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Abstract

To date, numerous studies have been attempted to determine the extent of variation in evolutionary rates between human disease

and nondisease (ND) genes. In our present study, we have considered human autosomal monogenic (Mendelian) disease genes,

which were classified into two groups according to the number of phenotypic defects, that is, specific disease (SPD) gene (one gene:

one defect) and shared disease (SHD) gene (one gene: multiple defects). Here, we have compared the evolutionary rates of these two

groups of genes, that is, SPD genes and SHD genes with respect to ND genes. We observed that the average evolutionary rates are

slow inSHDgroup, intermediate inSPDgroup,and fast inNDgroup.Group-to-groupevolutionary ratedifferences remain statistically

significant regardless of their gene expression levels and number of defects. We demonstrated that disease genes are under strong

selective constraint if they emerge through edgetic perturbation or drug-induced perturbation of the interactome network, show

tissue-restrictedexpression,andare involved in transmembrane transport.Amongall the factors,our regressionanalyses interestingly

suggest the independent effects of 1) drug-induced perturbation and 2) the interaction term of expression breadth and transmem-

brane transport on protein evolutionary rates. We reasoned that the drug-induced network disruption is a combination of several

edgetic perturbations and, thus, has more severe effect on gene phenotypes.

Key words: shared disease gene, specific disease gene, edgetic perturbation, drug-induced perturbation, protein evolutionary

rates.

Introduction

The comparative genomics era has provided great opportuni-

ties for deciphering and comparing the genes, mutated to

cause human genetic diseases, with respect to nondisease

(ND) genes. Understanding the mutational basis of such

human diseases helps to identify the candidate disease

genes, which are still unexplored and thus benefit therapeutic

drug designing (Goh et al. 2007; Barabasi et al. 2011). In this

context, estimation of protein sequence evolutionary rate (the

ratio of nonsynonymous nucleotide substitutions rate dN to

synonymous substitutions rate dS) is of immense importance

(Yang and Nielsen 2000). However, the signatures of protein

evolution in human disease genes remain a controversial issue

till date. In 2003, Smith and Eyre-Walker (2003) first demon-

strated that disease genes evolve higher than ND genes. In

2004, Lopez-Bigas and Ouzounis (2004) noticed that disease

genes have larger conservation scores compared with ND

genes. Interestingly, in the same year, Huang et al. (2004)

established that evolutionary rates do not vary between dis-

ease and ND genes. After dividing human disease genes into

two groups according to 1) Mendelian disease phenotypes

and 2) complex disease phenotypes, Blekhman et al. (2008)

claimed that evolutionary rates are slow in Mendelian disease

genes, intermediate in ND genes, and fast in complex disease

genes. In 2009, Cai et al. (2009) confirmed that stronger pu-

rifying selection acts on human disease genes, and therefore,

both (Mendelian and complex) disease genes are conserved

than ND genes. Later on, considering monogenic (Mendelian)

and polygenic (complex) disease genes, Podder and Ghosh

(2010) found that ND genes are the most conserved group,

whereas polygenic disease genes are the least conserved

among the three gene sets. Although all the previous studies

have emphasized on human disease genes classified based on

the number of genes involved in a particular phenotype

(Mendelian/complex), it will be interesting to analyze disease

genes classified based on the number of phenotypes they are
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involved in. Hence, for the first time, we aim to investigate the

evolutionary rates of human monogenic (Mendelian) disease

genes after classifying them according to their number of

phenotypic defects. Our study in Mendelian disease genes

will also provide insights into the similar events in complex

disease genes as approximately 54% of the Mendelian disease

genes are also involved in complex diseases (Jin et al. 2012).

Pleiotropy, a phenomenon in the perspective of human

diseasome, refers to diverse pathological effects of different

mutations in a single gene causing distinct disorders in an

individual (Chavali et al. 2010). Such type of gene can be

termed as “shared disease (SHD)” gene (Chavali et al.

2010). Conversely, a gene can be termed as “specific disease

(SPD)” gene, if it is associated with a single phenotypic defect

originated from a single genetic mutation (Chavali et al.

2010). Here, the focus of this study is to know whether selec-

tive constraints differ among SHD, SPD, and ND genes, spe-

cifically within similar (monogenic) disease class. Describing

the pace of such evolutionary changes is essential to under-

stand how phenotypically heterogeneous diseases are gener-

ated and maintained in nature. If any difference in the rate of

evolution is observed, it is likely that the number of phenotypic

defects is playing the lead role. A number of additional evo-

lutionary rate determinants including gene expression level,

tissue expression breadth, and gene functionality may also

influence our analyses (Bloom et al. 2006; Drummond et al.

2006; Pal et al. 2006; Begum and Ghosh 2010; Park and Choi

2010; Chakraborty and Ghosh 2013). Hence, it is essential to

include all these features in our comparative study.

Genes and their products function as components of com-

plex networks of macromolecules, which are linked through

biochemical or physical interactions. They are often repre-

sented in “interactome” network models as “nodes" (verti-

ces) and “edges" (links) (Zhong et al. 2009). Such network-

centered approach is progressively used to interpret several

pathogenic mechanisms of disease genes (Zhong et al.

2009; Wang et al. 2012). In their comprehensive study,

Zhong et al. (2009) have identified distinct mutations those

result in different defects/diseases due to specific loss or gain

of edge(s) (edgetic perturbation model) or complete loss of

gene product (node removal model) in the interactome net-

work. Recently, using drug-targeted network, Wang, Thijssen,

et al. (2013) have demonstrated that single-interface targets

are more likely to generate side effects due to disruption of

their only interaction interface by a drug (drug-perturbed

model). However, to date, there is no systematic assessment

of the evolutionary history of human diseases emerged from

distinct network perturbations. We thus intend to study the

evolutionary patterns of SHD and SPD genes through the lens

of network perturbation models.

