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Granulocyte colony-stimulating factor (G-CSF) was originally discovered in the context of hematopoiesis. However, the
identification of the G-CSF receptor (G-CSFR) being expressed outside the hematopoietic system has revealed wider roles for
G-CSF, particularly in tissue repair and regeneration. Skeletal muscle damage, including that following strenuous exercise,
induces an elevation in plasma G-CSF, implicating it as a potential mediator of skeletal muscle repair. This has been supported
by preclinical studies and clinical trials investigating G-CSF as a potential therapeutic agent in relevant disease states. This
review focuses on the growing literature associated with G-CSF and G-CSFR in skeletal muscle under healthy and disease
conditions and highlights the current controversies.

1. Granulocyte Colony-Stimulating Factor
(G-CSF)

Granulocyte colony-stimulating factor (G-CSF) is a glyco-
protein first recognized for its ability to facilitate the for-
mation of neutrophilic granulocyte colonies in soft agar
from bone marrow cells [1, 2]. Endogenous production
of G-CSF is largely stimulated by infection and tissue
damage. Although numerous cell types can produce G-CSF,
it is primarily induced by immune cells such as macrophages
as well as the endothelium [3, 4] and binds to a cognate
receptor. Marketed as Neupogen® (filgrastim) (AMGEN®),
recombinant G-CSF was introduced into phase I clinical
trials in the mid-1980s, to restore neutrophil numbers in
patients receiving chemotherapy [5]. The primary symptom
for G-CSF administration is immunodeficiency, particularly
neutropenia. It is used to treat severe chronic neutropenia
(SCN) and neutrophil deficiencies associated with leukemia
and other hematopoietic disorders [6–9], as well as neu-
tropenia induced by chemotherapy [10–12], following bone
marrow ablation prior to transplantation [13, 14], or neu-
trophil deficiencies caused by antiviral medications [15].

Recombinant G-CSF is administered subcutaneously or
intravenously with maximal serum concentrations around
40–50ng/ml being reached after 2–8 hours [16]. At low
doses, G-CSF is able to mobilize peripheral blood progeni-
tor cells, which has seen its application used for blood
banking procedures that have largely removed the need
for bone marrow transplantation [17, 18].

2. Granulocyte Colony-Stimulating Factor
Receptor (G-CSFR) and Intracellular
Signalling Pathways

G-CSF’s biological activity is mediated through a specific
cognate receptor (G-CSFR) that belongs to the class I
cytokine receptor superfamily [3, 19, 20]. The G-CSFR has
a large glycosylated extracellular region that includes an
N-terminal immunoglobulin- (Ig-) like domain, a cytokine
receptor homology (CRH) domain, and three fibronectin
type III (FBN) domains [21] (Figure 1). The CRH is an
approximately 200 amino acid sequence that consists of
four conserved cysteine residues and a Trp-Ser-X-Trp-Ser
(WSXWS) motif, a hallmark of the class I cytokine receptors
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[22]. The CRH domain is involved in ligand recognition
that is essential for the dimerization of two or more recep-
tor chains and crucial for signal transduction [23]. The Ig
and FBN domains contribute to receptor stability. The
extracellular domain is separated from the intracellular
domain by a short transmembrane sequence. Intracellularly,
the membrane-proximal domain contains conserved Box 1
and Box 2 motifs and a tyrosine residue (Y704) important
for proliferative signalling [24] (Figure 1). The distal domain
contains a less conserved Box 3 motif associated with
receptor trafficking [25] and three additional tyrosine resi-
dues (Y729, Y744, and Y764) important for proliferation,
differentiation, and survival [24, 26] (Figure 1). Studies
conducted in neutrophils show that only a few receptors
need to be occupied by G-CSF to elicit a maximal biological
response [27, 28].

Ligation of G-CSF causes conformational changes in
G-CSFR that activates members of the Janus kinase family
(JAK1, JAK2, and TYK2), cytoplasmic tyrosine kinases
associated with Box 1 [24] (Figure 1). Activated JAKs sub-
sequently phosphorylate the G-CSFR complex, creating
docking sites for a variety of signalling molecules. This
includes members of the STAT family of transcription factors
[29, 30], particularly STAT3 and to a lesser extent STAT1 and
STAT5 [31], which homo- or heterodimerize and translocate
to the nucleus where they bind DNA and activate the
transcription of responsive genes [32]. Also recruited are
members of the Src family of tyrosine kinases, particularly
Lyn and Hck, which activate phosphatidylinositol-3-kinase
(PI3K) [33, 34] that in turn phosphorylates and activates
Akt [35, 36] (Figure 1). Akt, a serine/threonine protein
kinase, plays a role in many cellular processes such as glucose
metabolism, cell survival, cell proliferation, and protein
synthesis via numerous downstream targets [37–40] and is
a major signalling pathway in skeletal muscle. Recruitment

