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Natural compounds (NCs) undergo complicated biotransformation in vivo to produce
diverse forms of metabolites dynamically, many of which are of high medicinal value.
Predicting the profiles of chemical productsmay help to narrow down possible candidates,
yet current computational methods for predicting biotransformation largely focus on
synthetic compounds. Here, we proposed a method of MetNC, a tailor-made method
for NC biotransformation prediction, after exploring the overall patterns of NC in vivo
metabolism. Based on 850 pairs of the biotransformation dataset validated by
comprehensive in vivo experiments with sourcing compounds from medicinal plants,
MetNC was designed to produce a list of potential metabolites through simulating in vivo
biotransformation and then prioritize true metabolites into the top list according to the
functional groups in compound structures and steric hindrance around the reaction sites.
Among the well-known peers of GLORYx and BioTransformer, MetNC gave the highest
performance in both the metabolite coverage and the ability to short-list true products.
More importantly, MetNC seemed to display an extra advantage in recommending the
microbiota-transformed metabolites, suggesting its potential usefulness in the overall
metabolism estimation. In summary, complemented to those techniques focusing on
synthetic compounds, MetNC may help to fill the gap of natural compound metabolism
and narrow down those products likely to be identified in vivo.
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INTRODUCTION

Modern drug discovery has benefited from nature (Zhu et al., 2011), withmore than 30% of approved
drugs being provided by or derived from natural compounds (NCs) (Newman and Cragg, 2007).
NCs undergo complex and dynamic biotransformation processes to produce a series of metabolites
(Beniddir et al., 2021), part of which may relate to efficacy (Segala et al., 2017), safety (Kloprogge
et al., 2018), and adverse reactions (Hughes et al., 2016). Understanding the in vivo transformation of
NCs may help in new drug research and development (Brunmair et al., 2021). Typically, the
biotransformation of NCs is carried out in multiple organs, with the liver as the major one through
the enzyme family of cytochrome P450 (CYP450) (Rudolf et al., 2017). Yet, with continuous
investigation, this process was found to be highly complex involving digestion (Chen et al., 2009),
microbial metabolism (Fan and Pedersen, 2021), and other unknown reactions, in addition to
CYP450 metabolism. For instance, partial NCs could be degraded into hydrolysate in the acid gastric
environment (Van Den Abeele et al., 2017). Also, diet-derived glycans can be metabolized by
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intestinal bacteria, with one frequently reported as
Bifidobacterium that belongs to Actinobacteria,
Bifidobacteriales (Milani et al., 2017).

In recent years, extensive technologies have been set up to
identify metabolites in vivo for NCs, of which those commonly
used include liquid chromatography (LC) (Reed and Forgash,
1968), mass spectrometry (MS) (Lisboa and Gustafsson, 1969),
or LC-MS (Rodgers et al., 2009). In order to characterize those
metabolites, additional chemical reference standards need to
be constructed prior to the metabolite’s identification (Witting
and Bocker, 2020), covering potential intermediate
metabolites of interest as many as possible. Partially due to
the aforementioned challenge, the identified in vivo
metabolites remain deficient in the area of NCs. Meanwhile,
computational techniques have been highly desired to generate
comprehensive profiling for those likely metabolites in vivo.
Though no tailor-made algorithm for metabolism prediction
has been designed for NC, several articles have tried in this
direction to estimate the bio-transformed profiling for
chemical compounds. For instance, based on the CYP450
enzyme family, a notable method of GLORY (de Bruyn
Kops et al., 2019)/GLORYx (de Bruyn Kops et al., 2021)
was developed to predict the oxidation, reduction, and
hydrolysis as well as conjugation reactions in the liver for
synthetic compounds. Furthermore, handy software,
BioTransformer, was set up to predict small molecule
metabolism in human tissue, the human gut, as well as
experimental environment (Djoumbou-Feunang et al.,
2019). From their published training and testing data, it can
be seen that they are mainly oriented on synthetic compounds.
As NCs contain more polycyclic and endocyclic sub-structures
than synthetic compounds (Yang, 2005), this unique structural
diversity raised the possibility of biotransformation preference
to some extent. In other words, metabolic differences may exist
between naturally derived and artificially made chemical
structures. So, it is necessary to develop an alternative
method for NC to complement with the previous ones for
synthetic compounds. Meanwhile, the prediction performance
of a method was previously evaluated by a single parameter of
coverage on a set of testing data, which was defined as the
portion of known metabolites that were successfully predicted
(de Bruyn Kops et al., 2021). Yet, over-prediction can lead to
high coverage and subsequently high false-positives. So, it is
also desired to develop additional parameters for an overall
evaluation.

