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a b s t r a c t

Pathogens causing infections, and particularly when invading the host cells, require the host cell
machinery for efficient regeneration and proliferation during infection. For their life cycle, host proteins
are needed and these Host Dependency Factors (HDF) may serve as therapeutic targets. Several attempts
have approached screening for HDF producing large lists of potential HDF with, however, only marginal
overlap.
To get consistency into the data of these experimental studies, we developed a machine learning pipe-

line. As a case study, we used publicly available lists of experimentally derived HDF from twelve different
screening studies based on gene perturbation in Drosophila melanogaster cells or in vivo upon bacterial or
protozoan infection. A total of 50,334 gene features were generated from diverse categories including
their functional annotations, topology attributes in protein interaction networks, nucleotide and protein
sequence features, homology properties and subcellular localization. Cross-validation revealed an excel-
lent prediction performance. All feature categories contributed to the model. Predicted and experimen-
tally derived HDF showed a good consistency when investigating their common cellular processes and
function. Cellular processes and molecular function of these genes were highly enriched in membrane
trafficking, particularly in the trans-Golgi network, cell cycle and the Rab GTPase binding family.
Using our machine learning approach, we show that HDF in organisms can be predicted with high accu-

racy evidencing their common investigated characteristics. We elucidated cellular processes which are
utilized by invading pathogens during infection. Finally, we provide a list of 208 novel HDF proposed
for future experimental studies.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Infectious diseases cause a major human and agricultural health
burden. They are caused by opportunistic, pathogenic microorgan-
isms such as bacteria, protozoans and fungi, and by viruses. Typi-
cally, discovering drugs and drug targets against these pathogens
focus on target factors (proteins, cellular structure, membranes)
of the pathogens themselves. However, these drugs become inef-
fective when the respective pathogens develop drug-resistant
variants enabled by high mutation rates and evolutionary pressure
[1]. A powerful but, however, yet under-explored alternative is to
identify factors of the host cells being essential for the pathogen’s
life cycle. These host dependency factors (HDF) are proteins of the
host cell needed by the pathogens to survive and replicate in the
host cell or organism. In contrast to factors of the pathogen, HDF
are not exposed to mutations and the evolutionary pressure of
the pathogen. Identifying HDF has not only the potential to find
therapeutic targets, but may also provide valuable insights into
microbial pathogenesis and potential mechanisms for manipula-
tion of host pathways [1]. Cheng and colleagues [2] observed that
silencing of gene CG3573, a type II inositol 1,4,5-5-phosphatase,
myotubularin, the ortholog of the mammalian myotubular
myopathy-related protein 2 (MTMR2) and Sbf, a regulating partner
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of the myotubularin ortholog (MTMR5) led to a decrease of bacte-
rial entry and less-effective vacuolar escape [3]. Besides this, dis-
rupting direct host-pathogen interactions can also disturb the
propagation of pathogens [4–6]. For this, not only knowledge of
the bacterial, but, more importantly, of the involved host factors
is needed [7]. However, studying gene perturbations in human
can only base on cell lines but not on the whole organism. Owing
to the genetic similarities and conserved pathways between D.
melanogaster and mammals, the use of the Drosophila model as a
platform to unveil novel mechanisms of infection and disease pro-
gression has been widely investigated [8] including host-pathogen
interaction studies [9–12]. E.g. Akimana et al. [9] performed an
RNAi screening experiment using Drosophila cells to identify host
factors infected with Francisella tularensis. They found CDC27 and
USP22 genes to be HDF which they validated in mammalian kidney
cells. Knockdown of these genes inhibited the replication of the
bacteria also in human host cells throughout the intracellular
infection period.

However, when searching the literature and databases of HDF
screening experiments in D. melanogaster, we observed a high
heterogeneity and only a few overlap of the identified HDF. The
variation and differential susceptibility could be attributed to the
functional genetic diversity of the immune response [13], the dif-
ferent investigated pathogens, mode of infection, the use of differ-
ent cell lines for experimental studies, the assay time post
infection, the procedures used to measure infection, and differing
approaches to analyze experimental data [14,15]. This makes it dif-
ficult to derive common mechanisms of these host dependencies.

Besides this, modern machine learning has been applied in a
plethora of biological research fields aiming to integrate such
heterogeneous data, as e.g. for the prediction of essential genes
in Drosophila [16] and bacteria [17], and also cancer cells [18–
23]. A semi-supervised machine learning approach predicted host
dependency factors of Human Immunodeficiency Virus (HIV) in
human cells using network topology features from protein interac-
tions [1] and observed high consistency of the prediction results to
the defined gold standard (85% precision at 60% recall) evidencing
the validity of this approach. We followed this path and set up a
machine learning pipeline to identify HDF and their common cellu-
lar processes for pathogenic infection in D. melanogaster. We
employed a well-elaborated assembly of a broad range of features
covering intrinsic and extrinsic gene and protein characteristics,
gene network topology, molecular function, compartment infor-
mation, biological processes and evolutionary conservation. We
assembled a gold standard for our predictions from an elaborated
set of twelve experimental knockdown or knockout screens. To
the best of our knowledge, this is the first attempt to use machine
learning to identify HDF for pathogenic (non-viral) micro-
organisms in a host organism.
2. Materials and methods

2.1. Defining the gold standard

We used data from 12 HDF screening studies listed in the Gen-
omeRNAi database [24]. In total, we collected a list of n = 835 HDF
(Table 1). The complete list of HDF is provided in Table S1 in the
supplementary material. Fig. S1 shows the overlap of the HDF from
these 12 studies. According to the number of studies an HDF was
found, we defined four different gold standards (GS) ranging from
low (GS-1-out-of-12-HDF), moderate (GS-2-out-of-12-HDF), ele-
vated (GS-3-out-of-12-HDF) to high (GS-4-out-of-12-HDF) strin-
gency. GS-1-out-of-12-HDF contained genes (n = 835) which had
been found in at least one of the 12 studies. GS-2-out-of-12-HDF
contained 123 genes identified as HDF in at least 2 studies. GS-3-
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out-of-12-HDF and GS-4-out-of-12-HDF contained 44 genes and
15 genes identified in at least 3 and 4 studies, respectively. To
avoid ambiguity in the gold standard of the list of non-HDF genes
(class of the negative controls), for all stringencies, we listed a gene
as a non-HDF if (1) it was part of at least one screen, and (2) was
not identified as an HDF in any of the twelve studies, resulting in
a list of 13,074 non-HDF.

