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Abstract

Since metabolome data are derived from the underlying metabolic network, reverse engineering of such data to recover the
network topology is of wide interest. Lyapunov equation puts a constraint to the link between data and network by
coupling the covariance of data with the strength of interactions (Jacobian matrix). This equation, when expressed as a
linear set of equations at steady state, constitutes a basis to infer the network structure given the covariance matrix of data.
The sparse structure of metabolic networks points to reactions which are active based on minimal enzyme production,
hinting at sparsity as a cellular objective. Therefore, for a given covariance matrix, we solved Lyapunov equation to calculate
Jacobian matrix by a simultaneous use of minimization of Euclidean norm of residuals and maximization of sparsity (the
number of zeros in Jacobian matrix) as objective functions to infer directed small-scale networks from three kingdoms of life
(bacteria, fungi, mammalian). The inference performance of the approach was found to be promising, with zero False
Positive Rate, and almost one True positive Rate. The effect of missing data on results was additionally analyzed, revealing
superiority over similarity-based approaches which infer undirected networks. Our findings suggest that the covariance of
metabolome data implies an underlying network with sparsest pattern. The theoretical analysis forms a framework for
further investigation of sparsity-based inference of metabolic networks from real metabolome data.
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Introduction

While the majority of computational systems biology approach-

es use cellular networks as scaffolds to analyze omics data, some

focus on investigation of the information content of omics data to

recover the underlying biological network. These approaches,

termed top-down systems biology [1], have been more widely

applied to transcriptome data to infer gene-regulatory or signaling

networks [2–5] whereas applications to metabolome data to

discover metabolic networks are rather limited [6–8].

Network inference approaches can be grouped into two in terms

of the directionality of the inferred network. A large group of

approaches including similarity-based approaches such as partial

Pearson correlation and mutual information infers undirected

networks [9,10]. Others use dynamic or multi-condition data with

sophisticated/advanced experimental design [11,12] to increase

the information content of data, and hence attempt to infer

directed cellular networks.

Steady-state data have also been a focus of reverse engineering

approaches, but almost exclusively to infer undirected networks.

Few examples use steady-state data only to infer partially directed

networks [13]. Steady-state data, although leading to promising

results, are generally considered to be less informative compared to

dynamic or multi-conditional data. Therefore, the general trend is

to employ other complicated experimental designs such as

perturbation experiments [14], which may require higher costs.

Cellular networks have been shown to exhibit sparse structures

[5]. This characteristics is also valid for condition-specific

networks. Therefore, the sparsity information has already been

used by some researchers in network inference approaches to

further constrain solution space. For metabolic networks, a sparse

structure means efficient use of cellular resources by minimizing

the number of active reactions and, hence, the production of

corresponding enzymes. The sparsity of metabolic networks has

also been used to develop bottom-up modeling techniques to

predict experimental data [15,16].

In this work, we perform a theoretical study based on

constraining observational steady state metabolome data with

the sparsity information, and show the potential of such data to

discover underlying metabolic networks with directionality infor-

mation as well as the interaction strength of metabolite pairs. The

results are demonstrated in silico for three different metabolic

systems: brain glycolysis metabolism consisting of 12 metabolites,

glycolytic pathway of S. cerevisiae with 13 metabolites, and central

carbon metabolism of E. coli with 18 metabolites. The approach

can also be used for the inference of other types of cellular

networks (eg. based on transcriptome data), making it of wider

interest for systems biology research.
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Methods

Lyapunov Equation
A metabolic reaction network can be described by a set of

nonlinear differential equations around its metabolites, C:

dC

dt
~f (C) ð1Þ

For systems around steady state, a linear approximation can be

made to express the equation system in terms of Jacobian matrix, J
[17] :

dX

dt
&JX ð2Þ

with X=C – Cs, and C shows concentrations fluctuating around

steady state values, Cs. Jacobian matrix holds very detailed

information on the underlying network structure including (i)

direction of interaction, (ii) nature of interaction (positive or

negative), and (iii) strength of interaction. The (i, j)th entry of a

Jacobian matrix quantifies the influence of jth metabolite on the

time behavior of metabolite i, hinting for interaction strength [6]:

Jij~
L dCi

dt

� �

LCj

ð3Þ

Eqn. (2) can also be expressed by a Langevin-type equation to

explicitly account for small fluctuations [17].

dXi

dt
~

X
j

JijXjz
ffiffiffiffiffiffiffiffi
2Di

p
gi(t) ð4Þ

where Di shows the extent of fluctuations, and gi is a random

number from unit normal distribution. Note that internal

metabolites can show true, albeit small, natural fluctuations over

time due to complex regulatory patterns in the cell [6,17–19], or

such fluctuations can be induced externally by eg. introducing

small time-dependent fluctuations on temperature, pH or external

glucose concentration of microbial growth systems.

