two clusters, with high expression of EIF1AY and PTGDS 
in cluster 2. Patients in cluster 1 exhibited better OS, and correspondingly, antigen processing and MHC I were upregulated in cluster 1, 
indicating an excellent start to the immune cycle. In contrast, WNT signaling, MAPK signaling, and ERBB signaling were upregulated in 
cluster 2, which may result in resistance to immunotherapy [32,33]. After LASSO-LR, pamr, SVM, random forest, Xgboost, and Boruta 
machine learning algorithms [34,35], we screened out EIF1AY, PTGDS, SKAP1, and RBP5 as the characteristic genes to best distinguish 
the two clusters. Through a series of analyses, EIF1AY and PTGDS were found to be hazardous and more related to the occurrence of 
diseases. Unlike EIF1AY, which is barely studied in cancers and needs further investigation, PTGDS is a member of the lipocalin su-
perfamily and plays a dual role in prostaglandins metabolism and lipid transport, involved in tumorigenesis of both solid and he-
matological malignancies [36]. SKAP1 and RBP5 were favorable factors. The former plays a critical role in participating in T cell 
motility and interactions in lymph nodes [37]. And down-regulation of RBP5 was associated with aggressive features in cancers [38]. 
Among the four genes, PTGDS regulated the expression of PD-L1 and the proliferation, migration, invasion and apoptosis of tumor 
cells, and exhibited huge potential in impacting macrophage migration and polarization, showing huge potential for predicting 
immunotherapy response. Nevertheless, the predictive capacity of these four genes remained unsatisfactory. As many studies have 
complained, conventional biomarkers like MSI, TMB, and CD274 alone did not predict therapeutic efficacy perfectly [39,40], and 
combined biomarkers could make up for each other, calling for an effective predictive model using existing biomarkers. 

To further explore the association between TLS and immunotherapy, we analyzed the differential genes of the two clusters and 
established a scoring system through the LASSO-LR algorithm. The TLS score included six genes (PTGDS, RBP5, SKAP1, ST6GALNAC1, 
and XIST), in addition to the first three genes, high expression of ST6GALNAC1 induced by M2-like macrophages is associated with the 
onset of colitis-associated colon cancer, and high tumor-initiating, self-renewal, and differentiation abilities [41,42], and XIST mainly 
functions to modulate cell proliferation and tumor growth [43]. We classified patients into high and low TLS-score groups by the 
median score. It turned out that the low TLS-score group significantly exhibited a better OS, and almost all overlapped with cluster 1, 
which verified the efficacy of our clustering and scoring methods. Moreover, after comparing the six immune subtypes demonstrated in 
the previous study [26], we discovered inflammatory subtype predominated in cluster 1 and the low TLS-score group. This immune 
subtype was characterized by elevated Th17 and Th1 genes, low to moderate tumor cell proliferation, and displayed the best prognosis. 

Fig. 8. Immune characteristics of TLS score in pan-cancer. a. Heatmap showing the correlation between selected immune signatures and TLS score. 
b. Box plot showing the MSI level in patients with high and low TLS scores. The Wilcoxon rank test assessed statistical significance. c. Box plot 
showing the CD8 level in patients with high and low TLS scores. The Wilcoxon rank test assessed statistical significance. d. Box plot showing the TCR 
richness level in patients with high and low TLS scores. The Wilcoxon rank test assessed statistical significance. e. Box plot showing the TCR 
Shannon level in patients with high and low TLS scores. The Wilcoxon rank test assessed statistical significance. f. Box plot showing the TGF-beta 
level in patients with high and low TLS scores. The Wilcoxon rank test assessed statistical significance. g. Box plot showing the GEP level in patients 
with high and low TLS scores. The Wilcoxon rank test assessed statistical significance. 
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Fig. 9. Characteristics of immune infiltration in two TLS score groups. a. Representative pictures of pathological HE staining of two TLS score 
groups in CESC from TCGA dataset. b. Representative pictures of pathological HE staining of two TLS score groups in LIHC from TCGA dataset. c. 
Representative pictures of pathological HE staining of two TLS score groups in SKCM from TCGA dataset. d. Representative pictures of pathological 
HE staining of two TLS score groups in BRCA from TCGA dataset. 
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In the end, we found out what a low TLS score really was. It represented a more active immune process, including releasing cell 
antigens, recruiting immune cells, and upregulating immune infiltration level. It also presented many characteristics beneficial to 
immunotherapy, such as higher MSI level, CD8+ T cell level, TCR richness, APM score, IFNG level, lower TGF-beta level, intratumor 
heterogeneity, and CTA score. The characteristic genes of TLS score may impact or reflect multiple levels of the patients’ immune 
status from a global perspective, such as immunogenic cell death, antigen presentation, and immune cell infiltration, as we have 
demonstrated PTGDS as a regulator of macrophage recruitment and polarization in this study. The TLS score could serve as a clustering 
method and distinguish immunoreactive populations from those less likely to benefit from immunotherapy to guide us in making the 
optimal therapeutic option. Further, previous studies showed that immunotherapy could promote the formation of TLS [14]. 
Therefore, using TLS score as a longitudinal evaluation could help identify patients who are long-term beneficiaries. 