2.2. Feature generation

A main hypothesis of this study was, that a broad collection of
intrinsic and extrinsic gene and protein features enables predicting
host factors for pathogen infection in eukaryotes. A total of 50,334
features were generated based on broad range of features derived
from (1) gene sequence, (2) protein sequence, (3) functional
domains of the proteins, (4) gene sets from Gene Ontology (GO),
(5) the number of homologous sequences, (6) topology properties
from protein-protein interaction networks, and (7) subcellular
localization of the protein (Fig. 1B). Protein and gene sequences
were downloaded from Ensembl [33,34] using BioMart [35]. For
deriving the protein and gene sequence features (features in cate-
gories 1 and 2), various numerical representations characterizing
the nucleotide and amino acid sequences and compositions of
the query genes were calculated using seqinR [36], protr [37],
CodonW [38] and rDNAse [39]. Using seqinR [36] the number
and fraction of individual amino acids and other protein sequence
features including the number of residues, the percentage of
physico-chemical classes and the theoretical isoelectric point were
calculated. Further protein sequence features were obtained using
protr [37] including autocorrelation, Conjoint Triad Descriptors
(CTD), quasi-sequence order and pseudo amino acid composition.
CodonW [38] was used to calculate gene characteristics like gene
length and GC content but also frequencies of optimal codons (fre-
quency of codons favored by natural selection, see [40]) and the
effective number of codons. Using rDNAse [39] gene descriptors
like auto covariance or pseudo nucleotide composition, and kmer
frequencies (n = 2–7) were calculated.

The feature seq.attribute.distribution describes the distribution
of amino acid attributes in the protein sequence. Amino acids were
categorized into three classes according to their attributes. There
are seven attributes used in this feature. These are (1) hydropho-
bicity, (2) normalized van der Waals volume, (3) polarity, (4) polar-
izability, (5) charge, (6) secondary structure, and (7) solvent
accessibility. These attributes were represented by the first digit
in the feature name. The second digit represented the class the
amino acids belong to, either (1) polar, (2) neutral or (3) hydropho-
bic. The last three digits were the ‘‘distribution descriptor” describ-
ing the location of the attribute in the sequence. There are five
‘‘distribution” descriptors for each attribute together with their
location, i.e. either at the beginning of the sequence (000), around
the 25% quantile of residues (025), 50% (050), 75% (075), or at the
end of the sequence (100). For example, seq.attribute.distribution.
51000 is the sequence attribute of amino acids having a charge (5),
being polar (1) and are located at the beginning of the sequence
(000).

For deriving domain features (feature category 3), BioMart was
used to obtain protein family (pfam) domains, number of coiled
coils, the prediction of membrane helices, post-translational mod-
ifications, b-turns, cofactor binding, acetylation and glycosylation
sites, trans membrane helices and signal peptides. In addition,
the number and lengths of UTRs were obtained using BioMart.
For features obtained from gene sets defined by Gene Ontology
(feature category 4), gene sets of all GO terms including biological
process, cellular localization and molecular function were obtained
from Ensembl (version 102, released in Nov 2020) [33,34]. Gene
sets were removed if they showed high redundancy according to



Table 1
The experimental studies for our gold standards.

Name of the
study*

Host cell system or organism Pathogens Num-ber of
HDFs

Number of silenced
genes

Method Reference

Agaisse SL2 cells Listeria mono-cytogenes** 207 ~21,300 dsRNAs [25]
Akimana S2R+ cells Francisella tularensis** 197 ~21,300 dsRNAs [9]
Cheng S2 cells Listeria mono-cytogenes** 82 7216 dsRNAs [2]
Derre SL2 cells Chlamydia caviae** 175 16,000 dsRNAs [26]
Ragab SL2 cells Escherichia coli** 34 ~21,300 dsRNAs [12]
Cronin Gut epithelium, hemocytes Serratia marcescens** 97 10,689 Mutant fly

lines
[27]

Qin S2 cells Brucella melitensis**, B. abortus** 50 370 dsRNAs [28]
Philips S2 cells Mycobacterium fortuitum** 83 21,300 dsRNA [29]
Brandt D. melanogaster, whole

organism
Plasmodium gallinaceum*** 14 1452 Mutant fly

lines
[30]

Kutten-keular D. melanogaster, whole
organism

Escherichia coli**, Micrococcus
luteus**

19 1033 dsRNAs [10]

Pielage S2 cells Pseudomonas aeruginosa** 28 80 dsRNAs [31]
Peltan S2 cells Leishmania donovani***, L. major*** 34 1920 dsRNAs [32]

* We named the studies according to the name of the first author.
** Bacteria, *** Protozoa.