As demonstrated by [20], Eqn. (4) can be written as follows at

steady state, providing a link between the covariance matrix of

metabolite data, G, and Jacobian matrix:

JCzCJT~{2D ð5Þ

Eqn. (5), also known as Lyapunov Equation, is our basis for

directed network inference based on steady state data since it puts

a link between data-based covariance matrix and network

structure, stored in Jacobian matrix. The equation was already

demonstrated to be valid for metabolic networks as the covariance

of data generated stochastically from a metabolic network was in

agreement with the covariance calculated from this equation [17].

Eqn. (5) is a linear set of equations, and can further be arranged

into a standard format of systems of equations:

Aj~{2d ð6Þ

Here, j is the vectorized form of Jacobian matrix to be

determined, with size of n261. Similarly, d is the vectorized form

of the fluctuation matrix with n261 in size. A is n26n2 matrix,

including information on covariance values. Remember that

matrix A is not in full rank since the covariance matrix has

dependent entries. (See Supporting Information S1 for the

derivation of Eqn. 6).

Eqn. (6) is underdetermined for solving the vectorized Jacobian

matrix given covariance matrix since a covariance matrix is

symmetric, and hence only has n(n+1)/2 independent entries while

the vectorized Jacobian matrix has n2 independent entries for an n-

metabolite system. Namely, the degrees of freedom of the system is

large and equal to n(n–1)/2. On the other hand, it was pointed out

that if Jacobian matrix has number of zeros greater than the

degrees of freedom of the system, than the system becomes

overdetermined [21]. Since metabolic networks are sparse, this

situation generally holds for metabolic networks. Our hypothesis is

that, in addition to the minimization of the Euclidean norm of

residuals, another proper objective function based on cellular

network structure (eg. sparsity) can be simultaneously used to solve

for the vectorized Jacobian matrix, and hence recover the

underlying metabolic network.

Obtaining Covariance Matrix
Lyapunov equation was already shown to hold for metabolic

networks [17]. And, our goal is to be able to demonstrate that

Jacobian matrix, and hence full network structure, can be

recovered based on this equation via optimization, given the

data-derived covariance matrix. In other words, we want to

demonstrate the use of sparsity as an objective function by the cell.

Therefore, we preferred to test this hypothesis via a theoretical

analysis for a given exact covariance matrix. Since all the three

metabolic systems analyzed have associated kinetic models, the

corresponding true Jacobian matrices can easily be calculated. To

this aim, we obtained the exact covariance matrix from Eqn. (5)

for the true Jacobian matrix rather than deriving it from generated

in silico data for the analyzed metabolic systems. Then, this

covariance matrix and information on fluctuations (d) were used in

our optimization framework to identify j. d was chosen as a

vectorized matrix with diagonals being 0.005 in all simulations,

implying small internal fluctuations of each metabolite at steady

state.

Indeed, when we calculated Spearman correlation between the

exact covariance matrix of yeast that we obtained from Eqn. (5)

and the covariance matrix of in silico data generated for this system

in another study [6], we obtained a value of 0.998; indicating very

high overlap. However, in silico data generation using stochastic

differential equations (SDE) of type Eqn. (4) requires the use of

SDE solvers; and we observed that SDE solvers may not be stable

for highly nonlinear kinetic models like the ones we work on. Small

changes in fluctuation parameters lead to negative or imaginary

concentration values for especially metabolites with low concen-

trations. That was one other reason why we preferred to use the

exact covariance matrix which was obtained from Eqn. (5). Noise

analysis on this covariance matrix was performed as discussed in

Results and Discussion section in order to justify our choice on the

use of exact covariance matrix.

Constraining Solution Space using Correlations of
Metabolite Pairs
The use of similarity-based network inference approaches (eg.

correlation) to infer undirected metabolic networks from metabo-

lome data showed that full-order partial Pearson correlation, also

known as Graphical Gaussian Model (GGM), is the best performer

Sparsity as Cellular Objective to Infer Networks
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among others studied [6]. A closer inspection of the results of that

study showed that GGM-based similarity with a very stringent cut-

off gives a perfect match with the corresponding network. i.e.

