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ABSTRACT The marine cyanobacterium Prochlorococcus numerically dominates the
phytoplankton community of the nutrient-limited open ocean, establishing itself as the
most abundant photosynthetic organism on Earth. This ecological success has been
attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and
other advantages associated with cell size reduction and genome streamlining. In this
study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce
nutrients and that this advantage leads to its numerical success in nutrient-limited
waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both
mono- and cocultures when nutrients were replete. However, in nitrogen-limited me-
dium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria
were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleo-
dii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate
released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic
analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or
nitrite, during which cocultured Prochlorococcus grows on ammonia or other available
nitrogen species. We propose that Prochlorococcus can stimulate antagonism between
heterotrophic bacteria and potential phytoplankton competitors through a metabolic
cross-feeding interaction, and this stimulation could contribute to the numerical success
of Prochlorococcus in nutrient-limited regions of the ocean.

IMPORTANCE In nutrient-poor habitats, competition for limited resources is thought
to select for organisms with an enhanced ability to scavenge nutrients and utilize
them efficiently. Such adaptations characterize the cyanobacterium Prochlorococcus,
the most abundant photosynthetic organism in the nutrient-limited open ocean. In
this study, the competitive superiority of Prochlorococcus over a rival cyanobacte-
rium, Synechococcus, was captured in laboratory culture. Critically, this outcome was
achieved only when key aspects of the open ocean were simulated: a limited supply
of nitrogen and the presence of heterotrophic bacteria. The results indicate that
Prochlorococcus promotes its numerical dominance over Synechococcus by energizing
the heterotroph’s ability to outcompete Synechococcus for available nitrogen. This
study demonstrates how interactions between trophic groups can influence interac-
tions within trophic groups and how these interactions likely contribute to the suc-
cess of the most abundant photosynthetic microorganism.

KEYWORDS Prochlorococcus, Synechococcus, Alteromonas, competition, nitrogen
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The phytoplankton community occupying the vast majority of the sunlit ocean
experiences chronic nutrient limitation (1–4). Depending on the location, the limit-

ing nutrients include nitrogen, phosphorus, iron, and other metals. While the diversity
of phytoplankton in these regions can be quite high, numerical superiority is often
achieved by a single genus of cyanobacteria, Prochlorococcus (105). The most abundant
photosynthetic organism in the ocean, Prochlorococcus can grow to populations that
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exceed 100,000 cells mL21, besting its competitors by orders of magnitude in many
instances (5–8).

The reasons underpinning the numerical dominance of Prochlorococcus in nutrient-
limited waters have not been fully elucidated, but several distinguishing features of
this unusual cyanobacterium have been implicated. Prochlorococcus has the smallest
cell and genome size for a photoautotroph, which collectively lower the cell quota for
nitrogen, iron, and phosphorus (9–12). The phosphorus quota is further reduced by
the replacement of phospholipids with sulfolipids as the predominant membrane lip-
ids (13, 14). Additional means of economy (10, 15–17) may further contribute to the
ability of Prochlorococcus to reproduce at a lower cost than its competitors under nutri-
ent-limited conditions.

A reduction in cell size is thought to provide Prochlorococcus with the additional
advantage of superior nutrient acquisition (18). Lomas et al. noted that when normal-
ized to the cell quota, Prochlorococcus had a higher affinity for phosphate than
Synechococcus and picoeukaryotic phytoplankton (19). Notably, resource competition
theory applied to global ocean simulations predicted the numerical domination of the
oligotrophic regions by analogs of Prochlorococcus, which could draw nutrients down
to concentrations that cannot be accessed by their competitors (20–22).

Despite the net loss of genes through streamlining, the diversity within the genus
Prochlorococcus is high and believed to contribute to the numerical dominance of
Prochlorococcus by facilitating niche expansion. Phylogenetically distinct clades, termed
ecotypes, exist within the genus and have demonstrated different optima for tempera-
ture, light intensities, and nutrient utilization that correlate with their environmental dis-
tributions (23–31). Notably, within these ecotypes, subecotypes have been found with
their own distinct ecologies, suggesting that the open-ocean niche is finely partitioned
through environmental influences on Prochlorococcus evolution (32–34).