of a Grb2/Shc complex to Y704 and Y764 leads to activation
of the MAPK family members, ERK1 and ERK/2, via the
RAS/RAF/MEKpathway [41] (Figure 1). ERK1/2 translocates
to the nucleus and activates a wide range of transcription
factors and phosphorylates the protein kinase p90 ribosomal
S6 kinase (p90RSK) to initiate protein synthesis [42].

These signalling pathways appear conserved in many
tissues now postulated to express a functional G-CSFR. For
example, PI3K/Akt pathways are activated by G-CSF in
cultured neurons [43]. JAK/STAT signalling pathways [44]
and PI3K pathways [45] are activated following myocardial
infarction and/or heart failure, and similarly, JAK/STAT
signalling pathways are activated in cultured cardiomyocytes
[44]. In skeletal muscle, JAK/STAT and PI3K/Akt pathways
are thought to be activated by G-CSF rodent models of
muscle damage [46] and in cultured muscle cells in vitro
[47]. Therefore, not surprisingly G-CSF treatment is sug-
gested as a potential therapeutic target for a wide range of
diseases outside the hematopoietic system.

3. G-CSF/G-CSFR Outside the
Hematopoietic System

Expression of the G-CSFR is predominantly in cells of the
hematopoietic system with the highest expression in neutro-
phils [48, 49]. G-CSF is well known as a hematopoietic
cytokine that stimulates the proliferation, differentiation,
and function of myeloid progenitors and mobilization of
hematopoietic stem and progenitor cells [48, 49]. In recent
years, G-CSFR expression has been identified on cells outside
the hematopoietic system [24, 48], indicating a much wider
role. G-CSFR is expressed on glial cells during neural devel-
opment [50], and G-CSF has shown therapeutic benefits in
neural tissue [43, 51, 52]. Rat cortical neural cells were
protected against apoptotic death in vitro following G-CSF
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Figure 1: Schematic representation of the G-CSF and intracellular signalling pathways.
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treatment [43]. G-CSF attenuated apoptotic death and
improved the functional outcome in experimental models
of spinal cord injury [53, 54] and motor function and life
expectancy in the SOD1 (G93A) transgenic mouse, a rodent
model for amyotrophic lateral sclerosis (ALS) [55]. G-CSF
treatment also improved memory in rodent models of
Alzheimer’s disease [56], while contributing to regenerating
following ischemic stroke [57, 58]. Similarly, the G-CSFR
has been identified on cardiomyocytes and G-CSF stimulates
cardiac myocyte proliferation during mouse development
[59]. Improvements in cardiac function and cardiomyocyte
survival following an experimental myocardial infarct in
rodents were observed with G-CSF treatment [44].

Numerous clinical trials have been completed in patients
following acute myocardial infarction [60]. While early
studies showed significant improvements in left ventricular
end-diastolic volume and ejection volume [61, 62], others
have not [63, 64]. Meta-analysis was unable to elicit a clear
answer as to the benefits of G-CSF following cardiac damage
[65] but the beneficial effects of G-CSF continue to dominate
the literature. Similarly, a small clinical trial demonstrated
improved neurological function in stroke patients when
administered G-CSF [57], while stage IIa clinical trials estab-
lished that G-CSF was safe at high doses for stroke victims
[66]. However, a larger stage IIb clinical trial concluded that
G-CSF did not impart positive effects on stroke victims when
administered intravenously ≤9 hours poststroke onset [67].

4. The Role of G-CSF in Skeletal Muscle

G-CSF is a well-established and well-tolerated therapeutic
drug, with a growing dogma that it is beneficial in the
context of repair and regeneration outside the hematopoi-
etic system. Recently, there is growing evidence for G-CSF
treatment of skeletal muscle myopathies. However, conflict-
ing results suggest that there is still much to understand
before G-CSF can be considered as a therapeutic drug in
the context skeletal muscle.

