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ABSTRACT

Despite the accumulating research on noncoding
RNAs (ncRNAs), it is likely that we are seeing only
the tip of the iceberg regarding our understanding of
the functions and the regulatory roles served by
ncRNAs in cellular metabolism, pathogenesis and
host-pathogen interactions. Therefore, more power-
ful computational and experimental tools for analyz-
ing ncRNAs need to be developed. To this end, we
propose novel kernel functions, called base-pairing
profile local alignment (BPLA) kernels, for analyzing
functional ncRNA sequences using support vector
machines (SVMs). We extend the local alignment
kernels for amino acid sequences in order to
handle RNA sequences by using STRAL’s scoring
function, which takes into account sequence simila-
rities as well as upstream and downstream base-
pairing probabilities, thus enabling us to model
secondary structures of RNA sequences. As a test
of the performance of BPLA kernels, we applied our
kernels to the problem of discriminating members of
an RNA family from nonmembers using SVMs.
The results indicated that the discrimination ability
of our kernels is stronger than that of other existing
methods. Furthermore, we demonstrated the
applicability of our kernels to the problem of
genome-wide search of snoRNA families in the

Caenorhabditis elegans genome, and confirmed
that the expression is valid in 14 out of 48 of our
predicted candidates by using qRT-PCR. Finally,
highly expressed six candidates were identified as
the original target regions by DNA sequencing.

INTRODUCTION

Postgenomic transcriptome analysis has revealed the exis-
tence of a large number of transcripts which lack protein-
coding potential, called noncoding RNAs (ncRNAs), and
has shown that only 2 % of the human genome encodes
protein-coding RNAs, while 60–70 % of the remainder is
transcribed into ncRNAs (1). Hence, despite the accumu-
lating research on ncRNAs, it is likely that we are seeing
only the tip of the iceberg regarding our understanding of
the functions and the regulatory roles served by ncRNAs
in cellular metabolism, pathogenesis and host-pathogen
interactions.
Several computational methods based on stochastic

context-free grammars have been developed for modeling
and analyzing functional RNA sequences (2–7). These
grammatical methods have succeeded in modeling typical
secondary structures of RNAs, and are commonly used
for structural alignment of RNA sequences. However,
such stochastic models are not capable of discriminating
the member sequences of RNA families from nonmembers
with sufficiently high accuracy to detect nRNA regions in
genome sequences.
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Recently, following the genome sequencing of various
species, several computational methods based on the
comparative approach have been developed for finding
ncRNA sequences (5,7–9). Rivas and Eddy (5) have devel-
oped QRNA, which can classify a given pairwise align-
ment as one of three models using SCFGs: the coding
model (COD), in which substitutions between synony-
mous codons occur frequently as a means of conserving
amino acid sequences, the non-coding model (RNA), in
which covariances of base pairs occur frequently in order
to conserve secondary structures, and others (OTH). In
addition, Pedersen et al. (7) have developed EvoFold on
the basis of phylogenetic SCFGs (4), which assumes that
any mutations on each column of a given multiple align-
ment occur under a given phylogenetic tree of sequences,
and mutations in unpaired bases occur more frequently
than those in base pairs in conserved secondary structures.
These assumptions improve the accuracy of predict-
ing secondary structures and provide the capability of
predicting structurally conserved regions from multiple
alignments on the basis of phylogenetic information.
Furthermore, Washietl et al. (8,9) have developed
RNAz, which detects structurally conserved regions
from multiple alignments using support vector machines
(SVMs). RNAz employs the averaged z-score of the min-
imum free energy (MFE) for each sequence and the struc-
ture conservation index (SCI). Assuming that the MFE
for the common secondary structure is close to that for
each sequence if a given multiple alignment is structurally
conserved, SCI is defined as the ratio of the MFE for the
common secondary structure to the averaged MFE for
each sequence. The MFE for each sequence and the
common secondary structure are calculated by RNAfold
and RNAalifold in the Vienna RNA package (10). These
comparative methods have succeeded in detecting many
structurally conserved noncoding regions. However, the
structural conservation criterion failed to detect some
families, such as H/ACA and C/D snoRNAs.
Contrary to the aforementioned methods, several works

have been developed with an emphasis on certain families,
such as snoRNAs (11–15) and miRNAs (16–19). SnoRNA
finders based on pattern recognition algorithms, such as
Snoscan (11) for C/D snoRNAs as well as SnoGPS (12)
and the MEF-based method (13) for H/ACA snoRNAs,
can identify snoRNAs using target site information
about rRNA modifications including 20-O-ribose methyla-
tion or pseudouridylation in the posttranscriptional pro-
cess. Therefore, these methods can screen only guide
snoRNAs which modify known targets. A successor pack-
age called SnoSeeker (14) has been designed for the detec-
tion of not only guide snoRNAs, but also of orphan
snoRNAs whose targets are unknown, and has been suc-
cessfully applied to the human genome. Furthermore, an
SVM-based snoRNA finder called SnoReport (15) uses
several features tailored specifically for snoRNAs, such
as constraint MFEs under typical secondary structures
of snoRNAs and the match scores of the box motifs of
snoRNAs, and it does not require target site information
about rRNA modifications.
On the other hand, SVMs and other kernel methods are