Metabolite pairs with |RGGM| ,0.001 do not have an edge in

between in the real network, and pairs with |RGGM| .0.60 are

linked in reality. We used this purely data-based information on

very lowly correlated and very highly correlated metabolite pairs

in order to further constrain Eqn. (6).

Genetic Algorithm
Eqn. (6) is overdetermined since, in reality, the number of zeros

in the Jacobian vector is considerably higher than the degrees of

freedom of the system. Therefore, an optimization based on the

minimization of the Euclidean norm of the difference between left-

hand-side and right-hand-side of Eqn. (6) is to be performed. One

other proper objective function to calculate Jacobian vector, j,
from the equation is already-reported sparsity of cellular networks

[5,7,22]. To this aim, we used a second objective function

simultaneously to determine j: the maximization of the number of

zeros in the unknown vector. We employed Genetic Algorithm for

this purpose. Mathematically speaking, our multi-objective func-

tion to be optimized is:

f~ number of zerosð Þ|l{ log10 DDAjz2dDDð Þ ð7Þ

Note that the two terms in the objective (fitness) function are

indeed summed up since the logarithm of the term in parenthesis is

negative for values smaller than 1. l was chosen 0.05 in all

simulations. To guarantee the search of reasonable solution space,

first term of Eqn. (7) was constrained to have a maximum value of

(n22n)60.9, since the diagonals of a Jacobian matrix cannot be

zero, and it is not feasible for a Jacobian matrix to have more than

90% of its remaining entries to be zero. Similarly, the second term

was replaced by (10–[10+log10(||Aj+2d||)]/50) if the residual

norm of the individual in question is smaller than 1610210.

Thereby, we reduced the contribution of the second term on the

objective function for such small residual norms to shift the

emphasis on the number of zeros. These constraints prevented the

genetic algorithm to get stuck in local minima. For noise analysis

and missing-data analysis cases, we reduced the contribution of

residual norms smaller than 161025 to the fitness function and

used (5–[5+log10(||Aj+2d||)]/50) as the second term of the

objective function defined in Eqn. (7). Since noise or missing data

would increase the minimal residual norm that can be achieved,

our rearrangement was done to balance this fact.

ga function in MATLAB’s Global Optimization Toolbox was

used to code the problem in genetic algorithm. A bit-string

representation of individuals was used. ga was run with 4 different

subpopulations simultaneously, each having 50 individuals.

Mutation rate was chosen as around 1/(individual length) [23].

A parallelized version of ga was run with the help of MATLAB’s

Parallel Computing Toolbox. The other parameters of genetic

algorithm were used in default, and observed to not to affect the

results. Since no interaction means a symmetric entry of two zeros

in Jacobian matrix, zeros in the binary individuals were generated

symmetrically. The zero-elements of an individual were used as a

constraint on Eqn. (6), and MATLAB’s lsqlin from its Optimiza-

tion Toolbox was used to calculate a corresponding candidate

Jacobian vector, and the second term in the fitness function.

Simulations were performed on a 4-core desktop computer in

Windows environment. Convergence was achieved quickly in 100

to 800 generations depending on the size of the network studied.

The algorithm of the approach is given in Supporting Information

S1.

Statistical Analysis of Results
The Jacobian vector corresponding to the best individual

obtained from the genetic algorithm was compared with the real

Jacobian vector, and prediction was quantified statistically by

using true positive rate (TPR) and false positive rate (FPR). When

necessary, g-score [24] was calculated based on the following

formula to allow better comparison:

g{score~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TruePositive Rate)|(1{False Positive Rate)

p ð8Þ

The directionality was taken into account while calculating

these metrics. That is, a true positive count meant that both the

availability of interaction and its direction were correctly inferred.

Similarly, false negatives were the edges which were either

predicted as no-edge, or predicted in wrong directions. The

entries in the calculated Jacobian vector which are smaller than

161028 were assumed to be zero.

Results and Discussion

Demonstration of the Approach on a Small Cellular
Network
We start with a demonstration of our approach on a smaller (6-

node) system. We preferred a non-metabolic system for the

demonstration on purpose to draw attention to the fact that our

approach can also be applied to the inference of other biological

networks such as gene-regulatory or signaling networks. The

system has 6 nodes, and 5 interactions in between [25], and was

obtained from BioModels database [26]. So, matrix A in Eqn. (6)

has dimensions of 36636, and Jacobian vector to be estimated is a

3661 vector. The real Jacobian of the system, calculated

numerically from the available kinetic model, has 20 zeros, and

the degrees of freedom of matrix A is 15. Our approach and its

results are also visually demonstrated in Figure 1 via this example

system. As detailed in Figure 1, solving modified Lyapunov

equation, Eqn. (6), with the double objective function defined in

Eqn. (7) using the genetic algorithm has led to the exact Jacobian,

meaning a full inference of the directed network structure. Our

approach found the solution very fast in only 1 or 2 generations.