Muscle injury, including that caused by strenuous exer-
cise, is associated with an increase in plasma G-CSF. For
example, maximal treadmill exercise in elite winter-sport
athletes, marathon running, concentric and eccentric endur-
ance treadmill running, and moderate and intense resistance
exercise all increase circulating G-CSF levels immediately
postexercise [68, 69]. It has been postulated that the elevated
G-CSF levels following exercise play a role in neutrophil
mobilization and delays exercise-induced neutrophil apopto-
sis, which is important for activating the innate immune
response to exercise [68, 69]. It may also act to elevate
progenitor cell mobilization, which would serve to further
enhance this effect. Certainly, systemic G-CSF levels are asso-
ciated with progenitor cell mobilization following endurance,
resistance, and eccentric exercise modalities [70].

Mice lacking the G-CSFR (G-CSFR−/−) are neutropenic
but otherwise develop normally and are indistinguishable
from their littermates [47, 71]. However, there is a suggestion
that G-CSF is fundamental to muscle growth and develop-
ment as the G-CSFR−/− mice have smaller muscles than
their wild-type littermates with the rectus femoris muscle

appearing to have a smaller diameter [47]. This however is
controversial, as no differences in cross-sectional area were
observed [68]. G-CSF/G-CSFR being fundamental to growth
and development is strengthened by the observation that
muscle cells in vitro produce G-CSF in response to stretch-
induced damage [72] and following inflammatory treatments
such as long-chain free fatty acids [73] and lipopolysaccha-
ride (LPS) treatment [74]. Furthermore, in mdx mice where
constant degeneration and regeneration occurs, plasma
levels are elevated, while local muscle G-CSF is reduced
[75]. Since the G-CSF ligand/receptor binding causes inter-
nalization and degradation of the complex, it may be postu-
lated that elevated G-CSF is providing protective signals
and G-CSF administration may facilitate muscle regenera-
tion and remodelling and/or influence substrate utilization
leading to better functional outcome.

Various rodent models have been used to explore G-CSF
as a therapeutic treatment for muscle regeneration. For
example, G-CSF administration improves recovery after
muscle crush injury, significantly increasing muscle strength
in maleWistar rats [76]. This was associated with moderately
decreased cell apoptosis, increased numbers of regenerating
fibres, and increased satellite cell activation. Similarly, mice
injected with snake venom to cause skeletal muscle necrosis
had increased rates of regeneration and activation of known
anabolic signalling pathways, such as Akt, in skeletal muscle
following G-CSF treatment [46]. Improved muscle regenera-
tion and increases in survival rates are observed with exoge-
nous G-CSF treatment in a mouse model of muscular
dystrophy [77, 78], while the rodent model of amyotrophic
lateral sclerosis (ALS) had improved motor function and
55% larger muscle fibres following G-CSF treatment [55].
In future studies treating rodent models of ALS with pegfil-
grastim, a long-lasting form of G-CSF attenuated inflamma-
tion and increased survival rates [79]. Therefore, exogenous
G-CSF treatment may be beneficial for muscle when
concentrations are elevated above physiological levels to
around 40–50 ng/ml [16]. This is in contrast to the modest
peak concentration physiological concentrations seen after
exercise [70, 80].

In more recent human clinical trials, several studies have
used G-CSF as a treatment for neuromuscular disease with
promising results for muscle-related functional outcomes.
Specifically, Sakuma et al. [81] and Yamazaki et al. [82]
demonstrated improved neurological function after treat-
ment with 10μg/kg G-CSF in subjects with thoracic myelop-
athy. This is in line with this group’s previous work [83, 84]
where improvements in motor function following spinal
cord injuries in rodents were observed. Kato et al. [85]
demonstrated reduced pain in patients with compression
myelopathy. Furthermore, improved functional outcomes
and independence after treatment with low-dose G-CSF
were observed in a single patient with a cervical spinal
injury resulting in tetraplegia [86]. Finally, improved upper
limb muscle strength and reduced lower limb spasticity were
observed in a patient with kyphoscoliosis [87]. It is promising
to consider that G-CSF may actually be affecting the skeletal
muscle and thus leading to functional improvements. But
given these, disease conditions have significant involvement
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of neuronal pathways, and G-CSF is a known neuroprotec-
tive drug; it is also plausible that G-CSF acts on the nerves
without directly affecting the muscle tissue.