being actively studied, and have been proposed for solving

various problems in many research fields, including bioin-
formatics (20). These methods are more robust than other
existing methods. For example, Saigo et al. (21) have pro-
posed local alignment kernels for amino acid sequences,
and their kernels with SVMs have outperformed other
state-of-the-art methods in benchmarks for remote homol-
ogy detection of amino acid sequences. Therefore, we con-
sidered using kernel methods, including SVMs, for the
analysis of functional ncRNAs.

For the purpose of analyzing ncRNAs using kernel
methods, including SVMs, we have already proposed
stem kernels, which extend the concept of string kernels
to allow measurement of the similarities between two
RNA sequences from the viewpoint of secondary struc-
tures (22). The feature space of the stem kernels is defined
by enumerating all possible common base pairs and stem
structures of arbitrary lengths. However, since the compu-
tational time and the memory footprint of stem kernels are
of the order of Oðn4Þ, where n is the length of the inputted
RNA sequence, applying stem kernels directly to large
data sets of ncRNAs is impractical.

Therefore, we propose novel kernel functions, called
base-pairing profile local alignment (BPLA) kernels, for
discrimination and detection of functional RNA
sequences using SVMs. We extend the concept of local
alignment kernels in such a way that it can handle RNA
sequences using STRAL’s scoring function (23). The local
alignment kernels measure the similarity between two
sequences by summing the scores over all possible local
alignments with gaps. STRAL’s scoring function takes
into account sequence similarities as well as upstream
and downstream base-pairing probabilities, which enables
us to model secondary structures of RNA sequences. Note
that unlike SnoReport, BPLA kernels do not depend on
any family-specific features.

In order to test the performance of our kernels, we
applied them to the problem of discriminating members
of an RNA family from nonmembers using SVMs. The
results indicated that the discrimination ability of our
kernel functions is stronger than that of existing methods.
Furthermore, we performed several experiments regarding
the prediction of functional RNA regions using SVMs
together with our kernel functions. The experimental
results showed that our kernel functions enable us to effi-
ciently discern individual RNA families within genome
sequences. Finally, in order to confirm their perfor-
mance for practical use, we used the proposed kernels in
implementing a search for snoRNA families in the
Caenorhabditis elegans genome, which has been studied
extensively by computational and expression ana-
lyses (24–27). Our prediction was tested by qRT-PCR,
and the verified snoRNA candidates were further con-
firmed by DNA sequencing.

METHODS

Local alignment kernels for amino acid sequences

Before proposing our new kernels, we briefly describe the
concept of local alignment kernels, which has been
proposed by Saigo et al. (21). A local alignment kernel
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is a kind of string kernel which can calculate the similarity
between a pair of sequences.

Let � be a finite set of symbols (j�j ¼ 20 for amino acid
sequences, or j�j ¼ 4 for nucleotide sequences). For two
sequences x; y 2 ��, a concatenation of x and y is denoted
as xy. Let jxj be the length of x.

A local alignment kernel between a pair of sequences x
and y is defined by decomposing them into simple
pieces and convoluting them. Given two string kernels
K1 and K2, we can define a convolution kernel K1 �K2

as follows:

K1 � K2ðx; yÞ ¼
X

x¼x1x2;y¼y1y2

K1ðx1; y1ÞK2ðx2; y2Þ: 1

If both K1 and K2 are valid kernels, K1 �K2 is also a valid
kernel (28).

Three atomic string kernels are defined as follows. The
first is the constant kernel which models a null contribu-
tion to a local alignment:

K0ðx; yÞ ¼ 1 for 8x; y 2 ��: 2

The second is the kernel between two residues:

Kð�Þa ðx; yÞ ¼
0 if jxj 6¼ 1 or jyj 6¼ 1
exp½�sðx; yÞ� otherwise;

�
3

where b� 0 is a constant and s : �2! R is a substitu-
tion scoring function between two residues. If the
matrix ½sða; bÞ�a;b2� is conditionally positive semi-definite,
Kð�Þa ðx; yÞ is a valid kernel. The last kernel is the one which
models the affine gaps:

Kð�Þg ðx; yÞ ¼ expf�½gðjxjÞ þ gðjyjÞ�g; 4

where b� 0 is a constant and g(n) is a gap cost function
for sequences of length n given by

gðnÞ ¼
0 if n ¼ 0
dþ eðn� 1Þ if n > 0;

�
5

where d and e are the gap opening penalty and the gap
extension penalty, respectively.