A final contributor to the ecological success of Prochlorococcus may be the help
that it receives from the microbial community. All known genomes of Prochlorococcus
lack the gene encoding the hydrogen peroxide scavenger catalase (35–37). The loss of
catalase is believed to improve the growth efficiency by reducing cell quotas for iron
and/or nitrogen, but it leaves cells highly susceptible to oxidative damage from envi-
ronmental sources of hydrogen peroxide (12, 36, 38). Prochlorococcus survives this
threat because it is cross-protected by cooccurring catalase-positive “helpers” such as
Alteromonas macleodii, a heterotroph frequently coisolated with Prochlorococcus (12,
35, 39). Alteromonas macleodii rapidly scavenges extracellular H2O2, causing changes in
gene expression and promoting the growth of cocultured Prochlorococcus under con-
ditions that would otherwise be lethal (35, 40–42).

The physiological and genetic features of Prochlorococcus all predict a competitive
advantage over rival phytoplankton under nutrient-limited conditions, and this advant-
age may contribute significantly to its ecological success in the oligotrophic ocean. In
this work, we sought direct evidence that Prochlorococcus could achieve numerical supe-
riority over a key rival, Synechococcus. We focused our study on nitrogen-limiting condi-
tions simulating the North Pacific Subtropical Gyre (NPSG) (43), where Prochlorococcus
outnumbers Synechococcus and other rival phytoplankton by an order of magnitude or
more (6, 8, 44). We found that competition for nitrogen explained the differences in
Prochlorococcus and Synechococcus abundances but only through the presence and spe-
cific activity of marine heterotrophic bacteria fed by Prochlorococcus-derived carbon. As
these outcomes matched previous predictions of Prochlorococcus success, we argue that
conditions such as the ones examined could provide important insight into the global
ecology of Prochlorococcus.

RESULTS
Prochlorococcus outcompetes Synechococcus in the presence of heterotrophs.

Cyanobacterial growth in mono- and cocultures was assessed in low-nitrogen medium
(artificial medium for Prochlorococcus minus nitrogen [AMP-MN]), an artificial seawater
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medium lacking N amendment and containing approximately 0.164 mM residual bioa-
vailable N (see Materials and Methods; see also Fig. S1 in the supplemental material).
Prochlorococcus sp. strain MIT9215 reached a higher maximum abundance in monocul-
ture than in coculture with Synechococcus sp. strain WH7803, suggesting that competi-
tion in coculture caused a slight but significant reduction in the MIT9215 cell yield
(Fig. 1A) (P , 0.0001). WH7803 maximum abundances did not differ between mono-
culture and coculture with MIT9215 (Fig. 1A) (P = 0.2754).

The addition of the marine heterotrophic bacterium Alteromonas macleodii strain
EZ55 dramatically changed the outcome for the Synechococcus-Prochlorococcus cocul-
tures (Fig. 1B). While the Prochlorococcus strain MIT9215 growth rate declined moder-
ately, the addition of EZ55 to the coculture resulted in a nearly total loss of growth for
Synechococcus strain WH7803 (P = 0.0018). In this AMP-MN medium, the EZ55 hetero-
troph grew rapidly to ;106 cells mL21, regardless of whether cyanobacteria were pres-
ent (see below), indicating growth on trace contaminating organic carbon in the me-
dium. The presence of the heterotroph in this nitrogen-limited medium thus shifted
the phytoplankton community structure to one resembling open-ocean communities,
with Prochlorococcus being numerically dominant over its rival Synechococcus.