Fig. 1. Statistics of the predictions, the gold standards and the features. (A) Overlap of the predictions from the four classifiers. GS-1-out-of-12-HDF, GS-2-out-of-12-HDF, GS-
3-out-of-12-HDF, GS-4-out-of-12-HDF predicted 107, 351, 293 and 191 HDF, respectively. (B) Distribution of the gene features according to the seven major categories. The
values in parentheses indicate the number of features selected for machine learning. (C) Visualization of the overlapping HDF among the different investigated gold standards
GS-1-out-of-12-HDF (GS1of12) to GS-4-out-of-12-HDF (GS1of12).
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the following method. The gene overlap of each pair of gene sets A
and B was quantified by Jaccard similarity coefficients,

J A;Bð Þ ¼ A \ Bj j
A [ Bj j ð1Þ

Pairs with J(A, B) above a threshold (threshold = 0.3) were
included in the model and represented as an undirected graph,
G = (X, E), with the gene sets as vertices X and the pairs above
the threshold as edges E. A linear model was set up with a con-
straint to select at most one of the vertices of an edge:

Xi þ Xj � 1; for every fi; jg 2 E ð2Þ

Xi ¼ 0; or Xi ¼ 1; for 1 � I � n ð3Þ
with the objective function to maximize

RwiXi

where wi is the weight of a gene set. The weight is derived from its
significance (p-value) and calculated as 1 � log10(p-value)/100. This
maximization was done employing linear integer programming
solved using Gurobi (version 7.5.1, https://www.gurobi.com). With
this, we formulated the optimization problem to select at most one
gene set from each pair in such a way that the overall number of
non-redundant gene sets was maximized. This optimization prob-
lem was formulated as a mixed integer linear programming prob-
lem and solved using Gurobi (version 7.5.1, https://www.
gurobi.com). A gene list was generated for each query gene accord-
ing to a protein association network obtained from the STRING
database [41]. The gene list for a gene is the set of all adjacent genes
in the protein association network. A gene set enrichment test was
performed employing Fisher’s exact test and the negative log10 of
the p-value was used as a feature.

The number of homologous proteins (feature category 5) was
obtained by blasting the protein sequence of the query protein
against the complete RefSeq database [42] using PSI-BLAST [43].
The number of proteins found with e-value cutoffs from 1e�5 to
1e�100 were used as features. Topology features (feature category
6) were computed using the NetworkX [44] library in Python. Pro-
tein association data was downloaded from STRING [41] and an
undirected network was constructed. From this, degree, degree
distribution, closeness centrality, eigenvalue centrality, between-
ness centrality, harmonic centrality, subgraph centrality, load cen-
trality and Page rank as topological features were computed for
each gene. To note, the harmonic centrality of a node g is the
sum of the reciprocal of the shortest path distances from all other
nodes to g. The higher the value, the higher the centrality [45]. The
subcellular localization of proteins (feature category 7) was
derived using DeepLoc [46]. DeepLoc predicts the likely location
of a protein within a cell by assigning probability scores to eleven
eukaryotic cell compartments (cytoplasm, nucleus, extracellular,
mitochondria, plasma membrane, ER, chloroplast, Golgi apparatus,
lysosome, vacuole and peroxisome). In total we generated 50,334
features.

2.3. Machine learning

The machine learning procedure is depicted in Fig. 2. Features
with low variance were removed (n = 17,681 were removed) using
sklearn.feature_selection.VarianceThreshold for Python (thresh-
old = 0.01). To improve the training, z-score transformation was
applied to all features. For cross validation, the dataset was split
into training (9/10) and test sets (1/10). Using the training set,
we performed two steps for feature selection prior to training of
the machines. First, we applied an embedded approach based on
Random Forests as suggested by Breiman et al. [47] for feature
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selection. Each tree in the forest was initialized by bootstrapping
from the training data to train a baseline model. Its performance
was estimated using the out-of-bag (OOB) samples from the train-
ing data. Then, the values of one feature was randomly shuffled,
keeping all other features the same, yielding permutated data.
The permutated dataset was applied to the learned model and its
performance was evaluated. Finally, the difference between the
benchmark score from the baseline model and the score from the
permutated model was calculated to determine the importance
of the feature [48]. By this, we ranked all features and selected
the features with importance score �1 for training the down-
stream classifier. To avoid overfitting, collinearity was reduced by
eliminating highly correlating features with Pearson’s correlation
coefficients r > 0.70 (step 2). When two features highly correlated,
the feature that was less correlated with the target variable was
removed [49,50]. A total of 22,889 redundant features
were removed. Consequently, we were left with 9764 features after
removing low-variance and redundant features. For parameter
optimization, the training data was further divided into training
and test data using 5-fold cross-validation of the GridSearchCV (a
method found in scikit-learn) [51] in an inner loop to obtain opti-
mal hyper-parameters for the classifiers. GridSearch creates a
parameter grid where all possible combinations of the hyper-
parameter values are evaluated to obtain the optimal hyper-
parameter values.

Our data consisted of much more negative than positive class
samples, specifically the ratio of dependency factors to non-
dependency factors was 1:16. To address this, we used the Syn-
thetic Minority Oversampling Technique (SMOTE) [52]. SMOTE is
a frequently used sampling method that creates synthetic, non-
duplicated samples of the minority class to balance the number
of samples of the classes. For each sample of the minority class,
SMOTE selects the k-nearest neighbors of the same class and ran-
domly creates multiple synthetic samples between the observation
and the nearest neighbors depending on the number of additional
samples needed. Six different classification methods were tested to
train the model. These classifiers included Random Forest (RF) [47],
Extreme Gradient Boosting (XGB) [53], Light Gradient Boosting
Model (LGBM) [48], Support Vector Machines (SVM) [54], Artificial
Neural Networks (NNET) [55], and Logistic Regression (LREG) [56].
The hyper-parameter settings with the optimal performance was
n_estimators = 600, learning_rate = 0.05, num_leaves = 32, colsam-
ple_bytree = 0.2, reg_alpha = 3, reg_lambda = 1, min_split_gain = 0.01
and min_child_weight = 40 for LGBM; n_estimators = 600, max_-
depth = 70, min_samples_leaf = 4, min_samples_split = 10 for RF;
n_estimators = 600, max_depth = 70, learning_rate = 0.01, subsam-
ple = 0.8, colsample_bytree = 0.8 for XGB. Default parameter values
were used for SVM (RBF kernel, squared L2 penalty was the regu-
larization parameter). The max_iter parameter in NNET was set to
2000 and default parameters otherwise. For logistic regression,
elasticnet penalty was set as the regularization parameter, the algo-
rithm used for the optimization problem was saga and the l1_ratio
was set to 0.5.