Let �ðx; yÞ be a set of all possible local alignments of x
and y. Given a local alignment � 2 �ðx; yÞ, we can define
Kð�Þ� as a string kernel for the local alignment � with n
matching columns as follows:

Kð�Þ� ¼ K0 � Kð�Þa �K
ð�Þ
g

� �ðn�1Þ
�Kð�Þa �K0: 6

This kernel decomposes the alignment � into an initial
part (whose similarity is measured by K0), n aligned resi-
dues (whose similarities are measured by Kð�Þa ), gaps
(whose similarities are measured by Kð�Þg ) and a terminal
part (whose similarity is measured by K0).
Finally, in order to compare two sequences with respect

to all possible local alignments, a local alignment kernel
K
ð�Þ
LA sums over all Kð�Þ� for all local alignments:

K
ð�Þ
LAðx; yÞ ¼

X
�2�ðx;yÞ

Kð�Þ� ðx; yÞ: 7

According to the state transition diagram of pairwise local
alignments shown in Figure 1, a local alignment kernel
(equation 7) can be calculated from the following recursive
equations:

Finally, we can obtain the kernel value as follows:

K
ð�Þ
LA ¼ 1þ Rxðjxj; jyjÞ þ Ryðjxj; jyjÞ þMðjxj; jyjÞ: 8

The complexity of this calculation is of the order of
OðjxjjyjÞ with respect to both time and memory.
The local alignment kernel can be regarded as a special

case of the partition function of all possible alignments
between two sequences. Miyazawa et al. (29) pioneered
the use of the partition function for a reliable sequence
alignment, which is known as a centroid estimator (30).
Mückstein et al. (31) employed the partition function for
stochastic pairwise alignments by which suboptimal align-
ments can be drawn from an ensemble of all possible
alignments of two sequences. The partition function
plays a crucial role in the reliability of these methods as
well as the local alignment kernel.

BPLA kernels for ncRNAs

Here, we propose new kernels for ncRNA sequences
which take into account secondary structures by utilizing
STRAL’s scoring function (23).

Mði; jÞ ¼
0; i ¼ 0 or j ¼ 0

exp½�sðxi; yjÞ�½1þ Ixði� 1; j� 1Þ þ Iyði� 1; j� 1Þ þMði� 1; j� 1Þ�; otherwise

�

Ixði; jÞ ¼
0; i ¼ 0 or j ¼ 0

expð�dÞMði� 1; jÞ þ expð�eÞIxði� 1; jÞ; otherwise

�

Iyði; jÞ ¼
0; i ¼ 0 or j ¼ 0

expð�dÞ½Mði; j� 1Þ þ Ixði; j� 1Þ� þ expð�eÞIyði; j� 1Þ; otherwise

�

Rxði; jÞ ¼
0; i ¼ 0 or j ¼ 0

Mði� 1; jÞ þ Rxði� 1; jÞ; otherwise

�

Ryði; jÞ ¼
0; i ¼ 0 or j ¼ 0

Mði; j� 1Þ þ Rxði; j� 1Þ þ Ryði; j� 1Þ; otherwise:

�
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Local alignment kernels can calculate the similarity
between a pair of sequences by taking into account only
sequence homology. However, it is well known that
ncRNAs form secondary structures with important func-
tions. Therefore, it is necessary to consider the secondary
structures of RNAs in order to compare two RNA
sequences.
Let us introduce a certain kind of secondary structure

information into the match scores of local alignments. For
each sequence, we first calculate a base-pairing probability
matrix using the McCaskill algorithm (32). The base-pair-
ing probability matrix for a sequence x consists of the
base-pairing probabilities Pij that the i-th and the j-th
nucleotides form a base pair, which is defined as:

Pij ¼ E½Iijjx� ¼
X

y2YðxÞ

pðyjxÞIijðyÞ; 9

where YðxÞ is an ensemble of all possible secondary struc-
tures of x, pðyjxÞ is the posterior probability of a second-
ary structure y given x, and IijðyÞ is an indicator function,
which equals 1 if the i-th and the j-th nucleotides form a
base pair in y and 0 otherwise. In this study, we employ
the Vienna RNA package (10) for computing the expected
counts (equation 9) using the McCaskill algorithm.
Subsequently, for each position i, we categorize the

base-pairing probabilities into three kinds of sums: the
probability Pleft

i ¼
P

j>i Pij that a pair is formed with one
of the downstream nucleotides, the probability
Pright
i ¼

P
j<i Pji that a pair is formed with one of the

upstream nucleotides, and the probability
Punpair
i ¼ 1� ðPleft

i þ Pright
i Þ that the nucleotide is unpaired.