The dynamics of resource competition were further investigated by challenging the
cyanobacterial strains to invade established populations of their competitors when
rare. At day 32 of growth in AMP-MN, a small inoculum (;3,000 cells mL21) from
Synechococcus strain WH7803 monocultures was added to cultures of Prochlorococcus
strain MIT9215 with or without Alteromonas macleodii strain EZ55; reciprocally,
MIT9215 monocultures were inoculated into cultures of WH7803 with or without EZ55.
WH7803 cells were able to invade MIT9215 monocultures after a few days’ lag and
reach an almost equal abundance over the next 17 days (Fig. 2A). However, WH7803

FIG 1 Mono-, co-, and tripartite culture competition. The growth of Prochlorococcus strain MIT9215
(Pro) and Synechococcus strain WH7803 (Syn) in AMP-MN artificial seawater medium in monoculture
(A), cyanobacterial coculture (the same data are shown in panels A and B), and a tripartite culture
with Alteromonas macleodii strain EZ55 (B) was determined. Error bars represent 1 standard deviation
of the geometric mean (n = 3).
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failed to grow in MIT9215 cultures when EZ55 was present, dropping below the limit
of detection shortly after inoculation (Fig. 2B).

In the reciprocal invasion assay, Prochlorococcus strain MIT9215 rapidly grew when
inoculated into the Synechococcus strain WH7803 monoculture, with both organisms
coexisting at equal abundances (Fig. 2C). In the presence of Alteromonas macleodii
strain EZ55, MIT9215 was still able to invade a culture of WH7803 (Fig. 2D).
Interestingly, with EZ55 present, the MIT9215 population displaced WH7803 as the ma-
jority phytoplankter in the culture: WH7803 exhibited a dramatic decline in abundance
(Fig. 2D) that was not observed when EZ55 was absent (Fig. 2C). Thus, independent of
the starting ratios or cell concentrations, the presence of the EZ55 heterotroph favored
the growth of Prochlorococcus over Synechococcus when cultured in nitrogen-limited
media.

Prochlorococcus exudate drives heterotroph N competition with Synechococcus.
Critically, the inhibitory effect of Alteromonas macleodii strain EZ55 on Synechococcus
strain WH7803 growth was absent if the Prochlorococcus MIT9215 strain was not
included. WH7803 showed no significant difference in growth between mono- and co-
cultures with EZ55 in AMP-MN during exponential growth (Fig. 3A) (P = 0.91). This out-
come suggested that Prochlorococcus may be secreting a factor(s) that stimulates the
competition of EZ55 for a resource(s) shared by WH7803. To test this, EZ55 and
WH7803 were placed in coculture competition in medium preconditioned by MIT9215.
Whether MIT9215 cells were removed (via filtration) prior to competition (Fig. 4A) or
remained in the medium (Fig. 4B and Fig. S2), the outcome was the same, and the
WH7803 maximal abundance was reduced by an order of magnitude when cocultured
with EZ55 compared to its inoculation alone in MIT9215-conditioned medium. As
shown in Fig. 3A, this growth differential was not observed in the same growth me-
dium when MIT9215 was absent and did not precondition the medium.

FIG 2 Invasion assay. The growth of Prochlorococcus strain MIT9215 (A and B) and Synechococcus strain
WH7803 (C and D) in AMP-MN artificial seawater medium with and without Alteromonas macleodii strain EZ55
was determined. On day 32, cultures of the cyanobacteria without Alteromonas were inoculated as a minority
into the cultures of the rival cyanobacterium with and without Alteromonas to assess the ability to invade. Error
bars represent 1 standard deviation of the geometric mean (n = 3).
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We next considered two hypotheses for the Prochlorococcus-driven loss of
Synechococcus strain WH7803 growth in the presence of Alteromonas macleodii strain
EZ55: Prochlorococcus is driving EZ55 to either compete for limited resources or pro-
duce a factor that is toxic to WH7803. Carbon and nitrogen amendment studies
favored the former over the latter hypothesis.

Prochlorococcus releases a large fraction of fixed carbon as dissolved organic carbon
during nitrogen-limited growth (45), so we reasoned that this excess source of carbon
and energy could be energizing Alteromonas macleodii strain EZ55 to compete with
Synechococcus for nitrogen in this nitrogen-limited medium. Pyruvate was examined as
a proxy for the Prochlorococcus exudate and, like the exudate, allowed EZ55 to prevent
the growth of Synechococcus strain WH7803 (Fig. 3A). Notably, in tripartite cultures, the

FIG 3 Synechococcus-Alteromonas interactions. The growth of Synechococcus strain WH7803 (A, C, and E) and
Alteromonas macleodii strain EZ55 (B and D) in AMP-MN (A, B, and E) and AMP-A (C and D) artificial seawater
media in monoculture, coculture, and coculture with the addition of 500 mM sodium pyruvate (Pyr) was
determined. Cocultures were also amended with 500 mM sodium pyruvate and 800 mM sodium nitrate to
demonstrate growth rescue by nutrient addition (E). Error bars represent 1 standard deviation of the geometric
mean (n = 3).
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addition of pyruvate (Fig. S3) further contributed to WH7803 reduction without an
apparent effect on Prochlorococcus strain MIT9215.