Here, we proposed the MetNC method to predict in vivo
metabolites for NCs. Previously, we collected 850
biotransformation pairs for herbal ingredients (Kang et al.,
2013). For each sourcing compound, the metabolizing product
was all validated by comprehensive experimental results of
mammals. We extensively explored these biotransformation
patterns and summarized enzyme-free reaction rules for
model construction. Then, the optimal reaction order was
derived for different functional groups in NCs. Coupled
with further steric hindrance ranking, MetNC can
recommend the most likely candidates bio-transformed in
vivo among those dynamic metabolizing environments. As

the structures of NC and their in vivo products are often
highly diverse, MetNC may help to estimate the potential
transformed profile prior to experiments, so as to facilitate
the identification of NC metabolism.

MATERIALS AND METHODS

Souring Dataset
The information of natural compound in vivo metabolism was
collected from the literature (Kang et al., 2013), and there were
850 compound–metabolite pairs of natural product data
remained. Both compounds and metabolites comply with the
Simplified Molecular Input Line Entry Specification (SMILES)
(Daylight Chemical Information Systems, 2022b) format. See
Supplementary Table S1 for all records.

Reaction Rules
RDKit software (Landrum, 2017) was used to create the visualization
image that facilitates artificial reading. After multiple identifications,
a total of 60 enzyme-free reaction rules were recognized as practical.
Subsequently, the curated reaction rules were converted to a
programming language according to the SMILES arbitrary target
specification (SMARTS) (Daylight Chemical Information Systems,
2022a) format. See Supplementary Table S2 for detailed
reaction rules.

Evaluation Metric
MetNC regarded Coverage and Sorting ability (CS) as an
evaluation metric for the metabolism prediction method.
The CS consisted of two parameters: coverage (C) and
sorting ability (S), and the mathematical expression of CS is
expressed as in Eq. 1:

CS � 100 ×
�����
C × S

√
(1)

Coverage intended the percentage of correctly predicted
metabolites in the sourcing dataset, and the mathematical
expression of C is expressed as in Eq. 2:

C � Countcorrectly known metabolites

Counttotal known metabolites
(2)

Sorting ability intended the rank of the correct metabolite in
the list of candidate metabolites, and the mathematical expression
of S is expressed as in Eq. 3:

S � 1
n
∑n

i�1
1

Orderi
(3)

Metabolite Generation
A total of 60 reaction rules were divided into eight groups
according to the functional groups, including alkanes, esters,
amines, aromatics, alkenes, ethers, alcohols, and the other
functional groups. Any natural compound will first identify
its main functional group categories for matching reaction in
SMARTS. Subsequently, a series of temporary molecules will
be generated via the aforementioned chemical equations.
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FIGURE 1 | (A) Design principles of MetNC. (B) Structure information of prosaikogenin A. (C) Structure information of saikogenin A. (D)MetNC computational flow
of prosaikogenin A to predict saikogenin A.

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 8819753

Chen et al. Metabolite Prediction for Natural Compounds

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ranking Algorithm
Here, the final rank depended on activity sorting and fine-
tuning sorting. The eight functional groups produce 40,320
activity patterns via the enumeration method. After high-
intensity calculations, the optimal functional group order was
considered: esters > ethers > aromatics > others > amines >
alkanes > alkenes > alcohols. Fine-tuning sorting mainly
involved structural isomerism sorting. A computational
method for calculating the steric hindrance of
structural isomerism was designed here. Finally, the top 50
candidate molecules will be regarded as the most potential
metabolites.

The pseudocode for calculating the steric hindrance is as
follows:
Algorithm 1 Pseudocode for calculating the steric hindrance.

RESULTS

Design Principles of MetNC
MetNC provides a simple and easy-to-use workflow
(Figure 1A): users only need to input the SMILE format of
parent NCs, and a ranked list of potential metabolites will be
generated. Inside, MetNC was constructed by a three-layer
algorithm to gradually derive the resulting list.