A probability distribution consisting of these three prob-
abilities is called a base-pairing profile (33).
In this case, in accordance with STRAL (23), the match

score between two nucleotides xi and xj is defined using
base-pairing profiles as follows:

sðxi; yjÞ ¼ �ðSstructÞ þ Sseq

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pleft
xi

Pleft
yj

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pright
xi Pright

yj

q� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Punpair
xi Punpair

yj

q
dðxi; yjÞ; 10

where a is a weight parameter for structural information,
and d : �2! R is a substitution scoring function between
two nucleotides. The first term of (equation 10) measures
the structural similarity between x and y by taking the
inner product of the base-pairing profiles, and the
second term captures the sequence-level homology as
well as the standard local alignment kernels. If d is posi-
tive semi-definite, (Equation 10) is obviously also posi-
tive semi-definite (28). We use a modified RIBOSUM
85-60 (34) as the substitution matrix d. Since the
original RIBOSUM 85-60 cannot satisfy the condition
of positive semi-definiteness, we subtract the smallest
eigenvalue of the matrix from each of its diagonal ele-
ments in order to transform the matrix into a positive
semi-definite one. Therefore, we can employ s as the
match scores for the local alignment kernels (3). We call
this the BPLA kernel. The computational complexity of
the base-pairing probability matrices is of the order of
Oðjxj3 þ jyj3Þ with respect to time and Oðjxj2 þ jyj2Þ with
respect to memory, and calculating the kernel value shows
a complexity of the order of OðjxjjyjÞ for both time and
memory.

Experimental verification by qRT-PCR

Expression analysis by qRT-PCR was performed in order
to verify the validity of our snoRNA candidates predicted
in the C. elegans genome. The reason for the choice of
qRT-PCR was that high throughput of the method
enabled to analyze the expression level of our candidate
in the relatively large scale compared with the other meth-
ods such as northern blotting.

Total RNA was extracted from mixed developmental
stages of C. elegans using RNAqueous-4PCR kit
(Ambion). In order to remove genomic DNA contami-
nants, the total RNA was treated with 6U of DNase I
for an hour which is more thorough than 2U for 30min
in the manufacturer’s instruction. This substantially
reduced the background noise of fluorescence intensities
in RT-PCR especially at the later cycle phase and enabled
us to determine the Ct values more accurately.

Templates for RT-PCR were produced by poly(A) tail-
ing and oligo(dT) priming using Ncode miRNA First-
Strand cDNA Synthesis kit (Invitrogen) following the
manufacturer’s protocol except that we did not use
Universal qPCR Primer included in the kit. It might be
confusing to readers that the name of this kit contains
the word ‘miRNA’ despite our experiments for verication
of the snoRNA candidates. However, the kit does not
include any miRNA-specific features in its principle and
thus can be applied to any kind of small RNA families.
The positive cDNA template, denoted by RT (þ), was
synthesized with the reverse transcriptase SuperScript III
RT/RNaseOUT Enzyme Mix, and the negative control
template, denoted by RT (�), was prepared by adding
DEPC-treated RNase-free water (Invitrogen) instead of
the reverse transcriptase.

RT-PCR experiments were performed using StepOne
Real-Time PCR System (ABI). The reaction was carried
out in 20 ml with 1 ml of the template, 0.25mM of the spe-
cific primer pair (see below) and Power SYBR Green PCR

S E

M

Lx

Ly

Iy

Ix

Rx

Ry

Figure 1. A state transition diagram of pairwise local alignments. S is
the initial state, Lx and Ly are unaligned states before the alignments,
M is the match state, Ix and Iy are the gap states, Rx and Ry are
unaligned states after the alignments and E is the final state.
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Master Mix (ABI) at 958C for 15 s and 608C for 1min for
28 cycles followed by a melting curve analysis. The chart
of fluorescence intensities was analyzed using the instru-
ment’s system software v2.0 (ABI). We confirmed that
amplification of RT (�) was not detected for all the
primer pairs. In the experiments of RT (þ), every ampli-
fied candidate showed the specific PCR product indicated
by the melting curve.

For each PCR target, a sequence-specific primer pair
(forward and reverse) was designed using Primer3 (35)
and BLAST search against the C. elegans genome.
Primer3 was executed with the parameters recommended
by Takara Bio which is more stringent than the default
setting about base composition biases and self/pair com-
plementarity that cause cross-hybridization and amplifica-
tion of primer dimers. Amplification of nonspecific
products was further tested by several times of preliminary
experiments, and the primers were redesigned if needed.
Since some of the targets were apparently difficult for
designing good primers, we discarded such regions.
We first selected the 67 regions (top 50 candidates of our
prediction, one known snoRNA CeN45 discovered by
Deng et al. (26) as a positive control, and randomly
selected 6 intronic and 10 intergenic regions as negative
controls), and after this primer design procedure
retained the 59 targets for the subsequent experiments
(48 candidates, one positive control and 4 intronic and 6
intergenic negative controls). The list of the primers
designed for these 59 targets is available as a
Supplementary Material.