4.1. G-CSF Signalling in Skeletal Muscle. In 2009, Naito et al.
[46] used a snake venom method to induce muscle damage.
Three days prior, and for 5 days following the snake venom,
G-CSF was administered. Increased muscle regeneration was
observed by an increase in myogenic satellite cells. Interest-
ingly, this study also demonstrated that the Akt/GSK-3β
signalling pathways were activated, alluding to the possibility
of muscle regeneration being facilitated by intracellular
signalling pathways of the G-CSFR in skeletal muscle. In
2011, bone marrow crossover transplants with G-CSFR−/−

mice demonstrated that bone marrow cells did not con-
tribute to G-CSF-mediated muscle regeneration [47], sug-
gesting a direct effect of G-CSF on skeletal muscle tissue.
These studies suggested that G-CSF acts directly via its
receptor in skeletal muscle and activated the downstream
signalling pathways important for skeletal muscle growth
and development. This prompted investigations into the
possibility of a functional G-CSFR in satellite cells and
mature skeletal muscle.

One study demonstrated expression of G-CSFR in mouse
C2C12 myoblasts by Western blot and immunohistochemis-
try, with decreased levels during differentiation [47]. How-
ever, the specificity of the antibody used has been called
into question by others [88]. Using RT-PCR, followed by
sequencing of the PCR product, we identified the expression
of G-CSFR mRNA in myoblasts and differentiated myotubes
and mature muscle of human and murine origin [75].
Furthermore, we used Western blotting techniques with
appropriate positive and negative controls, to confirm the
presence of multiple glycosylated forms of G-CSFR protein
[75] and observations consistent with studies in hematopoi-
etic cells [89]. Therefore, we conclude that the G-CSFR is
expressed in skeletal muscle.

It is important to address whether G-CSF does in fact
ligate with the G-CSFR and activate intracellular signal-
ling pathways for the G-CSFR in skeletal muscle. Known
G-CSF signalling pathways such Jak/STAT, PI3K/Akt, and
mitogen-activated protein kinases (MAPK) signalling path-
ways are known to be important for skeletal muscle. For
example, STAT3, the most widely studied G-CSF signalling
pathway, has been implicated in C2C12 myoblast prolifer-
ation [90, 91] and in the regeneration of rodent skeletal
muscle in vivo [92]. Furthermore, STAT3 signalling via
JAK1 prevented premature differentiation of C2C12 myo-
blasts [93], while STAT3 signalling via JAK2 positively regu-
lated C2C12 differentiation [94]. Therefore, G-CSF’s role in
muscle cell proliferation versus differentiation could differ
depending on the Jak activated. For example, chemical inhi-
bition of Jak2 downregulates the transcription factors myoD
and MEF2, and target knockdown of Jak2 by siRNA leads
to downregulated myoD and MEF2 target gene transcrip-
tion [94]. In contrast, siRNA-targeted knockdown of Jak1
increased myoD and MEF2 as well as MEF2 target genes
[93]. Interestingly, the few studies that have conducted
signalling experiments in muscle cells when treated with

G-CSF have not measured Jak activation rather have
focused their attention on downstream targets, predomi-
nantly STAT3 signalling.

Downstream of Jak-STAT signalling, Akt is activated
by a distinct region of the G-CSFR upon G-CSF ligation
in hematopoietic cells [95], and Akt is one of the most
widely studied protein kinases in skeletal muscle biology.
Expression of constitutively active Akt1 in mouse skeletal
muscle increased myofibre hypertrophy and muscle mass
[37, 96], whereas inhibition of Akt resulted in muscle atrophy
[97, 98]. Moreover, homozygous dominant-negative Akt1
mice exhibit growth retardation during development, with
significantly reduced body mass and a reduced lifespan
[97]. For muscle cells, Akt activation via Jak2-STAT3-PI3K
by G-CSF would presumably increase proliferation. Simi-
larly, Erk1/2 activation by G-CSF leads to increased prolifer-
ation of the leukemia cell line AML-193 via a Jak2-dependent
pathway [99]. In mouse myoblasts, ERK signalling positively
regulates proliferation as inhibition of ERK2 blocks the G1 to
S phase transition promoting differentiation [100]. There-
fore, G-CSF activation of Jak2-STAT3 could activate ERK
signalling leading to muscle cell proliferation.