Similar data preprocessing techniques were applied to all the
four datasets (using the four gold standards GS-1-out-of-12-HDF
to GS-4-out-of-12-HDF) yielding four different machine learning
models. To improve generalizability, we performed a stratified ran-
domized 10-fold nested cross validation for GS-1-out-of-12-HDF
analyses where 90% of the dataset were used for feature selection
and training of the classifiers, and 10% for testing. A three-fold
cross validation was used for GS-2-out-of-12-HDF, GS-3-out-of-
12-HDF and GS-4-out-of-12-HDF due to the small number of pos-
itive samples in these datasets (see Fig. 1C) ensuring a reasonable
number of positive samples in the test sets during cross-validation.
In addition, we repeated these cross validations five times and
averaged the results over these five independent runs for each
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Fig. 2. Schematic overview of the machine learning pipeline. Features were generated from seven sources and four different gold standards (GS) ranging from low (GS-1-out-
of-12-HDF), moderate (GS-2-out-of-12-HDF), elevated (GS-3-out-of-12-HDF) to high (GS-4-out-of-12-HDF) stringency. These gold standards were used to train and validate
four different classifiers. Predictions from the four classifiers were linearly combined and ranked yielding a combined (aggregated) classifier. The trained classifiers were
validated based on cross validation results, the most important feature determined and a list of predicted HDF was given out.
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algorithm-dataset combination. To get a combined machine, the
four models were linearly combined aggregating their predictions
and their feature rankings leading to a single list of predictions
and feature rankings. The total number of machines used for pre-
diction based on the four gold standard datasets was 16. We per-
formed a single-cross validation run for GS-1-out-of-12-HDF and
five independent runs for GS-2-out-of-12-HDF, GS-3-out-of-12-
HDF and GS-4-out-of-12-HDF based runs. The list of predicted
HDF based on all four models was ranked by the average prediction
probability score. For this, we ranked the genes based on the num-
ber of classifiers which predicted them as an HDF (first priority)
and on the average predicted probability score (second priority).
To obtain a list of the most discriminative features, the most
important features were selected. For this, we computed the
importance of each feature for each classifier employing the fea-
ture importance method for ensemble classifiers based on the
bootstrapping approach described above [48]. The code for the
machine learning procedure including feature generation can be
found at the GitHub repository (https://github.com/phemmy2k2/
HDF_codes).
2.4. Gene set enrichment analyses of the known and predicted HDF,
and of human disease genes

Gene set enrichment analysis was performed using g:Profiler
based on the Ensembl version 102 database [57]. The SCS algo-
rithm with default settings was used to correct for multiple testing
and the significance threshold was set to P = 0.05. The term size of
the selected enriched gene sets was set between 3 and 500 to filter
out too specific and too general gene sets. For the comparison of
the gold standard and predicted HDF in human, homologous genes
were identified using BioMart (for Section 3.4).
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3. Results

3.1. Predicting HDF with good accuracy

To identify HDF in D. melanogaster by machine learning, 50,334
features from seven different categories were assembled based on
protein and gene sequence, gene sets of genes with similar cellular
functions or processes, topology of protein interaction networks,
evolutionary conservation, functional domains of proteins and sub-
cellular localization of the according proteins. Removing highly
correlating and low varying features reduced the number of fea-
tures to n = 9764. Due to the low overlap of HDF identified among
the twelve screening studies (Fig. 1A), we assembled four different
gold standards comprising low stringency (an HDF was identified
in at least one of the 12 studies, denoted as GS-1-out-of-12-
HDF), moderate (at least 2 studies identified an HDF in this list,
denoted as GS-2-out-of-12-HDF), elevated and high stringency
(at least three and four studies identified an HDF, denoted as GS-
3-out-of-12-HDF and GS-4-out-of-12-HDF, respectively). Six
machine learning algorithms (LGBM, LReg, NNET, RF, SVM, XGB)
were applied to predict HDF. The results from the validation sets
from cross-validation are shown in Fig. 3. The machine based on
the gold standard with elevated stringency (GS-3-out-of-12-HDF)
performed best (accuracy = 0.82), followed by GS-4-out-of-12-
HDF (accuracy = 0.78). The classifiers produced good performance
when applied to an independent test data set, yielding ROC-
AUC = 0.936 and PR-AUC = 0.594 (Fig. 3C). Considering the average
performances of the different algorithms across the four datasets,
LGBM performed best (Fig. S2). Hence we used the results from
LGBM for the further analyses. GS-4-out-of-12-HDF showed a
gradual lower performance compared to GS-3-out-of-12-HDF
(ROC-AUC = 0.927, Fig. 3D) which may have been due to the low
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Fig. 3. Results of the machine learning prediction results on the validation sets of GS-1-out-of-12-HDF (A), GS-2-out-of-12-HDF (B), GS-3-out-of-12-HDF (C) and GS-4-out-of-
12-HDF (D). We observed performance improvement when two or more studies listed a gene as HDF (GS-2-out-of-12-HDF, GS-3-out-of-12-HDF, GS-4-out-of-12-HDF). The
best performance was observed for GS-3-out-of-12-HDF. Reduced performance was observed in the gold standard GS-4-out-of-12-HDF when compared to the gold standard
GS-3-out-of-12-HDF, which may be due to the small number of HDF in this gold standard (n = 15).
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number of HDF in this gold standard. Next, the classifiers were lin-
early combined to yield a single robust classifier. The combined
classifier yielded an ROC-AUC = 0.76, PR-AUC = 0.348,
sensitivity = 0.269, specificity = 0.982, and precision = 0.485. The
ROC-AUC and sensitivity score of some of the individual classifier
were higher than the combined classifier. In turn, the combined
classifier yielded the best precision compared to all the individual
classifiers (precision = 0.471, 0.462, 0.319 and 0.186 for classifiers
GS-1-out-of-12-HDF to GS-4-out-of-12-HDF, respectively). As a
good precision is valuable for experimental follow up analysis lim-
iting the number of false positives, we used the results of the com-
bined classifier for the following analyses. By this, 464 genes were
predicted to be an HDF of which n = 225 were true positives (part
of the gold standard GS-1-out-of-12), i.e. also identified in at least
one of the twelve studies from Table 1, and n = 239 were novel pre-
dicted HDF.