First, a collection of potential metabolites will be generated
through simulating reactions rules summarized from the
sourcing dataset (detailed rules displayed in Supplementary
Table S2). So far, this dataset includes 850 substrate–product
pairs, representing the largest record of in vivo metabolite for
NCs. Second, a ranking algorithm was applied to the
aforementioned set of metabolites according to the reaction
priority of eight functional groups (esters > ethers > aromatics
> others > amines > alkanes > alkenes > alcohols). At last, the
optimal list was provided based on steric hindrance, and
MetNC recommends the top 50 metabolites as a default for
each input compound.

Taking prosaikogenin A as an example (Figure 1B), though it was
reported with significant effect on anti-platelet aggregation in vitro
(Zeng et al., 2016), it was found to be transformed into saikogenin A
(Figure 1C) before entering blood (Kida et al., 1998). Theoretically,
prosaikogeninAmayhavemultiple reaction sites, such as ether bonds,
carbon–carbon double bonds, and hydroxyl groups (Figure 1B). So,
in step 1, a pool of candidate products was generated aftermetabolism
simulation, by considering all reaction possibilities. Furthermore, in
step 2, potential products were ranked according to functional groups,
in which those from ether bond breaking were pushed to the top
ranking position. In the last step, the ranking list was further sorted via
steric hindrance of structural isomerism, so that, the true product in
red-dotted frame can be prioritized to the top few (Figure 1D).

Performance of MetNC on Sourcing Data
In this article, in addition to the parameter of coverage, it is also
desirable to evaluate the sorting ability of candidate metabolites
for each method, which was simply illustrated by the reciprocal of
the ranking position for the known metabolite in the prediction
list. Here, we define a new parameter (CS) for overall method
assessment on a testing dataset through multiplying the coverage
and sorting ability. The range of CS is 0–100 (see Methods for
details). The higher the score, the better the performance.

Together with peers of BioTransformer and GLORYx, MetNC
was tested on 850 substrate–product pairs of the sourcing dataset
in terms of CS. As Figure 2 indicated, MetNC gave the highest CS
of 36.99, and BioTransformer achieved second with a CS of 26.69
followed by GLORYx with a CS of 23.83 (Figure 2A). Further
breakup showed that 578 out of 850 products can be successfully
captured by MetNC with the highest coverage of 0.68
(Figure 2B). The top-ranking ability was also illustrated in
Figure 2C, indicated by the number of true positives among
Top-N predictions for each method. It can be seen that
BioTransformer indeed gave nice ranking for the true
positives, particularly in the top five list. Yet, overall, only 324
out of 850 (coverage of 0.38) were successfully predicted.
Meanwhile, for GLORYx, a higher coverage of 0.61 with 518
successful predictions was achieved, but none of them were
ranked into Top-1. In contrast, MetNC ranked 12% of known
metabolites in the Top-1 list with the highest-ranking ability and
overall coverage. Figure 2D displays the comprehensive ability to
push known metabolites into the top-ranking list by the
cumulative curve in different ranges of Top-N predictions. In
conclusion, MetNC showed the best performance among peering
methods on the sourcing dataset.

MetNC on the Independent Dataset
In total, 14 additional cases were curated from literatures as an
independent dataset. Also, the biotransformation of these natural
compounds is shown in Supplementary Table S3. Table 1
summarizes the predicted ranking among different methods. It
can be seen that MetNC recommended 6 of the 14 known
metabolites to the Top-1 list, while BioTransformer only
recommended 5, and GLORYx recommended none (Table 1).
Of the 14 cases, BioTransformer failed to give prediction on
7 NCs, while both GLORYx and MetNC failed to give on 5. The
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overall CS reached 56.60 for MetNC, much higher than the second
BioTransformer of 46.29.