TLS plays a role in orchestrating other lymphoid structures to carry out an anti-tumor immune response. It may be a small part of a 
larger immune war, but it has the unique advantage of fighting capacity. The TLS score we established effectively predicted immu-
notherapy response and patients’ survival. Its future application and combination await more research. 

4. Materials and methods 

4.1. Data collecting and preprocessing 

Transcriptomic data (HiSeq Illumina platform) and clinical information of 9637 pan-cancer samples across 33 cancer types were 
downloaded from The Cancer Genome Atlas (TCGA) dataset (UCSC Xena, https://xenabrowser.net/). 

4.2. Genomic alteration analysis 

Somatic mutation and copy number alteration data of TCGA pan-cancer samples were collected from Genomic Data Commons. The 
somatic copy number alteration (SCNA) (amplification and deep deletion) and mutation frequency (truncating and missense) scores of 
the pan-cancer samples were calculated. Values of the SCNA scores equal to 2 and − 2 were referred to as amplification and deep 
deletion, respectively [44]. The R package ComplexHeatmap (https://github.com/jokergoo/ComplexHeatmap) was used to generate 
the oncoPrint plot of pan-cancer samples regarding mutation and SCNA of TLS signature genes. 

4.3. DNA methylation analysis 

DNA methylation data of TCGA pan-cancer samples were collected from Genomic Data Commons. The R package IlluminaHu-
manMethylation450k.db was used for mapping the methylation array probes to corresponding genes. The median beta values were 
used for genes mapped with multiple methylation array probes. The median beta value for TLS signature genes in each pan-cancer 
sample was calculated to evaluate the overall methylation level. The correlation between DNA methylation beta value and mRNA 
expression for each TLS signature gene was calculated. 

4.4. Nonnegative matrix factorization (NMF) clustering for TLS signature genes 

TCGA pan-cancer samples with diverse expression patterns of TLS signature genes were classified using the NMF algorithm 
(https://github.com/renozao/NMF). The optimal number of clusters was determined based on the cophenetic values. 

4.5. Estimation of immune infiltration and functional annotation 

The relative abundance of immune infiltrating cells was calculated using the xCell algorithm [45] and ssGSEA algorithm. Gene set 
variation analysis (GSVA) on Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were performed 
using the R package GSVA [46]. 

4.6. Machine learning for feature genes 

The differentially expressed genes (DEGs) between TLS-related clusters were identified using the R package limma. Machine 
learning algorithms, including random forest, support vector machines (SVM), and prediction analysis for microarrays (pamr), 
Xgboost, Boruta, and LASSO-LR, were used for screening out the most potent genes for clustering. 

4.7. Cell culture 

U251 and HMC3 cells were purchased from iCell (http://www.icellbioscience.com). U251 cells were cultured in Dulbecco’s 
modified eagle medium (DMEM) with 10 % fetal bovine serum (FBS) in the saturated humidity incubator (37 ◦C, 5 % CO2). HMC3 cells 
were cultured in 1640 medium with 10 % FBS in the saturated humidity incubator (37 ◦C, 5 % CO2). 
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4.8. Cell transfection 

PTGDS-siRNA-1 (sense 5′-3′, CCAACUUCCAGCAGGACAAGUTT; antisense 5′-3′, ACUUGUCCUGCUGGAAGUUGGTT), PTGDS- 
siRNA-2 (sense 5′-3′, CACCUACUCCGUGUCAGUGGUTT; antisense 5′-3′, ACCACUGACACGGAGUAGGUGTT), and PTGDS-siRNA-3 
(sense 5′-3′, GAUAAGUGCAUGACGGAACAATT; antisense 5′-3′, UUGUUCCGUCAUGCACUUAUCTT) were used for cell transfection 
in U251 cells. 