Drug target investigations aim to identify HDF that are essential
for the pathogens, but are not essential to the host cell or lethal to
the organism when non-functional. Therefore, we compared the
predicted HDF to genes annotated with a lethal loss-of-function
phenotype across the developmental stages interrogating several
genetic databases (Flybase [58], Database of Essential Genes
(DEG) [59] and Online Gene Essentiality database (OGEE) [60].
n = 31 of the predicted HDF were found with a lethal loss-of-
function phenotype in at least one of these databases and were
hence excluded from our list of predicted HDF. In total, n = 208 pre-
dicted HDF (predHDF in the following) remained, listed in Table S2.
To obtain a priority list of predHDF, we ranked the predHDF based
on the number of classifiers which predicted them and their pre-
diction scores. The top ten ranking predHDF are listed in Table 2
and a complete list is given in Table S2.

3.2. Identifying common cellular processes and functions of the
predicted host dependency factors

We performed gene set enrichment analysis to elucidate com-
mon biological processes, molecular functions and cellular compo-
nents of known and predicted HDF. There was a significant overlap
Table 2
The ten predicted HDF with the highest scores.

Gene
symbol
or ID

Gene description Average
predicted
probability to
be an HDF

Number of
models
predicting this
gene as an HDF

CG41099 Metal ion binding 0.975 15
Auxilin ATP binding; clathrin

binding; protein kinase
activity

0.953 15

Mig-2-
like

GTP binding; GTPase
activity

0.945 15

Secretory
22,
Sec22

SNAP receptor activity 0.887 15

Rolled Protein binding; JUN
kinase activity; protein
kinase activity

0.872 15

AP-1-2b Clathrin binding; clathrin
adaptor activity

0.908 14

Lrrk2 Protein kinase activity 0.902 14
Pten Dynein complex binding 0.726 14
Ankyrin Ion channel binding;

spectrin binding;
cytoskeletal anchor
activity

0.723 14

Act88F Involved in muscle thin
filament assembly and
skeletal myofibril
assembly

0.933 13

4587
(p < 0.0001) in the enriched gene sets of the HDF from the gold
standard and the predicted HDF confirming common cellular pro-
cesses of predicted and known HDF. 467 out of 745 gene sets (from
Gene Ontology) of the predicted HDF were also found in the gold
standard (Fig. 4B). For the predHDF, we found several transport
processes, such as cytosolic and endosomal transport indicating
the need for these specific cellular maintenance processes when
the micro-organisms are inside the host cells, or Golgi organization
and SNAP receptor activity mediating cellular uptake and release.
Mitotic cell cycle was identified to be one of the most enriched
gene sets of biological processes. Table S3 shows the list of 32
predHDF annotated in Gene Ontology to be involved in mitotic cell
cycle. We were interested if we could enlarge the list of predHDF
potentially playing a role in this biological process. For this, we
compared the hit lists of two publically available gene knockdown
screens observing genes being relevant for the cell cycle, per-
formed by Dobbelaere et al. [61] and Goshima et al. [62]. We found
further n = 7 genes being hits of these screens in our predHDF sug-
gesting their involvement in cell cycle, as e.g. the genes Rheb, Myb,
Raptor (the complete list and a Venn diagram is given in the sup-
plementary material, Table S4, Fig. S4 respectively). Interestingly,
several neural related annotated processes were highly enriched
in the list of predHDF, such as neuron maturation, retrograde
transport, axon, synaptic vesicle and distal axon (Fig. 4A) including
several genes of RAB GTPases and Vacuolar Protein Sorting genes
which will be discussed below (Discussion). For getting a more
comprehensive view on the biology of known and predicted HDF,
we compiled these two lists and performed gene set enrichment
analysis on this combined list confirming the above described
results. The most prominent gene sets of this combination are pro-
vided in Fig. 4C. In summary, we observed considerable consis-
tency among the cellular processes and functions and
components in which known and predicted HDF are involved, dis-
cussed in more detail in Discussion.