It was noticed that MetNC performed significantly better on
prosaikogenin A, ginsenosides, and baicalin than GLORYx and
BioTransformer (Table 1, Nos. 6, 8, and 9). Careful investigation
found that their metabolism was all commonly reported to be
involved by intestinal flora (Figures 3A–C). For instance,
prosaikogenin A, an active ingredient from Bupleurum chinense
DC., was reported to undergo in vivo metabolism by an intestine
bacterium of Eubacterium sp. A44 to the more blood-accessible
molecule saikogenin A (Figure 3A) (Kida et al., 1998; Yang, 2005).
Also, ginsenoside, a critical component in Panax ginsengC.A.Meyer

was reported to be metabolized by intestinal flora (Figure 3B), with
some known bacteria of Bacteroides sp. HJ15, Fusobacterium sp.
K60, Eubacterium sp. A44, and Bifidobacterium sp. K111 (Bae et al.,
2002). A similar case can be found for the famous compound
baicalin, which was converted to baicalein (Figure 3C) via the
hydrolysis of Escherichia coli before entering the blood circulation
(Zuo et al., 2002; Gong et al., 2020). This reminded us to examine all
the other compounds with metabolism medicated by bio-microbes.
As Table 1 illustrated, seven compounds were found with positive
evidence, among which BioTransformer successfully predicted two,
while MetNC made four hits. This seems to suggest a unique ability
of MetNC to predict metabolites mediated by bio-microbes.

FIGURE 2 | Performance comparison of MetNC, BioTransformer, and GLORYx on the sourcing dataset (n = 850). (A) CS of each method. (B) Prediction coverage
of each method. (C,D) Ability of ranking known metabolites into the Top-N list. (D) Abscissa represents the accumulation from Top-1 to Top-N, while the ordinate
indicates accumulative coverage.

TABLE 1 | Ranking performance of three methods on the independent dataset

No. Prototype compound Ranking position of the true metabolite Bio-microbes mediated Ref.

MetNC BioTransformer GLORYx

1 Saikosaponin A 1 1 2 Unclear Liu et al (2013)
2 Saikosaponin B1 1 1 2 Unclear Yang (2005)
3 Glycyrrhizin 1 1 8 Unclear Yang (2005)
4 Glycyrrhetic acid 3-O-glucuronide 1 1 25 Yes Yang (2005)
5 Prosaikogenin F 1 2 10 Unclear Liu et al (2013)
6 Prosaikogenin A 1 2 18 Yes Yang (2005)
7 Neoandrographolide 1 2 1 23 Unclear Yang (2005)
8 Ginsenoside 1 3 Null 45 Yes Bae et al (2002)
9 Baicalin 1 7 Null Null Yes Zuo et al (2002)
10 Baicalin 2 Null Null Null Yes Zuo et al (2002)
11 Ginsenoside 2 Null Null Null Yes Bae et al (2002)
12 Andrographolide Null Null Null Unclear Yang (2005)
13 Neoandrographolide 2 Null Null Null Unclear Yang (2005)
14 Glycyrrhetic acid Null Null 5 Yes Yang (2005)

Overall CS 56.60 46.29 26.99 — —
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Optimized Algorithm Improved MetNC
Performance
In this article, a three-layer algorithm was constructed for the desired
results, including reaction simulation by expert rules, ranking, and
further optimization by structural features. Generally, in the area of
bio-prediction, machine learning techniques are often applied to large
datasets, while on the condition of small datasets, expert rules have

shown promising results (Slagle et al., 1984; Tsumoto and Tanaka,
1995). With respect to our relatively small and representative dataset,
we summarized 60 general rules regardless of metabolizing organs or
environments. Through this, in vivo metabolism was initially
simulated for each parent compound to produce a candidate list.

When constructing the expert rules, we found that different
functional groups attaching to the same structure have different

FIGURE 3 |Representative deglycosylation processesmediated by intestinal flora in an independent dataset (n = 14). (A)Biotransformation of prosaikogenin A that
was metabolized by Eubacterium sp. A44. (B) Biotransformation of ginsenoside that was metabolized by Bacteroides sp. HJ15, Fusobacterium sp. K60, Eubacterium
sp. A44, and Bifidobacterium sp. K111. (C) Biotransformation of baicalin that was metabolized by Escherichia coli.

FIGURE 4 | Prioritizing ability of MetNC on different orders of functional groups. (A) Ranking position distribution of known metabolites on different orders of
functional groups (n = 850). (B) Number of known metabolites in the Top-N prediction list on different orders of functional groups.
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metabolizing preferences. Then, the order of reaction priority was
investigated for the eight major functional group categories and
incorporated into the algorithm (alcohols, alkanes, alkenes,
amines, aromatics, esters, ethers, and others). Meanwhile, for
those compounds with the same functional groups, steric
hindrance may affect the reaction orders (Jeppsson et al.,
1975), which was also taken into consideration in our algorithm.