In AMP-MN medium, which is identical to artificial medium for Prochlorococcus auto-
claved (AMP-A) except for the omission of nitrogen addition (see Materials and
Methods), nitrogen is the limiting resource for both Prochlorococcus and Synechococcus
(Fig. S1A and B); other nutrients were provided in excess. As such, we reasoned that if
Alteromonas macleodii strain EZ55 was restricting the growth of Synechococcus strain
WH7803, it was likely via competition for nitrogen. Consistently, the addition of excess
nitrogen to the medium as either NH4

1 or NO3
2 restored the ability of WH7803 to grow

in the presence of pyruvate or exudate-stimulated EZ55, whether at the onset of cocul-
tivation (Fig. 3C and Fig. 4A and B) or after WH7803 had ceased growth for several days
(Fig. 3E). Notably, in these coculture studies, pyruvate additions enabled EZ55 to grow
to levels several orders of magnitude higher when nitrogen was in excess (Fig. 3D) but
not when nitrogen was limiting (Fig. 3B), suggesting that inhibition by EZ55 requires
excess carbon relative to nitrogen.

Nitrogen competition in three-member cocultures. While the concentration of
total bioavailable N in AMP-MN has been established (Fig. S1), the constituent N species
are not known. We hypothesized that while the Prochlorococcus strain consumes NH4

1,
the Synechococcus and heterotroph strains compete for a residual N resource that
Prochlorococcus cannot utilize but that the other two can, namely, NO3

2 or NO2
2 (46). To

test this hypothesis, we generated a transposon insertion mutant of Alteromonas macleo-
dii strain EZ55 with a loss-of-function mutation in the nirB gene (nitrite reductase large
subunit). The nirBmutant cannot utilize nitrate or nitrite as a nitrogen source and, unlike
the wild type (WT) (Fig. 5A), cannot prevent the growth of Synechococcus strain WH7803
in tripartite cultures with Prochlorococcus strain MIT9215 (Fig. 5B). The nirB mutation did
not impact the growth of the Alteromonas strain (Fig. 5C and D), suggesting that this

FIG 4 Synechococcus-Alteromonas coculture in Prochlorococcus-conditioned AMP-MN. The growth of
Synechococcus strain WH7803 in monoculture or coculture with Alteromonas macleodii strain EZ55
with or without 400 mM NH4

1 in AMP-MN artificial seawater medium preconditioned by the growth
of Prochlorococcus strain MIT9215, after the removal of these Prochlorococcus cells via filtration (A) or
when they were allowed to remain in the media (B), was determined. Error bars represent 1 standard
deviation of the geometric mean (n = 3).

Calfee et al. ®

January/February 2022 Volume 13 Issue 1 e02571-21 mbio.asm.org 6

https://mbio.asm.org


mutation prevented nitrogen competition without impacting overall growth. The inabil-
ity of the EZ55 nirB mutant to restrict the growth of WH7803 suggests that NO3

2/NO2
2

was present in AMP-MN and that wild-type EZ55 is able to outcompete WH7803 for this
resource (when activated by the Prochlorococcus exudate).

Competition outcomes are robust with regard to genotype. To determine the
extent to which strain genotype impacts the outcomes of cocultivation, we modified the
mixed-culture experiments by replacing Prochlorococcus strain MIT9215, Synechococcus
strain WH7803, or Alteromonas macleodii strain EZ55 with different strains of Prochlo-
rococcus, Synechococcus, or heterotrophic bacteria, respectively. Like MIT9215, high-light-
adapted Prochlorococcus sp. strain MIT9312 or MED4 outcompeted WH7803 in the
presence of EZ55 (Fig. 6A), and like WH7803, Synechococcus sp. strains CC9605 and
WH8102 were outcompeted by MIT9215 in the presence of EZ55 (Fig. 6B).