Amplimers of the six candidates detected under the Ct

value of 25 were separated by electrophoresis on a 6 % gel
of NuSieve 3:1 Agarose (Lonza), and verified in terms of
the product length (Figure 8). These candidates were fur-
ther confirmed by DNA sequencing with the following
protocol. The DNA fragments were excised and purified
using QIAquick Gel Extraction Kit (Qiagen) and ligated
into T vectors with pGEM-T Easy Vector System I
(Promega) according to the manufacturer’s protocol.
DH5 a competent cell (Takara Bio) was used in transfor-
mation, and the RT-PCR products were sequenced after
O/N culture and plasmid purification. The sequencing
reaction was performed using BigDye Terminator v3.1
Cycle Sequencing Kit (ABI) in 20 ml with 2 ml of the tem-
plate and 0.8 mM of M13 primer at 958C for 10 s, 508C for
5 s and 608C for 4min for 25 cycles. The reaction was then
cleaned up on PERFORMA Gel Filtration Cartridge
(Edge Biosystems).

RESULTS

Availability

Our implementation of the BPLA kernels is freely
available at http://bpla-kernel.dna.bio.keio.ac.jp/ under
the GNU public license. It takes a set of RNA sequences
and calculates a kernel matrix, which can be used as an
input for a popular SVM tool called LIBSVM (36).
Furthermore, our software is capable of parallel proces-
sing using the Message Passing Interface (MPI) (37).

Computational predictions using BPLAKernels

In order to confirm the accuracy of our new kernels, we
carried out several experiments in which SVMs with our
kernels attempted to detect known ncRNA families. The
accuracy was assessed in terms of precision (prec) and
sensitivity (sens), which were defined as follows:

prec ¼
TP

TPþ FP
; sens ¼

TP

TPþ FN
;

where TP is the number of correctly predicted positives,
FP is the number of incorrectly predicted positives and FN
is the number of incorrectly predicted negatives.
Furthermore, the area under the precision–sensitivity
curve was also used for evaluation. The precision–
sensitivity curve plots the sensitivity as a function of the
precision for varying decision thresholds of a classifier.
In our first experiment, the discrimination ability and

the execution time of our kernels were tested on our pre-
vious data set used in (22), which includes five RNA
families: tRNAs, miRNAs (precursor), 5S rRNAs,
H/ACA snoRNAs and C/D snoRNAs. We chose 100
sequences from each of the above RNA families from
the Rfam database (38) as positive samples, such that
the pairwise identity was not above 80% for any pair of
sequences, and 100 randomly shuffled sequences with the
same dinucleotide composition as the positives were gen-
erated as negative samples for each family. The para-
meters for the BPLA kernels were d ¼ �27, e ¼ �0:1,
a=1 and b=0.1. Furthermore, the discrimination per-
formance was evaluated using the 10-fold cross-validation
method, and the experimental results shown in Table 1
indicate that the match scores based on base-pairing pro-
files employed by the BPLA kernels improve the discrim-
ination accuracy as compared with the local alignment
kernels.
Next, we compared our kernels with previous

methods including SnoReport (15) and miPred (18).
SnoReport utilizes SVMs with several features tailored
specifically for snoRNAs. This differs from our general
approach, which does not depend on any family-specific
features. We evaluated the results using the same mea-
sures as in (15), namely specificity (spec) and sensitivity
(sens), which are defined as follows:

spec ¼
TN

TNþ FP
; sens ¼

TP

TPþ FN
;

where TN is the number of correctly predicted negatives,
and calculated the Matthews correlation coefficient
(MCC):

MCC ¼
TP � TN� FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞðTNþ FPÞðTPþ FPÞðTNþ FNÞ
p :

We experimented with the same data set used in (15),
which contains 135 positives and 1770 negatives of
C/D snoRNAs, and 81 positives and 89 negatives of
H/ACA snoRNAs. Table 2 shows that our kernels signif-
icantly outperformed SnoReport. MiPred also utilizes
SVMs with 29 global and intrinsic folding attributes as
features for pre-miRNAs. We experimented on the same
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data set used in (18), which contains 323 human pre-
miRNAs and 8494 pseudo hairpins from human RefSeq
genes. After 200 positives and 400 negatives were ran-
domly selected from pre-miRNAs and pseudo hairpins,
respectively, we evaluated the accuracy using the 5-fold
cross-validation as well as in the experiment in (18). Our
method yielded the accuracy of 0.90, 0.92 and 0.97 for
sensitivity, specificity and AUC, respectively, whereas
miPred achieved that of 0.88, 0.98 and 0.98. These results
indicate that our method is highly accurate, and is com-
petitive with miPred.
Finally, we evaluated the ability of our kernels to detect