The order of eight functional groups was optimized as: “esters >
ethers > aromatics > others > amines > alkanes > alkenes > alcohols”,
with Figure 4A showing the significant improvement, compared to a
random ordering, such as “alcohols > others > alkanes > esters >
aromatics > amines > alkenes > ethers” (student’s t-test, p = 9.42e-24).
Particularly in the top few hits, the optimized order successfully
predicted 102 metabolites into Top-1 on the sourcing dataset,
while the random order only had 14 successful predictions, as
shown in Figure 4B. Various indications show that the MetNC
method holds an outstanding ability to predict correct metabolites
in vivo and also pushes the true metabolite into the top-ranking
positions for NCs.

DISCUSSION

Due to the inherent structural diversity, nature-derived compounds
and their metabolites have been re-introduced into therapeutic
perspectives in recent years (Thoppil and Bishayee, 2011; Kumar
et al., 2013; Zubair et al., 2020). As the structure of one natural
compound may contain multiple active sites in different functional
sub-groups, itmay bemetabolized into different products in various in
vivomicroenvironments. In fact, the study of NC biotransformation is
just starting, and the identification of likely products remains too
challenging and costly. In this article, we constructed a tailor-made
method, MetNC, to predict the in vivometabolites based on reaction
simulation and candidate sorting, giving the best performance with an
extra advantage on the microbiota-mediated metabolism.

On one hand, the high performance of MetNC benefits from the
rich and representative dataset of 850 NC metabolism pairs, mainly
validated via chromatographic experiments (Kang et al., 2013), from
which a set of concise reaction rules can be summarized and applied
further to our method. Instead of specific metabolism conditions such
asCYP450 or sulfotransferases (SULTs), our reaction rules ignored the
detailed organs or enzymes but focused on the overall transformation
from substrate to metabolites detected in vivo. Another important
contribution to performance may lie on the subsequent sorting
according to functional sub-groups with their priority ordering. To
the end, MetNC significantly improved the ranking of known
metabolites by considering not only the site of the metabolizing
reaction but also the chemical microenvironment, including
chemical activity of functional groups and steric hindrance around
the reaction sites.

Among the peers, GLORYx was modeled based on a huge
dataset and three sets of more than 200 reaction rules, leading to
excellent performance in terms of coverage. Those rules are
mainly involved in liver metabolism, covering at least 145
SyGMa’s and 61 GLORY’s rules. On top of that, a new set of
GSH conjugation rules augmenting SyGMa’s phase 2 was
purposely incorporated to improve the coverage rate but at the

cost of precision, as being claimed by their article (de Bruyn Kops
et al., 2021). On the other hand, BioTransformer was trained from
thousands of data with 237 reaction rules and produced a
beautiful ranking for candidate metabolites. Their outstanding
raking ability was related to a simple filtering module to eliminate
trivial non-candidates at the expense of coverage (Djoumbou-
Feunang et al., 2019). While in this article, MetNC summarized a
concise set of 60 rules for NCmetabolism, successfully combining
both their advantages of high coverage and accurate ranking.

Responding to different environmental stimuli, living organisms
produce various secondary metabolites with structural diversity and
scaffold novelty to defend themselves. As NCs have excellent
pharmacological activity and biocompatibility, investigating their
biotransformation has become indispensable to seek potent
druggable molecules. Yet, the current study was mainly reliant on
experiments. Here, MetNC was proposed aiming to estimate the
metabolized product profiles for any sourcing natural ingredients,
prior to experiments. Using concise reaction rules and rational sorting,
it can provide competitive prediction results for NCs. Also, it seems
good at not only simulating liver metabolism but also bio-catalyzing
via the digestive flora from a holistic perspective. Please be reminded
that MetNC was trained by sourcing ingredients from medicinal
plants. Compounds from other organisms, particularly with novel
scaffolds, may not achieve the best results. In future, MetNC will be
improved by the expanded reaction rules and the reaction types not
covered in the known dataset.
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