As a final constraint on the Synechococcus-heterotroph coculture outcomes, differ-
ent marine heterotrophic bacteria were substituted for Alteromonas macleodii strain
EZ55: Phaeobacter sp. strain Y3F and Vibrio fischeri strain ES114. When grown in N-
replete AMP-A with or without pyruvate or N-limited AMP-MN without pyruvate, cocul-
turing with any of the three heterotrophs did not cause any significant deviation of the
Synechococcus strain WH7803 maximal abundance compared to the monoculture con-
trol (Fig. S4A to C). However, as with EZ55, the addition of pyruvate to AMP-MN caused
a reduction in the WH7803 maximal abundance when in coculture with YF3 or ES114
compared to either the monoculture control (Fig. S4D) (P , 0.0001) or cocultures in
AMP-MN without pyruvate (Fig. 6C) (P , 0.0001). With the exception of ES114, all het-
erotrophs maintained steady long-term populations in AMP-MN regardless of amend-
ments; ES114 declined steadily and maintained its starting abundance only with pyru-
vate addition (Fig. S4E to G).

FIG 5 Effect of Alteromonas nitrate utilization mutant on tripartite outcomes. (A and B) Growth of
Prochlorococcus strain MIT9215 and Synechococcus strain WH7803 in AMP-MN artificial seawater
medium in a coculture and tripartite culture with WT Alteromonas macleodii strain EZ55 (A) or the
Alteromonas macleodii strain EZ55 nirB mutant (Mut) (B). (C and D) Abundance of heterotrophs in
each treatment for the WT (C) and the mutant (D). Error bars represent 1 standard deviation of the
geometric mean (n = 3).
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DISCUSSION

In this study, we describe conditions under which the dominance of Prochlorococcus
over rival phytoplankton is reproduced in culture. Importantly, we observed that
Prochlorococcus outgrows Synechococcus under low-nitrogen conditions, simulating the
North Pacific Subtropical Gyre, and only in the presence of heterotrophic bacteria, simu-
lating the multitrophic mixed community of the ocean.

In the NPSG, where nitrogen is thought to limit growth (3, 4, 13, 47), Prochlorococcus
can outnumber Synechococcus (and other members of the phytoplankton community) by
several orders of magnitude (6, 8, 44). In these nitrogen-limited waters, heterotrophic bac-
teria can grow to between 300,000 and 500,000 cells mL21 and outnumber phytoplankton
(48–50). Our low-nitrogen culture medium recapitulated these trends: heterotrophs grew
to an only slightly higher abundance of 106 cells mL21, and in tripartite cultures, the dy-
namics of the picocyanobacteria favored Prochlorococcus over Synechococcus, regardless
of the relative starting abundances.

Our results suggest that Prochlorococcus acts indirectly, through a heterotroph in-
termediate, to dictate the growth outcome of its rival Synechococcus in low-nitrogen
environments. In low-nitrogen, low-organic-carbon medium, Prochlorococcus scav-
enges a residual source(s) of nitrogen, apparently with a superior capability relative to
Alteromonas and Synechococcus. Alteromonas can grow on residual organic carbon
until it becomes growth arrested by a lack of carbon and energy. In this state, it is
poised to compete for nitrogen but lacks the carbon and energy resources to do so
unless fed by Prochlorococcus. Once fed, Alteromonas can begin to compete with
Synechococcus for an alternative nitrogen source(s). The inability of a mutant
Alteromonas strain lacking the capacity for NO3

2/NO2
2 utilization to arrest the growth

of Synechococcus suggests that the competition involves one or both of these nitrogen
species, resources that both Synechococcus and wild-type Alteromonas can utilize but
that the strains of Prochlorococcus examined in this study cannot. Nitrate-utilizing
strains of Prochlorococcus were recently isolated (51), and future studies in tripartite
cultures with these strains could prove informative. In the paragraphs that follow, we
unpack this model to discuss the key supporting evidence and identify unanswered
questions.