Our in silico study here demonstrates that the rates of pro-

tein evolution significantly differ among SHD, SPD, and ND

genes irrespective of their gene expression levels. Although

the disease classification depends on the number of

phenotypic defects, we observed that the number of pheno-

typic defects has no effect on the mutational rate heteroge-

neity among our gene sets. We interestingly obtained that

network perturbations, tissue expression breadth, and gene

functionality have substantial contributions to the evolutionary

rate variations of SHD, SPD, and ND genes. Further in-depth

investigations on network perturbation processes revealed

that drug-induced perturbation has major impact on protein

evolutionary rates than edgetic perturbations.

Materials and Methods

Compiling Evolutionary Rate Information of Human
Autosomal Disease/ND Genes

The study began with a list of total 4,419 hereditary disease

genes (3,911 autosomal) from “morbid map” cataloged in

the Online Mendelian Inheritance in Man (OMIM) database

(Amberger et al. 2009). Following Chavali et al. (2010), we

distinguished disease genes according to the number of asso-

ciated phenotypic errors and identified them as SPD gene and

pleiotropic/SHD gene. Genes do not have any annotation in

OMIM or Human Gene Mutation Database (HGMD

Professional v.2011.4) (Stenson et al. 2009) or Genetic

Association Database (Becker et al. 2004) were utilized as

ND genes for our investigation. Evolutionary rate (dN/dS)

data were retrieved from Ensembl v.74 (Flicek et al. 2013)

through the BioMart interface using human–mouse ortholo-

gous pairs (>60% sequence identity) with dS<3 (Tang and

Epstein 2007) to avoid problems due to mutation saturation

and higher estimation error. Human–mouse pair was chosen

because both of them 1) are placental mammals, 2) share

many common anatomical features and physiological pro-

cesses, 3) demonstrate conservation of organ-specific expres-

sion, 4) have similar gene expression profiles, and 5) are

functionally more similar (Liao and Zhang 2006, 2008;

Gharib and Robinson-Rechavi 2011). Moreover, the regular

use of mouse as a model organism to understand human

biology and disease practically supports such orthology selec-

tion (Liao and Zhang 2008; Cai et al. 2009). Finally, the filtered

data set of SHD (n = 528), SPD (n = 1,257), and ND (n = 8,783)

(supplementary table S1, Supplementary Material online)

genes were used for subsequent comparative analyses.

Identification of “Edgetically Perturbed” Proteins

Binary protein–protein interaction data were collected from

the Human Protein Reference Database (HPRD Release 9)

(Prasad et al. 2009). Identification of damaging in-frame mu-

tations (missense mutations and in-frame insertions/deletions/

indels) and deleterious single-nucleotide polymorphisms

(SNPs) were achieved by using HGMD (Stenson et al. 2009)

and sorting intolerant from tolerant (SIFT) prediction tool (Sim

et al. 2012), respectively. Combination of such physical inter-

action data (at least two interaction partners) and deleterious
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in-frame mutations (at least one) for proteins helped us to

identify proteins those are subject to edgetic perturbations

(Zhong et al. 2009). By this way, we identified 267 SHD,

371 SPD, and 908 ND proteins associated with edgetic per-

turbations (“edgetically perturbed” proteins). For reassessing

our result, we considered Protein Data Bank (http://www.rcsb.

org/pdb, last accessed October 10, 2014) for structural data.

We obtained 169 SHD, 209 SPD, and 340 ND proteins asso-

ciated with edgetic perturbations for which structural data are

available. Instead of relying on a single algorithm for deleteri-

ous mutation prediction (SIFT), we additionally checked the

consistency of our result using an integrative database

dbNSFP v.2.5 (Liu et al. 2013). We used the logistic

regression-based deleterious mutation prediction data of

dbNSFP, which includes the scores of ten different tools

(SIFT, PolyPhen-2 HDIV, PolyPhen-2 HVAR, GERP++,

MutationTaster, MutationAssessor, FATHMM, LRT, SiPhy,

and PhyloP). In addition to the above criteria, we considered

CADD score>25 to identify deleterious mutations in a protein

(Kircher et al. 2014; Oliver et al. 2014). Thus, we collected 298

SHD, 487 SPD, and 1,427 ND edgetic perturbation-associated

proteins for our study.

Records of Protein Domains

Pfam domains employed in this study were obtained using

Ensembl v.74 (Panda et al. 2012; Wang et al. 2012; Flicek

et al. 2013). For interacting domain pairs, we used DIMA

(Domain Interaction MAp) database v.3.0, which integrates

5,807 structurally known interactions imported from the reli-

able iPfam and 3did databases (Luo et al. 2011; Finn et al.

2014; Mosca et al. 2014). Proteins supplementary data of Kim

et al. (2006) was used to obtain structurally resolved singlish

interaction interface hubs (� 5 interaction partners + at most

2 interaction interfaces).

Analyses of Gene Expression Data

mRNA-seq data were retrieved from http://genes.mit.edu/bur-

gelab/mrna-seq/ (last accessed October 10, 2014), which con-

tains transcriptional data of 22 human tissue or cell-line

samples and applied reads per kilobase of transcript per million

algorithm to evaluate gene expression levels (Wang et al.

2008; Huang et al. 2013). For our study, a gene is defined

as expressed in a tissue if its expression value is larger than

M + 2�MAD, where M and MAD are determined by

M = median(x); MAD ¼ medianðjx�MjÞ and x indicates the

average expression values for the corresponding gene

among all tissues (Huang et al. 2013). For each gene, we

then summed up the number of over expressed tissues to

compute tissue expression breadth.