fragments which contain known ncRNAs. In practical
situations, and in contrast to the above experiments, we
usually extract fixed-length fragments from the target
genomic sequences since the boundaries of RNA genes
in genomic sequences are unknown. Therefore, it is impor-
tant to confirm that the proposed kernels can also predict
ncRNAs from such fragments in addition to entire
sequences. We chose 24 ncRNA families from the Rfam
database (38). For each sequence, we produced a longer
sequence by concatenating randomly generated subse-
quences with the same dinucleotide composition into its
upstream and downstream, as illustrated in Figure 2.
Subsequently, we extracted fixed-length fragments from
those sequences, where the window size of the fragments
was 120 nt and sliding was 40 nt. These fragments include
partial or complete ncRNA sequences. Negative examples
were randomly generated by dinucleotide shuffling such

that they do not include any ncRNA sequences. The para-
meters for the BPLA kernels were d ¼ �14, e ¼ �0:07,
a=7 and b=0.07. Figure 3 shows that our kernels
have sufficient ability to detect fragments containing
ncRNAs as well as entire ncRNA sequences with known
boundaries.

Genome-wide search of snoRNA families in the C. elegans
genome

In addition, we attempted to detect novel snoRNAs in the
C. elegans genome. First, we trained a support vector
classifier for snoRNAs using known snoRNA sequences
in C. elegans, which are annotated in WormBase (Release
WS182) (24). We extracted positive fragments of known
snoRNAs from the C. elegans genome, where the window
size of the fragments was 240 nt and the sliding was 40 nt.
Negative fragments were randomly generated by dinucleo-
tide shuffling. As a result, we trained the support vector
classifier of snoRNAs with 128 positive fragments and 512
negative fragments. Subsequently, we extracted all frag-
ments of the same window size from both strands of the
entire genome of C. elegans, which resulted in a total
number of fragments of 5 014 018. For each fragment,
the trained support vector classifier calculated an SVM
class probability, which indicates the confidence regarding
the affiliation of the fragment to a given snoRNA family.
The time needed to scan all of the fragments was about a
week on our Linux cluster comprising twenty 2.8GHz
dual-core AMD Opteron processors. Figure 4 shows the
distribution of the SVM class probabilities for the known
snoRNAs and the other fragments. It is clear that the
distribution of known snoRNAs is biased towards high
probability, which indicates that the trained classifier
has strong ability to distinguish snoRNAs from other
sequences. The list of snoRNA candidates predicted by
our method with high probability is available as a
Supplementary Material.

In order to show that genome-wide search is a much
more difficult task than the discrimination task on a
well-established training set and the above result is only
achieved by our BPLA kernels, we compared the ability
of the genome search for snoRNA families with
SnoReport. We performed the aforementioned procedure
with SnoReport, instead of our kernels, only in the

Table 1. Comparison between the BPLA kernels and the other existing kernels in terms of their discrimination ability with respect to five RNA

families: tRNAs, miRNAs, 5S rRNAs, H/ACA snoRNAs and C/D snoRNAs

Family BPLA kernel Local alignment kernel Stem kernel

AUC prec sens time (s) AUC prec sens time (s) AUC prec sens time (s)

tRNA 1.00 0.97 0.94 7.9� 10�4 0.97 0.96 0.85 6.2� 10�4 0.96 0.95 0.89 0.9
miRNA 0.99 0.95 0.92 1.1� 10�3 0.87 0.90 0.65 8.2� 10�4 0.92 0.69 0.90 1.6
5S rRNA 1.00 1.00 0.92 1.8� 10�3 1.00 1.00 0.95 1.4� 10�3 0.98 0.99 0.72 5.1
H/ACA snoRNA 0.89 0.88 0.68 3.0� 10�3 0.88 0.92 0.70 2.5� 10�3 0.83 0.85 0.39 12.8
C/D snoRNA 0.92 0.93 0.75 1.5� 10�3 0.88 0.93 0.66 1.2� 10�3 0.79 0.61 0.80 4.7
Total 0.96 0.95 0.84 1.6� 10�3 0.92 0.94 0.76 1.3� 10�3 0.90 0.82 0.74 5.0

Family, name of the target ncRNA family; AUC, area under the precision–sensitivity curve; prec, precision of discriminating the target ncRNA
family; sens, sensitivity of discriminating the target ncRNA family; time, average computation time for each kernel on a 2.0 GHz AMD Opteron
processor. For each evaluation measure, the most accurate kernel value is indicated by a bold-faced number.