4.9. Western blotting 

The western blotting assay assessed the expression level of PTGDS, PD-L1, and β-actin. Anti-PD-L1 (Rabbit, 1:2000, Proteintech, 
China), anti-PTGDS (1:1000, Rabbit, Proteintech, China), and anti-β-actin (Mouse, 1:5000, Proteintech, China) were used as the 
primary antibody. HRP goat anti-mouse IgG (Mouse, 1:5000, Proteintech, China) and HRP goat anti-rabbit IgG (Rabbit, 1:6000, 
Proteintech, China) were used as the secondary antibody. ECL development was used for visualization. 

4.10. EdU assay 

U251 cells transfected with siRNA of PTGDS were collected for EdU assay (NC, PTGDS-siRNA1, PTGDS-siRNA3). Please see the 
supplementary materials for detailed methods. 

4.11. Transwell assay 

U251 cells transfected with siRNA of PTGDS were collected for Transwell assay (NC, PTGDS-siRNA1, PTGDS-siRNA3). After the 
coculture between U251 and HMC3 cells, the cocultured HMC3 cells were collected for Transwell assay (NC, PTGDS-siRNA1, PTGDS- 
siRNA3). Please see the supplementary materials for detailed methods. 

4.12. Apoptosis assay 

U251 cells transfected with siRNA of PTGDS were collected for Apoptosis assay (NC, PTGDS-siRNA1, PTGDS-siRNA3). Please see 
the supplementary materials for detailed methods. 

4.13. Flow cytometry 

After the coculture between U251 and HMC3 cells, the cocultured HMC3 cells were collected for flow cytometry (NC, PTGDS- 
siRNA1, PTGDS-siRNA3). Please see the supplementary materials for detailed methods. 

4.14. HE staining 

Representative pictures of pathological HE staining of two TLS score groups in CESC, LIHC, SKCM, and BRCA samples were 
collected from TCGA dataset. 

4.15. Construction of the risk signature 

Machine learning algorithms, including random forest, SVM, pamr, Xgboost, Boruta, and LASSO-LR, were used for dimension 
reduction, respectively. A risk signature was further developed using LASSO regression analysis based on the intersected genes 
identified by these machine learning algorithms. 

4.16. Prediction of immunotherapy 

The GSE35640 (melanoma dataset), IMvigor210 cohort (urothelial carcinoma cohort), GSE91061 (melanoma dataset), GSE165252 
(Esophageal adenocarcinoma), and the GSE78220 (melanoma dataset) were collected to predict the immunotherapy response 
[47–50]. The expression value of raw data from all datasets was transformed to TPM value. TLS signature score was calculated in these 
cohorts, respectively. 

4.17. Annotation from the online portal 

The disease network of the feature genes was identified and visualized in the OPENTARGET platform (https://platform. 
opentargets.org) [51]. The protein interaction of the feature genes was pictured in the STRING database (https://string-db.org). 

4.18. Statistical analysis 

A univariate Cox proportional hazards regression model was used to assess the prognostic value of the TLS signature score. A two- 
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sided Wilcoxon rank-sum test was used for comparison between the two groups. The Kaplan–Meier method was used to compare 
survival differences between the two groups. All statistical analyses were performed using the R project (version 3.6.3). 
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SLOs Secondary lymphoid organs 
DCs Dendritic cells 
FRCs Fibroblastic reticular cells 
TILs Tumor-infiltrating lymphocytes 
TMB Tumor mutation burden 
TCGA the Cancer Genome Atlas 
SCNA Somatic copy number alteration 
NMF Nonnegative Matrix Factorization 
GSVA Gene set variation analysis 
GO Gene Ontology 
KEGG Kyoto Encyclopedia of Genes and Genomes 
DEGs The differentially expressed genes 
SVM Support vector machines 
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Pamr Prediction analysis for microarrays 
ESCA Esophageal carcinoma 
SKCM Skin cutaneous melanoma 
STAD Stomach adenocarcinoma 
COAD Colon adenocarcinoma 
UCEC Uterine corpus endometrial carcinoma 
LUAD Lung adenocarcinoma 
ACC Adrenocortical carcinoma 
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma 
PAAD Pancreatic adenocarcinoma 
TGCT Testicular germ cell tumors 
THCA Thyroid carcinoma 
OV Ovarian cancer 
PRAD Prostate adenocarcinoma 
AR Androgen receptor 
ER Estrogen receptor 
EMT Epithelial-mesenchymal transition 
OS Overall survival 
CESC Endocervical adenocarcinoma 
MSI Microsatellite instability 
IFNG Interferon-gamma 
TME Tumor microenvironment 
TGF-beta Transforming growth factor-beta 
GEP Gene expression profile 
HRD Homologous recombination deficiency 
APM Antigen presenting mechanism 
CTA Cancer testis antigen 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e23915. 
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