Functional Categorization

For functional labeling, we used the GO biological processes

of Ensembl database (He and Zhang 2006; Razeto-Barry et al.

2011); (Flicek et al. 2013). Following Lopez-Bigas et al. (2008),

we subdivided gene biological functions into two categories: 1)

conserved core processes and 2) less conserved regulatory

processes. In addition, we considered cell adhesion, cell divi-

sion, cell communication, phosphorylation, and developmen-

tal processes under regulatory processes (Beck et al. 2011).

However, DNA replication, transcription, and translation-re-

lated processes are considered under core biological processes

(Beck et al. 2011). For functional enrichment test, we consid-

ered nonredundant GO annotation-based GOrilla tool (http://

cbl-gorilla.cs.technion.ac.il, last accessed October 10, 2014),

which calculates exact P values by implementing a hypergeo-

metric model and is widely used due to its fast running time

and rigorous statistical analysis (Eden et al. 2009).

Collection of Drug-Related Data

DrugBank v.4.0 (Law et al. 2014) was used to retrieve drugs

those have at least one known human protein target. To eval-

uate the side effects of the drugs, we considered SIDER2

(http://sideeffects.embl.de/, last accessed October 10, 2014)

database (Kuhn et al. 2013). Thereby, we compiled a list of

996 drugs associated with 4,192 side effects. However, a

target protein may have association with drugs with different

number of side effects. Hence, we considered a protein as

side-effect-associated protein if it is targeted by drug(s)

known to have at least one side effect.

Gene Length, Protein Length, and Gene Recombination
Rate Estimation

Gene length (l) and protein length were calculated using

Ensembl v.75 (Flicek et al. 2013). Chromosome-wise high-

resolution recombination rates were downloaded from the

International HAPMAP Consortium website (International

HapMap Consortium 2005). For a gene, we collected recom-

bination rates at base position i (ri) and computed the recom-

bination rates across the genic regions using the formula:

(�ri)/l (Kato et al. 2008). In our gene set, we obtained recom-

bination rate data of 435 SHD, 1,061 SPD, and 7,000 ND

genes.

Analyses of Human Gene Paralogs and Protein Complex
Data

We retrieved human paralogous gene pairs from Ensembl

v.73 database (Flicek et al. 2013) and estimated the number

of paralogs for each gene of our data set. We found paralog

data of 426 SHD, 933 SPD, and 5,920 ND genes. Human

protein complex data were collected from CORUM database

(Ruepp et al. 2010). We define protein complex number as the

count of complexes in which a particular protein participates

(Das et al. 2013). Thus, we acquired complex association

number for 1,090 individual genes of our data set.
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Statistical Analyses

All statistical analyses except analysis of covariance (ANCOVA)

were achieved by using SPSS v.13. Throughout the study, we

used nonparametric Spearman rank correlation coefficient. To

calculate difference between two data sets, Mann–Whitney U

test (MWT) was used unless mentioned otherwise. For

ANCOVA analysis, considering the pair-wise interaction

terms, XLSTAT 2009 was used. To generate violin plot, we

used R package v. 2.13.1 (http://www.r-project.org, last

accessed October 10, 2014).

Results

Evolutionary Rates of Shared, Specific, and ND Genes

The extent to which mutational changes have impacted

human monogenic diseases with single (SPD) or multiple

(SHD) phenotypic defect(s) can be traced by estimating the

evolutionary rates of human SHD (defect number� 2) and

SPD (defect number = 1) genes considering ND (defect num-

ber = 0) genes as the control set. We thus observed that evo-

lutionary rates are lower in SHD (average dN/dS = 0.112,

n = 528), intermediate in SPD (average dN/dS = 0.121,

n = 1,257), and higher in ND (average dN/dS = 0.132,

n = 8,783) genes (Kruskal–Wallis test: P = 3.57�10�5)

(fig. 1). However, the variation in evolutionary rates may be

due to sample size biasness. To simplify, we pooled all the

genes into three bins of equal sample size according to their

evolutionary rates (bin 1 [range 0.152–0.861]: fast evolving

genes; bin 2 [range 0.065–0.152]: medium evolving genes;

and bin 3 [range 0.000–0.065]: slow evolving genes). We thus

noticed that the proportions of ND, SPD, and SHD genes are

higher in bin 1 (n = 3,523), bin 2 (n = 3,523), and bin 3

(n = 3,522), respectively, compared with the other groups of

genes (fig. 2). The above observation suggests that the varia-

tions in evolutionary rates among monogenic disease and ND

groups are not because of sample size differences.

In our study, classification of human diseases is based on

number of observable phenotypic defects. Hence, it is reason-

able to assume that number of defects contribute significantly

to the group-to-group evolutionary rate differences. To exam-

ine the same, we performed correlation analysis between the

number of phenotypic defects and protein evolutionary rates.

Correlation study (Number of defects r
dN/dS=�0.041, P = 2.27�

10�5, n = 10,568) thus revealed that phenotypic defects may

have little influence on protein evolutionary rates. However,

such a weak but significant correlation could also be due to

sampling bias because a large set of ND genes (phenotypic

defect = 0) were included in the correlation analysis. After ex-

cluding the ND genes, the correlation becomes statistically

insignificant in all three previous classified bins (bin 1: Number

of defects rdN/dS=�0.002, P = 9.60�10�1, n = 508; bin 2:

Number of defects rdN/dS= 0.006, P = 8.79� 10�1, n = 643; bin

3: Number of defects r
dN/dS=�0.032, P = 4.23� 10�1, n = 634).