Table 2. Comparison between the BPLA kernels and SnoReport in

terms of their discrimination ability with respect to the data set used

in (15)

Family BPLA kernel SnoReport

spec sens MCC spec sens MCC

C/D snoRNA 1.00 0.71 0.83 0.91 0.96 0.62
H/ACA snoRNA 1.00 0.83 0.84 0.89 0.78 0.68

Family, name of the target ncRNA family; spec, specificity of discri-
minating the target ncRNA family; sens, sensitivity of discriminating
the target ncRNA family; MCC, Matthew’s correlation coefficient of
discriminating the target ncRNA family. For each evaluation measure,
the most accurate value is indicated by a bold-faced number.
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chromosome I, and calculated the SVM class probability
distribution. Then, we evaluated the ability to distinguish
snoRNAs from other fragments using the receiver operat-
ing characteristic (ROC) analysis, in which positives are
known snoRNAs, and negatives are the fragments from
the genomic sequence. Only the fragments whose SVM

class probability is above 0.5 were considered. As a
result, the area under the ROC curve for our kernels
was 0.873, whereas that for SnoReport was 0.686. This
result indicates that even though the statistical method
SVM is employed, the high performance cannot always
be expected, and our well-designed BPLA kernels were

GAUGAGUCUGUGCUAAGCACACUGAUGAGACUAUGAAAUGAGACGACACUCAUG-------UGUGCUGAGUCUGUUUGAGACGA AGACGAGUCUGAGUCUCUGGAA-----------

shuffled sequence shuffled sequence
known ncRNA

positive

examples

extract sequences with a fixed-size window

a .

b .

c.

d.

negative

examples

Figure 2. Generating a fragment data set. Given the ncRNA sequences, longer sequences are randomly generated by concatenating shuffled
sequences, after which fixed-length fragments are extracted.
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SRP euk arch ( 411, 0.81, 0.66)
tmRNA ( 588, 0.77, 0.71)

Cobalamin ( 585, 0.80, 0.68)
SECIS (  64, 0.86, 0.73)

SRP bact (  70, 0.93, 0.74)
THI ( 268, 0.97, 0.69)

Y (  16, 0.94, 0.88)
Tbox ( 287, 0.85, 0.84)

5.8S rRNA ( 124, 0.98, 0.74)
RNaseP bact (1556, 0.94, 0.82)

Intron gpII ( 125, 0.90, 0.80)
RFN (  79, 0.90, 0.77)
U1 ( 110, 0.91, 0.76)
U7 (  30, 0.97, 0.83)
U6 (  54, 1.00, 0.82)
U4 (  47, 0.94, 0.83)
U5 (  36, 0.97, 0.72)

Histone3 (  64, 0.97, 0.92)
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AUC
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Figure 3. The accuracy of detecting 24 ncRNA families. Each bar indicates the area under the precision–sensitivity curve (AUC) for each family. The
grey bars indicate the AUC of detecting fragmented ncRNA sequences with a fixed-size window, and the white bars indicate the AUC of detecting
entire ncRNA sequences with known boundaries. The tuple of values following the name of each family represent the number of sequences, the
precision and the sensitivity of detecting fragmented ncRNA sequences, respectively.
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proved to be essential to the genome-wide search task.
Note that we cannot exclude the possibility that some of
fragments used for negatives here may be unknown
snoRNAs. Therefore, the scores in the analysis represent
lower bounds of them.
One of our predicted fragments which has an SVM class

probability above 0.99 overlaps with an EST and the
C. briggsae alignment, as shown in Figure 5. Note that
this fragment has not been predicted by RNAz (25). We
manually extracted a putative C/D snoRNA sequence
from this fragment, and predicted its secondary structure
using RNAfold (10) (Figure 6).

Expression analysis of predicted snoRNAs

We performed experimental verification of the predicted
snoRNAs by qRT-PCR. We designed the primers for the
59 target regions containing the 48 candidates (see
Methods section) which are not overlapped with either
exons or ESTs.
Figure 7 shows the results of the cycle threshold (Ct)

values in PCR amplification. Note that a smaller Ct value
indicates that the corresponding candidate is expressed
more strongly, and is more likely to be a region for a
ncRNA gene. Since no negative control remained under

the Ct value of 25, we determined this value as the thresh-
old for significant expressions in the organism. By means
of this threshold, we verified that 6 of the 48 candidates
were in fact expressed as RNA genes. We emphasize that it
is an extremely strict threshold which should disallow any
expressions for negative controls (introns and intergenic
regions). In contrast, Washietl et al. (39) have revealed
that 43 of 175 predicted candidates in ENCODE regions
were expressed by means of the threshold in which 4 of 38
negative controls were also expressed. If we allow that 1 of
10 negative controls was accepted as expressed, then 14 of

Figure 5. One of our predicted fragments overlaps with an EST and the C. briggsae alignment.

Figure 6. The predicted secondary structure of a putative C/D snoRNA
in our predicted fragment which overlaps with an EST, as shown in
Figure 5.
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Figure 4. Distribution of the SVM class probabilities for known
snoRNAs and the rest of the fragments in the C. elegans genome
calculated by the trained SVM classifier.
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48 candidates were accepted as expressed below the Ct

cycles of 26.5. This rate of expression is comparable
with that of (39).