3.3. Investigating the features with high discriminative power

To get an insight into the way how the machines identified HDF,
we investigated the features with high discriminative power (ob-
tained by high importance values). Features from all the seven cat-
egories constituted to the top 30 discriminative features
supporting our approach to assemble features across such a broad
spectrum. One feature from the protein category describing the
attributes and location of amino acids in the protein sequence
was the most important feature (seq.attribute.distribution.51000,
Fig. S3) addressing proteins which sequences contain charged
and polar residues among their first residues (details, see Meth-
ods). Amino acid attributes such as hydrophobicity, normalized
van der Waals volume, polarity, polarizability, charge, secondary
structure and solvent accessibility of the protein sequences were
also highly important in discriminating HDF from non-HDF. Inter-
estingly, this compares to a previous study in which these descrip-
tors were essential to predict protein function [63]. Furthermore,
harmonic and degree centrality from the topology features were
among the highest ranking features (second and third, respec-
tively). They were positively correlated to HDF indicating that
HDF are often hubs. Another highly discriminative feature was prob
of N-in, which is a domain feature that describes the total probabil-
ity that the n-terminus of the protein is on the cytoplasmic side of
the membrane. If the n-terminus of a transmembrane protein is on
the cytoplasmic side upon pathogen entry and engulfment to form
an endosome, the n-terminus was observed to be excluded from
the endosome, making it available for ubiquitin tagging followed
by degradation of the protein or entire endosome [64]. This obser-
vation reasons the negative correlation of prob of N-in to HDF
observed in our model, which shows that the higher the total prob-



Fig. 4. Results from the gene set enrichment analyses. (A) Gene sets with the most significant enrichment in predicted HDF for the three Gene Ontology domains. (B) Overlap
of enriched gene sets between the predicted HDF and the HDF of the gold standard. (C) Gene sets with the most significant enrichment in the predicted HDF together with
HDF from the gold standard.
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ability of a protein having the n-terminus on the cytoplasmic side
of the membrane, the lower the probability of it to act as an HDF.
3.4. Comparing the involvement of HDF from the gold standard and
the predicted HDF with a human trafficome screen, and a quantitative
assessment of the literature

As described above, we identified several HDF in membrane
trafficking (see also Discussion). We were interested how this com-
pares to infected human cells. Kehl et al. [65] performed a focused
screen knocking down genes of the trafficome in Salmonella enter-
ica infected HeLA cells [65]. Indeed, when comparing our gold stan-
dard and our list of predHDF, we found a good overlap, specifically
in the list of predHDF (n = 22, 10.6% of predHDF, compared to
n = 21 genes, 2.5% of the gold standard, GS-1-out-of-12-HDF).
The lists of common genes are given in the supplementary material
(Table S6). Furthermore, we performed a statistical literature anal-
ysis to test if articles dealing with the predicted HDF were more
often associated to infections than articles dealing with non-HDF
genes. Hence, for each gene of predHDF (n = 208 genes) we counted
the number of articles in PubMed selected by the gene symbol and
the word ‘‘infection” and compared these numbers to the numbers
of articles using an equal number of randomly selected non-HDF.
Based on about 20 million records from Pubmed, predHDF were
significantly more often associated with ‘‘infection” compared to
non-HDF (P = 1.16 E-07, Wilcoxon rank test). Both computational
analyses showed evidence suggesting our predictions to be indeed
HDF.
4. Discussion

Due to the high heterogeneity of the gold standard, we investi-
gated if an appropriate machine learning approach can learn dis-
tinguishing HDF from non-HDF based on a broad variety of gene
features and four different gold standards according to a low, mod-
erate, elevated and high stringency. By this, the machines could
well recover these lists. The best performance was obtained for
the elevated gold standard (GS-3-out-of-12-HDF) which may best
balance between annotation quality of the class labels (HDF versus
non-HDF) and the number of HDF. To predict the most precise set
of new HDF, we combined all classifiers based on a voting scheme.

To elucidate if the predicted HDF show a consistent pattern to
the biology on a statistical view, we performed three investiga-
tions. First, we compared their involvement in cellular processes
and function with the genes from the gold standard. We found a
good agreement. Next, we investigated their associations to dis-
eases and found also similar diseases as for the genes of the gold
standard (92% overlap). Thirdly, we performed a statistical litera-
ture analysis and found that predHDF were significantly more
often associated with ‘‘infection” compared to non-HDF (P = 1.16
E�07). When searching for the predHDF in the literature, we found
that many of the predHDF had been described to be important for
pathogen infection in the host organism or host cell. Notably, most
of these proteins were involved in membrane trafficking or signal-
ing. In the following, we discuss the most interesting findings from
our literature study.

A high ranking predHDF is Phosphatase and TENsin homolog
(PTEN) (Table 1). Expression of PTEN was increased in Trypanosoma
cruzi infected cells to about 300% higher levels compared to con-
trols six hours after infection [66]. In addition, rat myoblast
(H9c2 cells) transient transfected cells with rno-miR-190b inhibi-
tor (miR-190b blocks PTEN translation) had increased rates of
infection compared to non-transfected controls [66]. This suggests
that PTEN is necessary for T. cruzi infection in host cells. Leucine-
rich repeat kinase 2 (Lrrk2, FBgn0038816) is another high ranking
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predHDF (Table 1). Lrrk2 (also known as Lrrk) is a multi-domain
protein having two catalytic domains, a GTPase domain and a
kinase domain [67]. The role of Lrrk2 in pathogen infection or clear-
ance might again depend on the pathogen and the host cell type.
While Lrrk2-/- knockout mice showed increased susceptibility to
Listeria monocytogenes and Salmonella typhimurium [68,69], in
another study it was shown that Lrrk2 deficiency in mice resulted
in a significant decrease in M. tuberculosis infection [70]. Herbst
and Gutierrez suggested that this discrepancy might be due to
the different roles of Lrrk2 in different cell types [71]. This further
suggests that proteins acting as host dependency factors depend
on the host cell type and/or the infecting pathogen.