We, therefore, conclude that some other constraints than

number of defects may better explain the variation in rates

of protein evolution in SHD, SPD, and ND genes.

FIG. 1.—Evolutionary rate analyses of SHD, SPD, and ND genes. The violin plot depicts the relationships between protein evolutionary rates and number

of phenotypic defects.
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Edgetic Interactome Network Perturbation and Rates of
Evolution of SHD, SPD, and ND Genes

Impact of a particular genetic abnormality is not limited to the

activity of the gene product that carries it but can spread along

the links of the interactome and alter the activity of gene

products that do not carry any defects (Barabasi et al.

2011). Hence, it is quite reasonable that genes with more

partners in the interactome tend to be involved in more dis-

eases and phenotypes (Fraser et al. 2002; Jin et al. 2012). Our

result also corroborates the same (considering ND genes:

Number of interaction partners r
Number of defects= 0.214, P = 1.00�

10�6, n = 4,739; excluding ND genes: Number of interaction partners

rNumber of defects= 0.164, P = 1.00�10�6, n = 1,310). In the

interactome, progression of diseases takes place by causing

several molecular defects in proteins through node removal or

via edge gain/loss (edgetic perturbation) (Care et al. 2009;

et al. 2009). Because mutations associated with node removal

are likely to generate incomplete fragments or nonfunctional

gene products (Zhong et al. 2009; Wang et al. 2012), we

emphasized only on edgetic perturbation (due to deleterious

mutations) model for further investigations. By using SIFT al-

gorithm (Sim et al. 2012) for predicting deleterious mutations,

we found that the proportions of edgetically perturbed pro-

teins are significantly higher in SHD (50.57%; 267/528),

intermediate in SPD (29.51%; 371/1,257), and lower in

ND group (10.34%; 908/8,783) (SHD vs. SPD: Z score = 8.471;

SHD vs. ND: Z score = 27.037; SPD vs. ND: Z score = 19.073,

respectively; P< 1.00�10�4 in all three cases). We recon-

firmed our result by considering structural data for edgetically

perturbed proteins of our data set (table 1).

Although, SIFT algorithm is frequently used for its reported

accuracy, it has some clear drawbacks (Lee et al. 2009; Sim

et al. 2012). Hence, we considered dbNSFP database (Liu et al.

2013) to make more confident deleterious mutation predic-

tions. When we identified edgetically perturbed pro-

teins, we found that change in prediction algorithms did

not alter the trend of our previous result (table 1). Hence,

we used our previous data set (SIFT predicted) for further

analyses.

Zhong et al. (2009) have claimed that edgetic perturbation

is frequently associated with autosomal dominant disease

genes. Moreover, it is also known that dominant disease

genes are under stronger purifying selections than recessive

disease genes because mutation of a single allele of the gene

can adequately cause disease in the former set of genes by

altering the synthesized gene product (Furney et al. 2006).

Hence, to shed lights on the evolutionary conservation of

SHD and SPD proteins over ND proteins, we determined the

evolutionary rates of edgetically perturbed proteins compared

FIG. 2.—Distributions of ND, SHD, and SPD genes in different evolutionary rate bin. Genes are partitioned into three equal size bins as (I) fast evolving, (II)

medium evolving, and (III) slow evolving groups. P values of MWTs between groups are mentioned. **Significant difference (P< 0.01) between groups. NS,

nonsignificant difference (P> 0.05).
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with the rest of the proteins of our data set. As expected, we

observed that edgetically perturbed proteins are more evolu-

tionarily constrained than rest of the human proteins (data set

using SIFT: dN/dSedgetically perturbed proteins = 0.100 [n = 1,546];

dN/dSother proteins = 0.135 [n = 9,022]; PMWT = 2.89� 10�39;

data set using dbNSFP: dN/dSedgetically perturbed proteins = 0.090

[n = 2,212]; dN/dSother proteins = 0.140 [n = 8,356]; PMWT =

2.23�10�108). However, it is also plausible that the underly-

ing difference in evolutionary rates of edgetically perturbed

and other proteins is potentially due to variations in sample

sizes. To rule out the possibility that our analysis is artifactual,

we again considered equal size bins of protein evolutionary

rates: bin1 (fast evolving proteins, n = 3,523), bin 2 (medium

evolving proteins, n = 3,523), and bin 3 (slow evolving pro-

teins, n = 3,522). In support of our result, we noticed that

the proportions of edgetically perturbed proteins and other

human proteins are comparatively higher in bin 3 and bin 1,

respectively (fig. 3A). Therefore, it is evident that regardless of

sample size variations, an inverse correlation exists between

edgetic perturbation and protein evolutionary rates. These ob-

servations provide a clue that edgetic perturbation may act as

a function of protein evolutionary rates of SHD, SPD, and ND

genes.

Drug-Induced Network Perturbation and Evolutionary
Rates of SHD, SPD, and ND genes

Several reports (Kuhn et al. 2013; Wang, Thijssen, et al. 2013)

have proposed that pharmacological treatment is necessary to

restore the function of the perturbed network as drugs often

bind to the interface of the disease-associated proteins.

Indeed, we obtained a positive correlation between number

of drugs and number of phenotypic defects associated with a

protein (considering ND genes: Number of drugs/protein rNumber of

defects = 0.251, P = 1.00�10�6, n = 933; excluding ND genes:

Number of drugs/protein rNumber of defects= 0.103, P = 2.20�10�2,

n = 496). In this context, a recent concept is that essentiality

and centrality of target proteins may also increase the likeli-

hood of adverse drug side effects, which in turn may help in

progression of diseases among individuals (Wang, Thijssen,

et al. 2013). If it is the case, then we may expect that side-

effect-associated drug-targeted proteins would majorly

participate in human disease progressions, because all side

effects literally do not imply diseases. Accordingly, we ob-

served that proteins with drug side effects are more frequently

involved in Mendelian diseases than random expectation

(odds ratio = 4.063, Z score = 12.440, P<1.00�10�3). In

general, drugs may cause side effects through network per-

turbation in single-interface targets by occupying the only

shared interaction interface and disintegrating the interac-

tome network (Wang, Thijssen, et al. 2013). Interestingly, pre-

vious studies have established that singlish (two at most)

interface proteins are more likely to disintegrate interactome

network by interrupting the links between proteins (Kim et al.