Our study implicates the release of organic carbon by Prochlorococcus for the stimula-
tion of Alteromonas to outcompete Synechococcus for nitrogen. Neither Prochlorococcus
nor Alteromonas acting alone was sufficient to diminish the growth of Synechococcus,
but when together in a tripartite community, they diminished Synechococcus growth.

Importantly, this effect was observed only when nitrogen was limiting in the me-
dium; the addition of excess nitrogen was all that was needed to restore

FIG 6 Effect of strain variability on competition outcome. (A and B) Comparison of log10 ratios of different Prochlorococcus (A) and Synechococcus (B)
strains’ maximal abundances in tripartite cultures with Alteromonas macleodii strain EZ55 in AMP-MN artificial seawater medium. Prochlorococcus strains
were cultured with Synechococcus strain WH7803 and EZ55 (A), and Synechococcus strains were cultured with Prochlorococcus strain MIT9215 and EZ55 (B).
(C) Maximum abundances of Synechococcus strain WH7803 were also observed when cultured in AMP-MN or AMP-MN plus 500 mM sodium pyruvate with
different marine heterotrophic bacteria. Error bars represent 1 standard deviation of the geometric mean (n = 3).
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Synechococcus growth. The latter result also argues against the production of a
growth-limiting substance by Alteromonas as the explanation for the growth arrest of
Synechococcus.

The Prochlorococcus exudate was sufficient to stimulate N competition by Alteromonas,
as was a proxy form of the Prochlorococcus exudate, pyruvate. Prochlorococcus exudes a
large fraction of fixed carbon as dissolved organic matter (52–54), much of which is bioa-
vailable to heterotrophic bacteria (55, 56). Recently, it was observed that Prochlorococcus
can also release membrane vesicles (57), which may serve as complex nutrients for cooc-
curring heterotrophs. Critically, under nitrogen limitation, the release of dissolved organic
matter by Prochlorococcus is exacerbated (45, 58). The specific form(s) of released organic
carbon that stimulated Alteromonas competition for nitrogen in this study is not known,
but it is rather curious that the Synechococcus exudate was not sufficient for this effect: bi-
partite cultures of Alteromonas and Synechococcus stably coexisted in low-N medium.
Synechococcus is known to release organic carbon, and this release increases under nutri-
ent limitation (59), so this distinction between Prochlorococcus and Synechococcus exu-
dates warrants further investigation.

As with carbon, the nitrogen species involved in the tripartite interactions are not
yet completely identified and could include both inorganic and organic sources for
growth. Our artificial seawater medium lacked nitrogen amendment, but trace
amounts of nitrogen from unknown sources could support microbial growth to 106

cells mL21. Due to the volatility of ammonia and reported cases of ammonia contami-
nation in other systems (60), we suspect that it serves as a major component of the
unamended medium. As the preferred nitrogen source for Prochlorococcus and most
microbes, we suspect that ammonia is the primary nitrogen source consumed by
Prochlorococcus, whether in mono- or mixed cultures. However, strain MIT9215 has the
genetic potential to utilize urea as well (37, 46), so this species cannot be ruled out.
Nitrate and/or nitrite is likely a component of the medium, as Synechococcus strain
WH7803 can utilize nitrate or nitrite as a sole nitrogen source (46), and Alteromonas
became unable to prevent Synechococcus growth when the nitrite/nitrate utilization
pathway of the heterotroph was knocked out. While some strains of Prochlorococcus
can utilize nitrite and nitrate (51), the ones assayed in this study could not. Whether or
not the nitrate/nitrite-utilizing Prochlorococcus strains can also compete with
Synechococcus for this resource could be resolved in future studies.

In the ocean, Prochlorococcus and Synechococcus compete for a variety of nitrogen
sources, including organic forms such as amino acids (29, 61–65). In a 2019 study,
Berthelot et al. observed that cooccurring populations of Prochlorococcus, Synechococcus,
and photosynthetic picoeukaryotes in the N-limited North Pacific Subtropical Gyre all uti-
lize ammonia, urea, and nitrate although to different extents (62).