Small GTPases regulate transport and fusion of membrane-
bound compartments in a cell [72]. They play a central role during
intracellular infections. We found Rap1 as a predHDF. Rap1 is a
small GTPase and required for pathogen vacuole formation of an
intracellular bacterial pathogen [73]. Legionella pneumophila, a
gram negative bacterium which causes the Legionnaires’ disease,
a severe pneumonia, exploits Rap1 for intracellular replication
and growth in mammalian macrophages and in the amoebae Dic-
tyostelium discoideum [73,74]. Rap1 is an important host compo-
nent of the specialized membrane-bound compartment
‘‘Legionella-containing-vacuole” (LCV), within which this bac-
terium grows and evades the immune response of the host cells.
Depletion of Rap1 by RNAi has been observed to reduce intracellu-
lar replication of L. pneumophila [74]. LCV supports L. pneumophila
to grow in host cells (using host cellular components) and prevents
them to be cleared. LCV are also formed during L. pneumophila
infection in Drosophila cells [75]. Rap1 was also studied in infected
Drosophila cells. Expression of activated Rap1 has been found to
mimic the effect of the enzymatically active A subunit of Cholera
toxin (CtxA) in Drosophila leading to the reduced expression of
Rab11 (Rab11 was in the gold standard), Sec15-GFP and Delta (a
Notch ligand) [76]. It was noted that CtxA exerts its toxic activity
by binding the host co-factor GTP-ARF6 leading to a cascade of sig-
naling events which results in increased cAMP concentration. cAMP
exerts its effects through protein kinase A (PKA) and Epac (a gua-
nine nucleotide exchange factor that activates Rap1). Conse-
quently, CtxA activated the expression of Rap1 to reduce notch
signaling and led to increased V. cholerae infection [76].

ROCK/Rok (FBgn0026181) is another predicted HDF. Its activity
is required for membrane bleb formation and its activation is
mediated by Transforming Growth Factor beta (TGF-b2), needed
for augmented invasiveness of Theileria in susceptible Holstein-
Friesian macrophages [77]. Another study linked the activity of
ROCK to contractile force generation, a process necessary for
infected cell motility during Theileria annulata infection [78]. This
suggests ROCK to act as a host dependency factor during Theileria
infection.

We found high enrichment of genes of the Rab GTPase binding
protein family in our list of predHDF (Rab3, Rab9, Rab14, Rab18,
Rab40, RabX1, RabX4, RabX5, RabX6) and the gold standard (Rab1,
Rab2, Rab4, Rab5, Rab7, Rab8, Rab10, Rab11, Rab21, Rab35,) suggest-
ing their central role for pathogens. Small GTPases belonging to the
Rab family play an important role in membrane trafficking [79] and
intact membrane trafficking in bacteria is crucial for host cell inter-
action and virulence. A study by Seixas and colleagues [80] exam-
ined how bacteria and protozoa modulate the expression of Rab
proteins in mouse macrophages. In their study, Rab9, a late endo-
somal Rab protein involved in retrograde trafficking was upregu-
lated during E. coli and Salmonella enterica infection. It was
observed that this increased expression hampered phagocytosis
of these bacteria while silencing Rab9 enhanced their phagocytosis.
Similarly, in their study, increased expression of Rab14 was
observed during Plasmodium berghei infection [80]. Rab14 plays
an important role in endosomal recycling [81]. Increased expres-
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sion of Rab14 was associated with reduced phagocytosis of P. ber-
ghei and reduced expression of Rab14 by RNAi led to a significant
increase in phagocytosis of P. berghei [80]. This suggests that P. ber-
ghei upregulates host Rab14 while E. coli and S. enterica upregulate
Rab9 to escape immune response and enhance their survival in
host cells. In a different study, depletion of Rab9 and Rab14 reduced
the intracellular growth of S. enterica [72]. During chlamydia infec-
tion, Rab14 modulates the delivery of endogenously synthesized
sphingolipids into the growing bacteria containing vacuole; inter-
fering with Rab14 was observed to reduce bacterial replication
and infectivity [82]. Upon this, Mycobacterium tuberculosis modu-
lates Rab14 to block phagosome maturation in infected macro-
phage cells [83]. This maintains the host cells in an early
endosomal phase, preventing the recruitment of late endosomal/
lysosomal degradative components, hence enabling the pathogens
to escape clearance by host cells. Knockdown of Rab14 relieved the
maturation block, allowing phagosomes with live mycobacteria to
progress into phagolysosomes. Rab18 has been reported to mediate
viral replication of classical swine fever virus, CSFV, in swine
umbilical vein endothelial cells [84] as well as to mediate assembly
and replication of hepatitis C virus [85,86]. It was observed that
knockdown of Rab18 reduced CSFV production while overexpres-
sion of Rab18 increased CSFV production. Thus, Rab18 was identi-
fied as a host factor required for CSFV RNA replication and capsid
assembly through its interaction with the viral protein NS5A
[84]. Similarly, Rab18 has been noted as a key component in
endosome-ER trafficking of the human polyomavirus BKPyV [87].
In addition, retention of Rab18 in live Salmonella-containing
enabled them to avoid transport to the lysosomes through late
endosomes and aiding their proliferation [88]. Rab3 has been found
to co-localize with the bacterium Neisseria meningitidis in human
lung cancer cells (Calu-3 cells) [89]. Here, it was observed that N.
meningitidis recruits Rab3, a mediator of the host vesicular traffick-
ing to the apical site of infection to aid its replication and survival
in host cells. These studies suggest Rab3, Rab18, Rab9, Rab14 to be
host dependency factors and our analyses suggests future investi-
gation of the entire family.