2006; Gursoy et al. 2008; Zhang and Ouellette 2011).

Accordingly, we observed that proteins with singlish interac-

tion interfaces (at least two interaction partners for each in-

terface) are highly associated with drug side effects than

random expectation (odds ratio = 1.850, Z score = 3.837,

P = 1.00�10�3). Moreover, the proportions of singlish inter-

face proteins are found to be in the order of SHD (30.30%;

160/528)> SPD (23.79%; 299/1,257)>ND proteins

(10.72%; 942/8,783) (SHD vs. SPD: Z score = 2.875; SHD vs.

ND: Z score = 13.526; SPD vs. ND: Z score = 13.160;

P<5.00� 10�3 in all three cases). Considering the

supplementary data set of Kim et al. for singlish interface

hub proteins (Kim et al. 2006), we obtained similar result

(table 2).

It is now widely accepted that druggable proteins are highly

conserved because substitutions in the interface may obstruct

target–drug interactions (Wang, Wang, et al. 2013).

Moreover, singlish interface hubs evolve faster than multi-

interface hubs but are generally slow evolving than rest of

the proteome due to their hub nature (Kim et al. 2006;

Clarke et al. 2012). Using drug-targeted proteins, our result

also demonstrates that singlish interface proteins are more

evolutionarily constrained than the rest (dN/dSdrug-targeted pro-

teins with singlish interface = 0.105 (n = 216); dN/dSdrug-targeted other

proteins = 0.113 (n = 716) and PMWT = 2.00�10�3). Validating

the above result, drug side-effect-associated proteins are

found to be more conserved than proteins which do not

have any known side effects (dN/dSproteins with drug side effects =

0.086 [n = 204]; dN/dSproteins with no known side effect = 0.118

[n = 729] and PMWT = 6.17� 10�6). Discrepancy may arise

Table 1

Proportions of Edgetically Perturbed Proteins in Our Data Set

Gene Pair Percentages Z Score P

SIFT-predicted dataa SHD vs. SPD 32.01% vs. 16.62% 7.259 <1.00� 10�4**

SHD vs. ND 32.01% vs. 3.87% 27.622 <1.00� 10�4**

SPD vs. ND 16.62% vs. 3.87% 18.605 <1.00� 10�4**

dbNSFP-predicted data SHD vs. SPD 56.44% vs. 38.74% 6.875 <1.00� 10�4**

SHD vs. ND 56.44% vs. 16.25% 23.087 <1.00� 10�4**

SPD vs. ND 38.74% vs. 16.25% 18.991 <1.00� 10�4**

aProteins with available PDB structures.

**Significant difference (P< 0.01) in proportions.
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due to differences in sample sizes for drug side effect data in

our data set. To avoid such circumstances, we again consid-

ered equal sample bins of protein evolutionary rates (bin 1:

fast evolving genes; bin 2: medium evolving genes; and bin 3:

slow evolving genes). Thus, a higher proportions of side-ef-

fect-associated proteins in bin 3 and proteins with no known

side effects in bin 1 (fig. 3B) suggest that our analysis is free

from sampling bias. These above observations invoke that

drug-induced perturbation/drug side effect may act as a de-

terminant of protein evolutionary rates of SHD, SPD, and ND

proteins.

Impact of Gene Expression Level, Tissue Expression
Breadth, and Functionality on Evolutionary Rates of SHD,
SPD, and ND Genes

Among all the identified factors, gene expression level is

claimed to be the most important correlate of protein evolu-

tionary rates to date (Bloom et al. 2006; Drummond et al.

2006; Panda et al. 2012). Considering expression level as

the mean expression value of a gene in the tissues (using

mRNA-seq data of 22 tissue/cell-line samples) where it is

found to be expressed (Kiran and Nagarajaram 2013),

we also observed a negative correlation between gene ex-

pression level and protein evolutionary rates (Expression level

rdN/dS=�0.177, P = 1.00�10�6, n = 7,055). Hence, we ex-

pected higher expression levels of SHD genes than SPD and

ND genes. Estimation of gene expression level revealed the

same trend (average gene expression level: SHD = 132.899

[n = 345]; SPD = 92.085 [n = 897]; ND = 32.300 [n = 5,813]).

However, SHD genes share no difference in gene expression

levels with SPD genes (PMWT = 5.31�10�1). It may be due to

the confounding effect of sample size difference. Hence, we

grouped all genes equally into three bins according to their

expression level (bin 1: lowly expressed [range: 5.510–10.888,

n = 2,351], bin 2: medium expressed [range: 10.890–21.960,

n = 2,351], and bin 3: highly expressed [range: 21.961–

8,041.754, n = 2,353]). Subsequently, we noticed that in all

FIG. 3.—Evolutionary rate analyses of interactome network perturbed genes. The bar graphs demonstrate the distributions of (A) edgetically perturbed

genes and (B) side-effect-associated genes in equal size bins classified as (I) fast evolving, (II) medium evolving, and (III) slow evolving groups. MWT was used

to find difference between groups. P<0.05 denotes a significant difference.