While capable of sourcing their nitrogen from organic carbon molecules like amino
acids, marine heterotrophs have been shown to also compete with phytoplankton for
inorganic nitrogen in the form of ammonia or nitrate (66–69). Heterotrophs can
account for 30% or more of inorganic nitrogen uptake at some locations (70, 71), and
in some studies, inorganic nitrogen accounted for half or more of the total nitrogen
acquired by heterotrophs (72, 73).

Importantly, the ability of heterotrophs to compete for inorganic nitrogen appears
to be stimulated by organic carbon. Several studies by the Kirchman group and others
noted the necessity for sufficient carbon for inorganic N uptake by bacteria (67, 68, 73–
76). These results reflect the importance of C/N balance for heterotrophic growth,
which has been recognized in studies of Escherichia coli and other heterotrophs. For
Escherichia coli, carbon limitation depletes the tricarboxylic acid (TCA) cycle intermedi-
ate and key substrate for inorganic nitrogen assimilation, a-ketoglutarate (2-oxogluta-
rate) (77). Consequently, C-starved cells have diminished rates of ammonium assimila-
tion and potentially other N utilization pathways (77). Notably, a recent study found
that Alteromonas significantly reduced the expression of genes involved in nitrogen
metabolic pathways under carbon and iron colimitation (78).
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The stimulation of inorganic nitrogen uptake in these studies is entirely consistent
with our observations of Alteromonas and other marine heterotrophs in N-limited me-
dium. Like E. coli, carbon-limited Alteromonas may be deprived of the necessary a-ke-
toglutarate for the assimilation of ammonia or nitrate. Alternatively, or in addition, car-
bon limitation may deprive the cells of the energy needed to drive the transport of
these substrates. In either case, the provision of organic carbon by Prochlorococcus
appears to satisfy the requirements for enhanced inorganic nitrogen uptake and assim-
ilation by these heterotrophs, outcompeting Synechococcus in the process.

Previous studies have highlighted the beneficial effects of heterotroph interactions
with picocyanobacteria (40–42, 59, 79–82). Previously, we described how heterotrophic
bacteria protect Prochlorococcus from oxidative stress (12, 38). Coe et al. (83) and Roth-
Rosenberg et al. (84) have shown that heterotrophs promote the survival of
Prochlorococcus during long-term light and nutrient (N or P) deprivation, respectively.
Christie-Oleza et al. (59) found a similar relationship between Synechococcus and a ma-
rine roseobacter. In that study, long-term coexistence under nutrient limitation was
facilitated by an exchange of resources between the phototroph and heterotroph.

Interactions between picocyanobacteria have been less well characterized, but a
recent study by Knight and Morris (85) showed that Synechococcus could aid the
growth of Prochlorococcus under conditions simulating ocean acidification. The mecha-
nism of this help was not identified, but because these cocultures were grown in the
presence of Alteromonas sp. EZ55, the authors speculated that Synechococcus could
help Prochlorococcus indirectly by stimulating EZ55. The potential for allelopathic inter-
actions between picocyanobacteria has also been noted (86–88).

Our study provides a new dimension to picocyanobacterium-heterotroph and pico-
cyanobacterium-picocyanobacterium interactions: the ability of one phototroph
(Prochlorococcus) to drive a shift from coexistence to competition between a second
phototroph (Synechococcus) and a heterotroph. Christie-Oleza et al. (59) found that
Synechococcus and heterotroph strains coexist during prolonged coculture in
unamended seawater and that upon N addition, cross-feeding could occur by the con-
version of N substrates unusable by the other microbe: the heterotroph strain could
convert organic nitrogen (peptone) to ammonia, while WH7803 could convert nitrate
to dissolved organic nitrogen. In our study, both the heterotroph and phototroph
could utilize nitrate and nitrite, and unless the former was mutated in its ability to uti-
lize these resources, the heterotroph could apparently outcompete the Synechococcus
strain for this resource when fed organic carbon by Prochlorococcus.