We identified endosomal transport, Golgi organization and ret-
rograde transport to be highly enriched gene sets in predHDF
(P = 6.15E-19, 1.56E-14 and 4.19E-12, respectively), and particu-
larly, several vacuolar protein sorting (VPS) genes were identified
as predHDF (Vps26, Vps35, Vps39, Vps45, Vps52), or were in the gold
standard (Vps2, Vps28, Vps4). The vacuolar protein sorting retromer
is a heterotrimer complex that mediates the endosome-to-Golgi
transport of lysosomal hydrolases receptors [90] and endosomal
trafficking processes [91] as e.g. the retrograde transport of specific
cargo proteins from endosomes to the trans-Golgi network [92]. It
is required by Brucella to escape lysosomal degradation in host
cells and to establish its intracellular replicative niche [93]. Hence
its components have been validated as host dependency factors
required for Brucella infection. The VPS retromer is composed of
Vps26, Vps35, and Vps29 [90]. Vps35 was predicted in this study
as an HDF. Knockdown of Vps35 significantly reduced Brucella
infection in HeLa cells [93]. Similarly, silencing Vps35 reduced
intracellular replication of Coxiella burnetii [92]. In summary, sev-
eral VPS proteins are known to act as HDF and we suggest also here
further investigation of the entire family.

The most significantly enriched gene set for molecular function
was ‘‘SNAP receptor activity”. The SNARE (soluble-N-ethylmalei
mide-sensitive-factor accessory-protein receptor) complex
accounts for the major membrane fusion machinery and regulates
membrane fusion [94,95]. SNARE complex proteins are crucial for
infection of intracellular pathogens as they allow their internaliza-
tion and establish their niche in the host cell. Several predHDF
belong to the SNARE family including Snap29, Sec22 and Syx16.
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Sec22was one of the highest ranking predHDF (Table 1). Sec22 par-
ticipates in endoplasmic reticulum (ER)-Golgi trafficking. It is
localized in the LCV during L. pneumophila infection [96]. Although
depleting Sec22 alone in Drosophila host cells did not reduce L.
pneumophila replication, depleting a combination of Sec22 and
Arf1 or members of the transport protein particle (TRAPP) complex,
Bet3, Trs23 (both listed in the gold standard) and Bet5, markedly
reduced L. pneumophila replication [75]. Syx16 participates in the
StxB retrograde transport and its inhibition prevents StxB transport
[97].

In the presented approach, the machines learned from a gold
standard composed of a comprehensive but quite heterogeneous
dataset of twelve screens. These comprised smaller screens of less
than 100 genes up to large scale genome wide screens consisting of
more than 20,000 genes, of screens investigating cell lines (10 out
of 12) and whole organisms of D. melanogaster (2 out of 12), and
very different studied pathogens, most of which invading the host
cells, but some of them not obligatory. Interestingly, we observed
that the machines indeed learned and made sense out of these
heterogeneous data paving the way for a generic understanding
of the need of host factors of infecting pathogens. Restricting to
more homogenous datasets may have advantaged from observing
a more consistent biology, but, may have drawbacked from higher
variance due to less experimental data. We compared the results of
our classifier with a more homogenously composed gold standard
comprising only data of experiments from (i) Drosophila cell lines,
(ii) invading pathogens, and (iii) of large genome wide screens (re-
stricting to the HDF from the studies Agaisse, Akimana, Cheng,
Derre and Philips). We found quite comparable results. Compared
to n = 225 true positive genes of the complete list of predicted HDF
(n = 464), a quite comparable number of n = 190 genes was found
in this more homogenous list of experimentally found HDF
(Table S5). Still, we suggest further investigations comparing HDF
identified in cell lines versus HDF identified in whole organism,
and HDF of invasive compared to non-invasive pathogens. To iden-
tify drug targets specifically harming the infecting pathogen while
keeping the host safe implies avoiding targeting essential genes. In
principle, the gold standard data from which we learned was based
on experiments of viable cells and organisms after knockdown/-
knockout. In our list of 225 predicted HDF we found only 17 genes
to be absolute essential (according to the definitions of DEG, OGEE
and FlyBase) and removed them from our final list. However, the
definition of absolute essential of the investigated databases is very
stringent, as such a gene was observed to be essential in each part
of the life cycle. In a real setting, one may be interested in genes
being essential in only a very focussed part of the life cycle, e.g.
in an adult, or child enlarging this set of essential genes. This anal-
ysis was out of scope of the presented pilot study and we suggest
this as future research.

In summary, the combined model predicted HDF, which were
not previously identified as HDF in Drosophila melanogaster. Homo-
logs of many proteins predicted as HDF in this study are described
in the literature as HDF in other organisms. Several of these pro-
teins were involved in membrane trafficking. Pathogens secrete
diverse effector proteins into host cells and manipulate their mem-
brane and vesicle trafficking. More specifically, many pathogens
suppress the transport from endosomal compartments to the
trans-Golgi network [98]. This seems to be one of the hallmarks
particularly for intracellular pathogens. It enables them to form
vesicular structures in host cells, to establish and maintain an
intracellular replicative niche within the host cell and to prepare
for release and spreading. Our study computationally inferred
key HDF for D. melanogaster guiding further experimental studies
to confirm the novel candidates as host dependency factors, also
in a human cell culture setting.
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5. Conclusion

We show that host dependency factors in Drosophila melanoga-
ster can be predicted with high confidence using machine learning.
The prediction performance achieved here is attributed to an elab-
orated assignment of HDF information based on a list of several
knockdown screens of infected cells or organisms of D. melanoga-
ster and a comprehensive set of a large variety of informative pre-
dictive features. Besides confirming genes of the gold standard, a
list of 208 genes predicted to be novel host dependency factors
showed enrichment in common cellular processes to the gold stan-
dard and have been described as HDF in other organisms and cel-
lular contexts. These predicted HDF are proposed for future
experimental studies.
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