GGM values of metabolite pairs suggested a link between two

pairs, which was used as an input to our algorithm by always

keeping the corresponding entries in the individuals 1 for these

pairs. When even no such information is used, the exact solution is

found in about 10 generations.

Discovery of three Metabolic Networks from Different
Kingdoms
We first calculated covariance matrices of the three metabolic

networks in silico as mentioned in the Methods section: 12-

metabolite brain glycolysis [27], 13-metabolite yeast glycolysis

[28], and 18-metabolite E.coli central metabolism [29]. Then, we

calculated the corresponding full-order partial Pearson correlation

matrices based on a simple GGM formulation [30]. The strength

of similarity based approaches was used, in a very stringent way, as

an input to our algorithm. The use of our stringent cut-offs

identified 3 linked and 8 non-linked metabolite pairs for brain, 3

linked and 10 non-linked pairs for yeast, and 5 linked and 41 non-

Sparsity as Cellular Objective to Infer Networks
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linked pairs for E. coli. This information was used as an additional

constraint on the standardized Lyapunov Equation (Eqn. (6)) as

detailed in Methods section. Table 1 reports true positive rates and

false positive rates of the inferred directed networks for these

metabolic systems based on the sparsity objective as well as

Spearman correlations between the directed interaction strengths.

For brain and S. cerevisiae, our algorithm led to the exact inference

of the network structure, with exact values of interaction strengths

(eg. inference of the exact Jacobian matrix) as obvious from the

perfect Spearman correlation. For E. coli, results led to a very high

true positive rate (0.85) with no false positives at all. That is, 33 of

39 real interactions were able to be recovered by our approach. A

closer inspection and comparison of real Jacobian matrix and the

inferred Jacobian matrix revealed that 5 of the 6 false negatives

were due to the wrong assignments of reversibility to irreversible

reactions. However, the interaction strengths of the reversible

parts of these reactions were very low (on the order of 1024),

making these inferred interactions practically irreversible, and in

the direction of true edges. This corresponds to a practical TPR of

0.97. The remaining false negative was indeed for a very weak

regulatory interaction between fructose-1,6-biphosphate and

pyruvate (on the order of 1025). Our approach could not capture

this interaction due to its almost-zero strength. This means that

our approach is almost flawless for the inference of stronger

interactions, considering these three systems from mammalian,

eukaryotic and prokaryotic organisms. One should note that the

predicted networks are condition-specific. The approach infers the

active links of the metabolic networks for the condition of interest

rather than inferring the general metabolic network with all

possible reactions, which also has a sparse structure.

To allow a clearer demonstration of the positive effect of the

sparsity objective on the results, we repeated calculations with an

alternative double-objective function which simultaneously mini-

mizes (i) sum of the absolute values of the elements of Jacobian

matrix and (ii) Euclidean norm of the residuals, by using a similar

framework as in Eqn. (7). Results are associated with very high

false positive rates (on the order of 0.30), indicating the clear

contribution of sparsity objective on getting promising predictions

(results not shown). Additionally, we tested the effect of sparsity

term of the fitness function on the results by removing the term

from the function and running our algorithm. We have obtained

networks with noticeably denser structures. The most obvious

characteristics of these predicted networks is that they are

associated with very high false positives (a natural result of having

denser structure).

A previous study used two types of in silico data around steady

state generated from the same E. coli and S. cerevisiaemodels to infer

undirected networks [6]. They reported GGM (nth order partial

correlation) as most powerful similarity-based approach based on

their analysis. We compared our results with the networks inferred

Figure 1. Illustrating Lyapunov-equation based approach to use sparsity as cellular objective to predict underlying network
structure. The gene network is from [24]. The genetic-algorithm-coded approach uses covariance matrix as an input to predict interaction strengths
(Jacobian matrix) based on a mathematical dual objective of maximal number of zeros and minimal Euclidean norm of the residuals. See also the
algorithm presented in Supporting Information S1.
doi:10.1371/journal.pone.0084505.g001

Sparsity as Cellular Objective to Infer Networks
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in that study based on GGM. Additionally, we generated in silico

steady-state data for brain metabolic model, and analyzed the data

with GGM approach. Results are compared in Table 2. GGM-

based approach results in undirected networks with acceptable

TPRs and FPRs. Our directed network inference approach, on the

other hand, leads to very promising results using similar steady-

state based covariance as input, with almost exact inference of

networks including the quantified strength of interactions. (see

Table 2). Here, one should keep in mind that in our approach

exact covariance matrices were used rather than in silico data-based

ones. Therefore, our main focus in such a comparison is to

demonstrate sparsity as a valid cellular objective function for

network inference.