We separated the amplimers of the 6 most reliable
candidates on a 6% agarose gel as shown in Figure 8.
Then, the DNA fragments were sequenced, and we con-
firmed that all of these sequences were exactly identical to
the original target regions by BLAST search on the
WormBase. The list of the regions of the predicted candi-
dates, the PCR targets and the mapped sequence reads is
available as a Supplementary Material.

DISCUSSION

We investigated the overlap between the candidates of our
kernels and those in previous studies (25,27). Missal

et al. (25) predicted structurally conserved ncRNAs from
the genomic alignment of C. elegans and C. briggsae using
RNAz. He et al. (27) detected the transcribed frag-
ments, or ‘transfrags’, focusing on polyadenylated or
non-polyadenylated fractions of the transcriptome with
C. elegans whole-genome tiling microarrays. Figure 9
illustrates the overlap between RNAz, our candidates
whose SVM class probabilities are above 0.9, and all
types of transfrags. There are only 10 candidates predicted
by both RNAz and our kernels, and this low incidence is
attributable to the radically different features of the two
methods. The SCI used in RNAz directly assesses the
structure conservation in multiple alignments in order to
detect unknown structured ncRNAs, while BPLA kernels
evaluate the structural similarity between ncRNA
sequences using base-pairing profiles. Furthermore,

Figure 7. qRT-PCR verification of our predictions. The cycle threshold (Ct) values for the predicted candidates, the positive and the negative controls
are shown. The horizontal dashed line indicates our threshold 25 of the Ct value to determine the significant level of expression. The white bars
indicate the reliable candidates whose Ct values are under this threshold.

Figure 8. Agarose gel electrophoresis for the PCR products of the verified candidates. Amplimers of the reliable candidates under the threshold value
were separated on an agarose gel in the lanes denoted by RT (þ), and the corresponding PCR reactions with the negative template were applied into
the lanes denoted by RT (�). No nonspecific PCR product was found in all of the lanes. The length of each product was shown to be identical to the
original target region.
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several works have reported that the ability of RNAz to
detect snoRNA families is weaker than that for other
ncRNA families (9,25). Therefore, it is very likely that
RNAz predicted not only snoRNA-specific regions, but
also structurally conserved regions which are not specific
to snoRNAs, in the nematode alignment, whereas our
kernels searched more precisely for snoRNA-like
sequences in the C. elegans genome given the known
snoRNAs.
As shown in Figure 9, �60% of our predicted candi-

dates whose SVM class probabilities are above 0.9 overlap
with transfrags. At the same time, three of the six candi-
dates confirmed by qRT-PCR also overlap with trans-
frags, although three confirmed candidates do not. This
fact suggests that we cannot exclude the possibility that a
part of the remaining >40% of the predicted candidates
of snoRNAs located in the regions without any transfrags
might be confirmed by qRT-PCR.

The relatively low precision values 14/48 (Ct < 26.5)
and 6/48 (Ct < 25.0), which are the rates of the reliable
candidates verified by qRT-PCR expression analysis, do
not represent the true statistical significance. These values
14/48 and 6/48 can statistically be evaluated by using the
P-value which follows the cumulative hypergeometric
distribution:

pðk;N;m; nÞ ¼
X
l�k

m
l

� �
N�m
n�l

� �
N
n

� � ;

where k is the number of expressed candidates below the
Ct value, m is the number of the selected candidates for the
verification, n is the number of snoRNAs in the whole
genome, and N is the number of nonexonic fragments in
the whole genome. We can approximate that n � 2700
because Deng et al. (26) have revealed that the number
of small noncoding transcripts in the C. elegans genome is
at most 2 700, and N ¼ 5 014 018 (the number of the frag-
ments in the whole genome) �1 720 000 (the roughly esti-
mated number of the exonic fragments) � 3 300 000.
In accordance with this formulation, the P-value for
6/48, which corresponds to the probability to include six
snoRNA coding regions among randomly selected 48
fragments from 3 300 000 fragments in the C. elegans
whole genome, becomes 3.6e-12, and the P-value for
14/48 becomes 2.8e-32. These extremely small P-values

indicate that six hits among 48 candidates selected from
3 300 000 fragments are not obtained just by chance and
hence prove the effectiveness of our method.

The parameters d, e, a and b for the BPLA kernels are
quite different from each of two cases: target sequences
have flanking region or not. The optimal parameters for
each case were calibrated by the grid search on all param-
eter combinations from selected search space for each
parameter. However, this brute force approach should
require huge computational time for large problems.
Therefore, we are planning to implement an alternative
approach, such as a gradient-based adaptation of para-
meters for given training data (40).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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