Unfortunately, the direct action of G-CSF on skeletal
muscle cells and its signalling pathways remains equivocal
(Figure 1). Conflicting evidence exists in C2C12 myoblasts
and myotubes with one study showing that G-CSF increases
myoblast proliferation and activates STAT3, Akt, and Erk1/2
[47] which supports the notion that G-CSF has a direct effect
on skeletal muscle cells (Figure 2(a)). In contrast, we
observed no change in proliferation of C2C12 myoblasts with
G-CSF concentrations between 400 pg/ml–100ng/ml [75],
with changes in phosphorylation of STAT3, Akt, and Erk1/
2 attributed to media replenishment and not to the effect of
G-CSF [75]. The concentrations used by Hara et al. [47]
(<375 pg/ml) were significantly lower than those of Wright
et al. [75] (400 pg/ml–100ng/ml), and similarly much lower
than the dose used in cell lines with a high expression of
the G-CSFR [44, 101, 102]. Furthermore, the results pro-
duced by Hara et al. [47] are consistent with media changes
observed in Wright et al. [75]. Unfortunately the methods
used by Hara et al. [47] are ambiguous in that it is not clear
whether the G-CSF was administered with or without fresh
media, and no time point controls were presented. Therefore,
these results should be interpreted with caution and it is
likely that G-CSF does not activate these signalling pathways
in healthy muscle cell in vivo. A null effect of G-CSF despite a
functional receptor is consistent with M-CSF where despite
the presence of the receptor in skeletal muscle cells, M-CSF
has failed to elicit a direct biological effect [103]. Therefore,
healthy cells may not respond to G-CSF treatment and cells
may need to be under stress for G-CSFR to translocate to
the cell surface (Figure 2(b)). This is supported by our studies
in C2C12 myotubes that have shown G-CSF treatment can
augment LPS-mediated IL-6 production [74] and partially
alleviate the dexamethasone-induced catabolic environ-
ment [104], with no effect on the non-LPS treated cells.
Therefore, G-CSF/G-CSFR signalling may in fact require
an inflammatory or catabolic state in skeletal muscle to
be functional. Interestingly, IL-6−/− macrophages produce
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less G-CSF [105]. IL-6−/− macrophages are associated with a
decrease in myoblast proliferation and muscle regeneration
in vivo and it is intriguing to suggest the reduced G-CSF
production is contributing to this response. A third possibil-
ity is that G-CSF does not directly stimulate muscle cells.
Certainly, all the rodent preclinical and human clinical trials
showing improved function with G-CSF treatment are
inflammatory and/or catabolic in nature and it is plausible
that G-CSF influences inflammatory cells known to contrib-
ute to the repair process (Figure 2(c)).

5. Conclusion and Future Directions

The application of exogenous G-CSF treatment related to
skeletal muscle has recently been explored, and a growing
number of studies have demonstrated beneficial effects.
However, the exact role of G-CSF/G-CSFR in skeletal muscle
remains unclear and future studies are needed. Indeed,
whether skeletal muscle cells express a functional G-CSF-R
remains controversial, in part due to specificity concerns of
available antibodies. Similarly, it remains unknown if the
signalling pathways are activated directly in skeletal muscle
due to differing results obtained from cell culture models.
Therefore, the question remains as to whether G-CSF acts
directly on damaged muscle cells to improve muscle health
or acts on other cells such as those of hematopoietic origin,
endothelial cells, and/or neuronal cells to modulate the
microenvironment to favor skeletal muscle regeneration.
There is a need to unequivocally determine if the G-CSF
receptor is expressed in skeletal muscle and whether ligation

occurs. One possibility is to perform an immunoprecipita-
tion assay; a technique used to determine protein-protein
interaction [106]. Following this, muscle-specific knockdown
of the G-CSFR should be considered to determine if G-CSFR
treatment does directly influence skeletal muscle. This could
be achieved through a muscle-specific inducible Cre/lox
strain [107] or through the more cost-effective zebrafish
using CRISPR technologies [108]. More simply, to elucidate
the signalling pathways in skeletal muscle, overexpression
of downstream signalling targets such as Jak1 and Jak2
may augment G-CSF biological activity in skeletal muscle
cells in vitro and provide conclusive evidence that G-CSF
activated G-CSFR signalling pathways in skeletal muscle.

While there are promising results for the use of G-CSF to
treat skeletal muscle myopathies, G-CSF has failed to elicit
beneficial effects in large clinical trials of cardiomyopathies
and stroke victims. This is despite promising results from
in vitro and rodent models. Skeletal muscle may be similar,
in that the early promising signs from cell culture and rodent
models may not translate to G-CSF being a readily available
therapeutic drug for skeletal muscle. Given the current
inconsistencies in muscle cell culture signalling and the
cross-reactivity of the G-CSFR antibodies, we may need more
evidence before G-CSF is considered as a therapeutic treat-
ment for muscle-related diseases.
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Figure 2: Schematic representation for the plausible mechanisms by which G-CSF aids in muscle repair.
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