Table 2

Proportions of Singlish Interface Hubs in Structurally Resolved Network

(SIN) for Our Data Set

Gene Pair Percentages Z Score P

SHD vs. SPD 8.90 4.101 <1.00�10�4**

4.05

SHD vs. ND 8.90 22.321 <1.00�10�4**

0.26

SPD vs. ND 4.05 14.714 <1.00�10�4**

0.26

**Significant difference (P< 0.01) in proportions.
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three bins, the differences in proportions of SHD and SPD

genes are statistically insignificant (bin 1: SHD vs.

SPD = 17.80% vs. 20.04%; bin 2: SHD vs. SPD = 18.56% vs.

21.80%; and bin 3: SHD vs. SPD = 28.98% vs. 29.51%;

P>5.00� 10�2 in all three bins). This observation confirms

that gene expression level is insufficient to explain the evolu-

tionary rate variations among genes of our interest.

In their article, Park and Choi (2010) have demonstrated

that gene expression breadth has a greater influence on pro-

tein evolutionary rates than gene expression level because all

broadly expressed genes (like genes those are evenly ex-

pressed at low levels in all the tissue types) are not necessarily

the highly expressed ones (like genes those are expressed at

high levels in specific tissue types). Moreover, from an evolu-

tionary perspective, we expected that SHD genes are broadly

expressed among all the groups, because broadly expressed

genes evolve slower than tissue-specific genes (Zhang and Li

2004; Park and Choi 2010). Surprisingly, we noticed a signif-

icantly higher tissue-restricted expression of SHD (average ex-

pression breadth = 9.316, n = 345) genes compared with SPD

(average expression breadth = 10.821, n = 897) and ND genes

(average expression breadth = 11.606, n = 5,813) (Kruskal–

Wallis test: P = 2.99�10�7), in agreement on a concept

that diseases genes tend to be expressed in limited number

of tissues (Goh et al. 2007; Lage et al. 2008). However, the

lower evolutionary rates of tissue-restricted genes imply that

tissue-restricted expression alone is inadequate to explain pro-

tein evolutionary rates.

Previously, it has been established that the protein products

of genes expressed in only one or few tissues are more often

involved in regulatory functions, whereas ubiquitously/broadly

expressed genes mainly participate in intracellular core func-

tions (Ramskold et al. 2009). Using biological processes of

gene ontology (GO-BP) (Lopez-Bigas et al. 2008; Beck et al.

2011), we interestingly noticed that number of core functions

does not differ between SHD and SPD genes and that be-

tween ND and SPD genes, whereas all the group-to-group

differences are statistically significant in case of number of

regulatory functions (fig. 4). Subsequently, the higher

number of regulatory functions in SHD and SPD genes com-

pared with ND genes (fig. 4) reconfirmed the statement that

disease-associated mutations are more likely to affect regula-

tory processes (Goh et al. 2007). For a better understanding,

we performed functional enrichment analysis (P� 10�3) of

our gene set using GOrilla (Gene Ontology enRIchment

anaLysis and visuaLizAtion tool [Eden et al. 2009]). By this

means, the only regulatory process found to be enriched in

all the three groups (out of false discovery rate corrected 40

SHD, 88 SPD, and 304 ND significant GO terms) of our data

set was transmembrane transport (GO: 0055085, P values for

GO: 0055085 in SHD, SPD, and ND genes are 1.86�10�8,

6.67�10�4, and 1.19�10�9, respectively). At this point, it

should be mentioned that genes involved in transmembrane

transport are often tissue restricted, disease-causing

deleterious mutation prone, and evolve slowly at protein

level due to their higher buried residue content (Oberai et al.

2009; Ramskold et al. 2009; Movahedi et al. 2011). Therefore,

considering transmembrane proteins (proteins containing

transmembrane helices), our analyses also confirmed

the same (Transmembrane helices/protein rExpression breadth=�0.168,

P = 1.00�10�6, n = 1,490; Transmembrane helices/protein r
Deleterious

SNPs/gene= 0.175, P = 1.00� 10�6, n = 1,165; Transmembrane

helices/protein rdN/dS=�0.066, P = 1.00�10�3, n = 2,577).

Moreover, in support of our studies, the proportions of trans-

membrane proteins are found to be in the order of SHD

(38.26%; 202/528)> SPD (29.83%; 375/1,257)>ND

(22.77%; 2,000/8,783) (P<1.00� 10�4 in all three cases).

To understand the relationship between transmembrane

transport and tissue expression breadth on protein evolution-

ary rate, we split all the genes into three equally spaced bins

according to their tissue expression breadth (bin 1: lower

breadth [range: 1–7, n = 2,828], bin 2: medium breadth

[range: 8–14, n = 1,444], and bin 3: higher breadth [range:

15–22, n = 2,783]). Consequently, for tissue-restricted genes

(bin 2), the correlation between expression breadth and evo-

lutionary rates disappears (Tissue expression breadth rdN/dS= 0.041,

P = 1.23�10�1, n = 1,444), whereas the correlation between

number of transmembrane helices and protein evolu-

tionary rates appears better than previous (Transmembrane heli-

ces/protein rdN/dS=�0.189, P = 1.00�10�3, n = 334) (fig. 5).

FIG. 4.—Assessment of core and regulatory processes of our gene

sets. In the left cluster, the bar graph exhibits that SPD genes share no

difference (P> 0.05) in number of core functions to SHD or ND genes. All

the three groups of genes show considerable differences in their number

of regulatory functions (right cluster). Error bars represent the standard

error of the mean in all three groups of genes.
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Moreover, the existence of a significant correlation be-

tween tissue expression breadth and the number

of transmembrane helices (Transmembrane helices/protein rExpression

breadth=�0.122, P = 2.60�10�2, n = 334) suggests that

tissue expression breadth and transmembrane transport may

simultaneously affect protein evolutionary rates (fig. 5). Using

equally populated bins (according to tissue expression

breadth), a similar result was obtained (data not shown).