Noise Analysis
Next, the sensitivity of our approach to noise in data was

analyzed. To do so, we focused on one of the networks: S. cerevisiae

glycolysis. For the noise analysis, we followed the approach

adopted in [31], who added a noise to data from normal

distribution with a variance corresponding to a certain percentage

of (eg. 50%) the variance of each variable in the data. They then

tested the effect of noise on the performance of their GGM

approach. Others applied similar noises to metabolomic datasets

to test their methods [32,33]. In our study, the noise analysis was

applied to both our Lyapunov-equation based approach, and to

similarity-based approaches comparatively. First, we added 50%

noise to the two types of in silico data reported in [6], and

calculated corresponding TPR’s and FPR’s of resulting similarity-

based inferred undirected networks. This was repeated 10 times,

and the arithmetic averages were calculated, as reported in

Table 3. Next, we checked the effect of this noise on covariance

matrices of these data. We have observed that such noise causes a

normally distributed noise on the independent entries of covari-

ance matrices with mean 1 and standard deviation around 0.005.

Therefore, we multiplied our Lyapunov-derived covariance matrix

entries for S. cerevisiae with random numbers from normal

distribution with these properties to mimic a similar noise effect.

The resulting covariance matrix was used as the input to our

genetic algorithm. After repeating this analysis with 10 different

such covariance matrices, resulting TPR and FPR values are

averaged and reported in Table 3. Again we remind that, the

reported TPRs and FPRs for our Lyapunov-based approach are

based on directed-network inference unlike the GGM approach of

[6] used for comparison.

As expected, and observed before [31], noise has an effect on

the performance of network inference approaches. A comparison

of the approaches shows that Lyapunov-equation based approach

presented in this work has lowest FPR value for the noise-

incorporated cases. TPR values may not seem very different at first

sight, however, unlike edges correctly inferred by GGM, all the

edges correctly inferred by our approach have correct direction-

ality, which makes the higher performance of our approach clear

even for the noisy data input. When we calculated TPR of the

network inferred by our approach by ignoring directionality, we

calculated a value of 0.76, and FPR remained the same. We went

further and wanted to see how our approach would behave if even

a larger noise with doubled standard deviation is considered.

Multiplying covariance matrix entries with random numbers from

normal distribution with mean 1 and standard deviation 0.01

resulted in a directed network with TPR of 0.65, and FPR of 0.21,

still comparable to the less noisy similarity-based counterparts

reported in Table 3.

Effect of Missing Data
One important and relatively untouched issue in the literature is

how network inference approaches behave in case of missing data.

Table 1. Inference results for three metabolic systems.

System Characteristics Inference-Quality Metrics

Number of
Nodes

Number of
Interactions True Positive Rate

False Positive
Rate

Spearman Correlation
of Strengths

Brain 12 17 1.00 0 1.00

S. cerevisiae 13 21 1.00 0 1.00

E. coli 18 39 0.85 0 1.00

Our approach generates networks with very high TPR and no FPRs. Also, there is full correlation between the interaction strengths of real networks and inferred
networks.
doi:10.1371/journal.pone.0084505.t001

Table 2. Comparison of performance of our approach with similarity-based GGM method.

Lyapunov-based Approach Similarity-based GGM Approach

Enzymatic* Intrinsic*

TPR
(directed) FPR

TPR
(directed) FPR

TPR
(directed) FPR

Brain 1 0 0.64 0.34 0.44 0.03

S. cerevisiae 1 0 0.69 0.19 0.77 0.13

E. coli 0.85 0 0.66 0.16 0.61 0.08

Note that reported TPRs and FPRs are for directed network inference in our case whereas they are for undirected network inference for GGM method.
*In [6], two types of in silico steady-state data were generated. For details, check the related reference.
doi:10.1371/journal.pone.0084505.t002
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It may not be possible to have metabolomic measurement for

every node in a metabolic network. We have investigated the effect

of missing data on the prediction capacity of our approach,

compared to similarity-based approaches.