Further considering genes having both (number of transmem-

brane helices and tissue expression breadth) data available, we

noticed considerably (PMWT = 1.10� 10�6) lower evolutionary

rates for such genes (average dN/dS = 0.113, n = 1,490) com-

pared with all human genes in our data set (average dN/

dS = 0.130, n = 10,568). Therefore, it is evident from our anal-

ysis that the interaction term of tissue expression breadth and

transmembrane transport may influence the evolutionary

rates of SHD, SPD, and ND genes.

Relative Contribution of Parameters on Protein
Evolutionary Rates

In this study, we identified the importance of two distinct

network perturbation models and the interaction term of

tissue expression breadth and transmembrane transport

(three out of the six predictors) on protein evolutionary rates

except number of phenotypic defects and gene expression

levels. Because edgetic perturbation and drug-induced pertur-

bation may certainly have different molecular consequences

on human disease progressions and on protein evolutionary

rates, it is necessary to understand the relative contributions of

all the factors in dictating the variation of protein evolutionary

rates. In this regard, ANCOVA helps to understand the func-

tional relationships between the measurement variables, while

at least one of the predictor variables is categorical in nature

(Chen et al. 2012). However, a number of known evolutionary

rate determinants (such as gene recombination rate, paralog

number, protein length, and complex association number)

were shown to be associated with human genetic diseases

(Lopez-Bigas and Ouzounis 2004; Bloom et al. 2006; Lage

et al. 2008; Cai et al. 2009; Zhou et al. 2013). Such biological

parameters are likely to be confounding factors in our analysis.

We, therefore, included the aforementioned four genomic

covariates in our ANCOVA model. Thus, by using the

backward elimination approach, our ANCOVA model

(F = 10.101, P<1.00�10�4, R2= 13.4%) demonstrated

that drug-induced (side effect/no side effect) perturbation

model (b=�0.278, P = 2.98� 10�4), gene paralog number

(b=�0.154, P = 4.20�10�2), and the interaction term of

FIG. 5.—Relationships among transmembrane transport, tissue expression breadth, and protein evolutionary rates. In each cluster, tmhmm, EB, and dN/

dS represent transmembrane helix count per protein, tissue expression breadth, and protein evolutionary rate, respectively. For each bin, range of tissue

expression breadth has been mentioned in the parentheses. Significance: *P value<0.05, **P value< 0.01, and ***P value< 0.001.
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expression breadth-transmembrane transport (b=�0.140,

P = 4.90�10�2) independently affects protein evolutionary

rates.

However, the result of an ordinary regression analysis can

be misleading as it does not take into account predictor col-

linearity (Drummond et al. 2006). To rule out such possibility,

principal component regression method can be applied

(Drummond et al. 2006). Each independent principal compo-

nent is linear combinations of the original predictor variables

(Drummond et al. 2006). We, therefore, carried out categor-

ical principal component analysis due to the presence of cat-

egorical predictors in our data set. Subsequent regression of

the response variable (protein evolutionary rate) on the prin-

cipal component scores revealed that two components (PC1

and PC2) made significant contributions to the regression

model (F = 16.138, P = 3.70�10�7, R2= 14.6%). Among

them, 11.2% variance of protein evolutionary rates is ex-

plained by PC1 (b=�0.343, P = 1.87�10�6) and PC2

(b=�0.196, P = 5.00� 103) explains 3.4% evolutionary rate

variance. PC1 primarily measures paralog numbers, protein

length, and drug-induced perturbation, whereas PC2 mea-

sures the interaction term of expression breadth-transmem-

brane transport and protein complex association number

(table 3). Thus, from both of our ANCOVA and principal

component regression analyses, we infer that except edgetic

perturbation (perturbed/nonperturbed) model, drug-induced

(side effect/no side effect) perturbation model, and the

interaction term of expression breadth-transmembrane

transport have independent effects on protein evolutionary

rates. It is probably due to the fact that total network disrup-

tion (all edge removals in the interactome network) by

drug-induced perturbation is a combination of several edgetic

perturbations. Hence, drug-induced perturbation has reason-

ably severe effect on gene phenotypes than edgetic

perturbation.

Discussion

In the field of molecular evolution, there are commonalities

behind disease mutations which have been detected, but

there are more complexities to disease mutations, which are

yet to be discerned. In this work, we analyzed the evolutionary

rates of human autosomal phenotypic disease (SHD and SPD)

genes originated by mutation(s) in a single gene (monogenic)

in comparison to ND genes. For evolutionary rate study, we

considered widely used human–mouse orthologous pair (Liao

and Zhang 2006, 2008; Cai et al. 2009; Gharib and Robinson-

Rechavi 2011). The most common reason is the functional

conservation between human and mouse in normal and path-

ological conditions (Gharib and Robinson-Rechavi 2011).

However, it has been emphasized that the murid rodents have

higher divergence time (~95 Ma) than primates (Clement and

Arndt 2011). Hence, an alternative way is to consider human–

chimpanzee or human–macaque ortholog to compute protein

evolutionary rate. Again, for closely related taxa, it has been

criticized that estimation of evolutionary rate can be mislead-

ing as dS might suffer from the uncertainty due to potentially

smaller branch lengths (Wolf et al. 2009). We, therefore, con-

tinued our evolutionary rate analysis using human–mouse

orthologous pair. Consistent to the previous studies

(Blekhman et al. 2008; Cai et al. 2009) that disease genes

are conserved than ND genes, we established that genes

with more defects are strongly constrained compared with

the genes with single/no defect. However, we noticed that

number of defects is unable to explain the evolutionary rate

differences of SHD, SPD, and ND genes. Hence, to clarify the

underlying reasons of evolutionary rate variations among SHD,

SPD, and ND genes, we incorporated functional (core/regula-

tory), gene expression related (mRNA expression level and

tissue expression breadth), and structural (network perturba-

tion due to edge removal and network perturbation due to

drug binding of singlish interaction interface) features of pro-

tein evolutionary rates in this communication.

Malfunctioning/disruption of a biological function often

lead to the progression of human diseases (Lopez-Bigas

et al. 2008; Janjic and Przulj 2012). Distinct disease genes

can be traced through interactome networks (Goh et al.

2007). To this end, edge removal/edgetic perturbation

model offers an explanatory power that why different muta-

tions from the same gene produce different phenotypes

(Zhong et al. 2009). We as expected obtained higher disease

association for edgetically perturbed proteins. Prior studies

have already established that human disease genes evolve

slower than ND genes (Blekhman et al. 2008; Cai et al.

2009). Hence, frequent disease involvements practically sup-

port the lower evolutionary rates of edgetically perturbed pro-

teins compared with other proteins those are not found to be

edgetically perturbed. In this context, it should be mentioned

that drugs used for treating a disease may in turn cause dis-

eases through increased side effects. Such side effects are

Table 3

Result of Categorical Principal Component Analysis on Seven Predictor

Variables of Our Data Set

Predictors Percent Contributions

PC1 PC2

Gene paralog number 23.78 7.17

Gene recombination rate 19.86 14.03

EB*tmhmm 7.06 36.81

Protein length 24.53 8.29

Complex association number 4.35 32.59

Drug induced perturbation 20.42 1.11

Edgetic perturbation 0.00 0.00

NOTE.—PC1 and PC2 designate principal components 1 and 2, respectively.
EB*tmhmm represents interaction term of expression breadth and transmembrane
transport. Bold indicates that the corresponding variable contributes at least 20%
to the component.
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promoted by drugs especially in single/singlish interface tar-

gets by occupying its interaction interface(s) (Gursoy et al.

2008; Zhang and Ouellette 2011; Wang, Thijssen, et al.

2013). In our study, for the first time, we have noticed that

proteins with singlish interaction interfaces are highly associ-

ated with drug side effects and such side-effect-associated

proteins are evolutionarily more conserved than rest of the

proteins. However, it has been recently found that side-

effect-associated proteins are essential in nature and occupy

central position in the interactome networks (Wang, Thijssen,

et al. 2013). Because, centrality and essentiality are negative

correlates of protein evolutionary rates (Hahn and Kern 2005),

our findings are reasonable in this ground. Further comparison

of both the two network perturbation models revealed a

higher dominance of drug-induced perturbation over the

edgetic perturbation model. We reasoned that drug-induced

perturbation can totally disrupt a network and, thus, is a com-

bination of several edgetic perturbations.

One basic feature that is widely related to protein evolution

is expression level of a gene, which shares a negative correla-

tion to protein evolutionary rates (Bloom et al. 2006;

Drummond et al. 2006). Interestingly, we did not notice any

difference in gene expression levels between ND and SHD

genes. It may be due to the fact that broadly expressed

genes, which are evenly expressed at low levels in all tissues

are not necessarily the highly expressed ones that are ex-

pressed at high levels in specific tissues (Park and Choi

2010). However, in contrast to the common view (Winter

et al. 2004), our tissue expression study revealed a higher

tissue-restricted expression of highly conserved disease

genes. Although, we obtained a significant difference in

tissue expression breadth within SHD, SPD, and ND genes,

the above unexpected observation confirms that tissue expres-

sion breadth alone cannot explain the variation in evolutionary

rates among genes of our interest. To find a reason, we con-

centrated on protein functions as tissue-specific components

often need to perform certain regulatory functions (Ramskold

et al. 2009). Further elaborative study revealed that only reg-

ulatory functions can effectively clarify the evolutionary rate

differences among genes of our interest, whereas core func-

tions are found to be inadequate. One possible scenario could

be that core functions are required for basic processes within

the cell and always need to be switched on. Therefore, the

number of such functions required by any cell should be rel-

atively similar (Peterson and Fraser 2001). Because disease-

related mutations compatible with survival are more likely to

be maintained a population, cells prefer to endure deleterious

mutations in regulatory pathways (Goh et al. 2007).

Interestingly, a comprehensive analysis on regulatory functions

identified “transmembrane transport” as a common function

present on all three groups. Proteins involve in such function is

often tissue-restricted and evolve slower at the protein level

(Oberai et al. 2009; Movahedi et al. 2011). Hence, presence of

higher proportion of transmembrane protein in human

disease category makes it evident that tissue expression

breadth and transmembrane transport simultaneously influ-

ence the evolutionary rates of SHD, SPD, and ND genes.

To summarize, our analysis established a link between

human phenotypic disease network and protein evolution,

which will definitely help in understanding human monogenic

disease etiology and the underlying mechanism of disease

progressions from a single gene. The localization of disease

genes in regulatory pathways is especially important for iden-

tifying new disease candidates. Till date, majority of the target-

based drug identification depends on observable phenotypic

defects. However, for the first time, our communication has

provided useful information on the relative risk associated

with drug perturbed network over edge perturbed network.

Our work emphasized that further thorough investigations are

needed to improve drug efficacy (i.e., drug with minimal side

effects), especially for SHD and SPD genes. With this work, we

can make a substantial progress in future medicine.

Supplementary Material

Supplementary table S1 is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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