We have focused on S. cerevisiae network, and assumed that no

information is available about two nodes in the network: Fructose

biphosphate (F16bP), and 2-phosphoglycerate (2-PG). So, we have

discarded corresponding columns and rows from the covariance

matrix before feeding it to our genetic-algorithm-based approach.

F16bP is connected to Fructose-6-phosphate and Phosphate on

one side and to Triose-phosphate on the other side in the original

network. With the missing data, we expect a link between

Fructose-6-phosphate and Triose-phosphate, as well as a link

between phosphate and triose-phosphate. 2-PG is connected to 3-

phosphoglycerate on one side and to phosphoenolpyruvate on the

other side in the original network, so we expect a direct link

between these two metabolites in the missing-data case.

The inferred network included a link between 3-phosphoglyc-

erate and phosphoenolpyruvate, and between Fructose-6-phos-

phate and Triose-phosphate as expected. The expected connec-

tion between triose-phosphate and phosphate was not recovered.

This is probably due to the strength of the interaction between

F16bP and phosphate in the original network: it was a relatively

weak interaction. The inferred directed network has a TPR of 0.67

and an FPR of 0.08. When the prediction of directionality is not

taken into account, TPR and FPR are 0.74 and 0.08 respectively.

This corresponds to a g-score of 0.82. For comparison, in silico data

from [6] were also analyzed with GGM-based inference in the

case of missing information for the F16P and 2-PG nodes. Of the

two types of in silico data reported there, the enzymatic-data

resulted in a TPR of 0.69, and an FPR of 0.31. This corresponds

to a g-score of 0.69. GGM achieved the same TPR as the original

case (Table 3), but with an almost doubled FPR. For the other

data type (termed intrinsic data), TPR was calculated as 0.82, and

FPR was calculated as 0.23, corresponding to a g-score of 0.79.

Again, a slight change in TPR was associated with a high relative

increase in FPR in the case of missing data for the two nodes. Our

approach here highly outperformed GGM-based approach in

terms of resulting FPRs. Also Spearman correlation between the

strengths of the predicted and calculated Jacobian values was 0.56

(p-value: 3610211) when interaction directions were considered,

and 0.70 when interaction directions were not considered (p-value:

261029) by our approach. Spearman values of 0.32 and 0.44 by

the similarity-based approaches were identified between undirect-

ed Jacobian strengths and GGM values.

Conclusions

We have presented a theoretical analysis which justifies the use

of sparsity as a cellular objective from the perspective of network

inference. Additionally, the results imply a superiority of our

approach to the similarity-based approaches reported for meta-

bolic network inference so far. The approach has three strengths:

(i) high-quality directed network inference, (ii) no requirement for

advanced and complicated experimental design such as knock-

outs, only data around steady-state are sufficient, (iii) recovering

interaction strengths between metabolite pairs. Moreover, the

approach can readily be applied to the inference of other types of

biological networks such as gene-regulatory networks.

One should note that our Lyapunov-based approach has an

equation system with n2 unknowns for an n-metabolite system. It

may seem to be an obstacle to apply the method to metabolomic

datasets with larger coverage. However, considering increased

computational capacity with novel approaches such as cloud-

computing, this may not be a primary issue. Besides, we have

shown that our approach can still have a high-TPR & low-FPR

characteristics in the case of missing information for some nodes.

In this sense, our study has attempted to address the untouched

issue of missing data in the metabolic network inference area by

covering also the performance of similarity-based approaches on

this issue. Our next focus will be the improvement of the algorithm

to show its applicability to larger metabolic networks. A further

challenge will be to test the approach in terms of the required data

characteristics, such as the number of replicates, to infer structures

from real metabolome data.

Supporting Information

Information S1 Derivation of Modified Lyapunov Equa-
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Table 3. Effect of noise on the inference of S. cerevisiae network for our directed approach and for undirected similarity-based
GGM approach.

Lyapunov-based Approach
(0.5% standard dev.) Similarity-based GGM Approach

Enzymatic Variation Intrinsic Variation

TPR FPR RSp TPR FPR RSp TPR FPR RSp

0.73* 0.11 0.51+ 0.60 0.15 0.39 0.71 0.21 0.47

Results are average of 10 noise-incorporated repetitions. Note that reported TPRs, FPRs and Spearman Correlations (Rsp) are for directed network inference in our case
whereas they are for undirected network inference for GGM method.
*Value becomes 0.76 when interaction direction is not considered.
+Value becomes 0.69 when interaction direction is not considered.
doi:10.1371/journal.pone.0084505.t003
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