While usually found at abundances of 104 cells mL21 or lower in the open ocean (89–
91), Alteromonas was chosen as a proxy for the heterotrophic community because of
previously described interactions with Prochlorococcus. The tripartite interaction that
influenced the success of Prochlorococcus over Synechococcus is likely due to the nutrient
utilization capabilities of the heterotrophic bacteria rather than an adaptation to nutri-
ent-limited growth. However, to explore this interaction further, a future direction of this
work will be to observe tripartite outcomes upon the inclusion of dominant oligotrophic
heterotrophs, such as SAR11 Pelagibacter, to determine if these metabolic interactions
occur between numerically dominant members of each trophic level (92, 93).

Conclusion. This study demonstrates that metabolic interactions between trophic
groups can influence relative abundances within trophic groups. The prediction that
Prochlorococcus outcompetes rival phytoplankton, including Synechococcus, under nu-
trient limitation is largely confirmed, but this outcome may require the ability of
Prochlorococcus to energize heterotrophic bacteria to outcompete their photosynthetic
rivals for resources that they themselves do not use. If our results can be extrapolated
to the natural environment, they highlight an important connection between carbon
and nitrogen availability and suggest that complex microbial interactions can benefit
streamlined, efficient genera such as Prochlorococcus to the detriment of their
competition.
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MATERIALS ANDMETHODS
Strains and culturing. Axenic cultures of Prochlorococcus strains MIT9215, MIT9312, and MED4 and

Synechococcus strains WH7803, CC9605, and WH8102 were used in this study. Stock cultures of cyano-
bacteria were initially maintained in an artificial seawater medium, AMP-A (12, 94, 95), and were inocu-
lated and serially maintained (for up to 2 years) in AMP-MN (this study) (described below) to prevent the
introduction of excess nitrogen (N). The axenicity of cyanobacterial stocks and experimental cultures
was tested routinely by diluting a small volume of the culture into 1/10� Prochlorococcus AC (ProAC;
Difco) and yeast tryptone sea salts (YTSS) media and incubating these cultures in the dark at room tem-
perature for up to 6 weeks to monitor any increase in turbidity indicating the presence of heterotrophic
bacteria (35). All experiments were carried out at 24°C in I36VLX incubators (Percival, Boone, IA) with
modified controllers that allowed gradual increases and decreases of cool white light to simulate sunrise
and sunset, with a peak midday light intensity of 150 mmol quanta m22 s21 on a 14-h/10-h light/dark
cycle (96). Ammonium (NH4

1) was the N amendment in all experiments, unless otherwise stated, as it
can be used by all strains in this study. Experiments that included different NH4

1 concentrations were
performed with NH4

1 amendments to the AMP-A derivative AMP-MN (minus nitrogen), which is identi-
cal to AMP-A except that no N source is included. Stepwise amendments of NH4

1 to AMP-MN and subse-
quent regression analysis of maximal Prochlorococcus abundances indicated that the residual N bioavail-
able to Prochlorococcus and Synechococcus was approximately 0.164 mM (see Fig. S1 in the
supplemental material) (R2 = 0.9729).

Axenic heterotrophic bacteria utilized were Alteromonas macleodii strain EZ55 (35), Vibrio fischeri
strain ES114 (97), and Phaeobacter sp. strain Y3F (98). Cultures of heterotrophs grown overnight were
inoculated from cryopreserved stocks prior to each experiment (280°C in YTSS plus 10% glycerol) into
5-mL volumes of YTSS (99) and incubated with shaking at 140 rpm at 24°C. Before inoculation into cya-
nobacterial cultures, heterotrophs were washed three times in 1.5-mL microcentrifuge tubes by centrifu-
gation at 8,000 rpm for 2 min in a tabletop microcentrifuge and resuspension in 1 mL AMP-MN.

While all culture media were sterilized by autoclaving, sterilized spent or Prochlorococcus-condi-
tioned medium was generated by culturing Prochlorococcus strain MIT9215 in large volumes of AMP-MN
(;300 mL). At stationary phase (25 to 30 days), these cells were removed by gentle filtration (27 inHg)
in a 1-L filter tower (Nalgene) using 0.2-mm-pore-size GTTP isopore membrane filters (MilliporeSigma,
Burlington, MA). Previous studies indicated that low-pressure filtration does not cause detectable rup-
ture of Prochlorococcus cells during filtration (12). The sterility of this conditioned medium was deter-
mined by flow cytometry alongside the experiments in which it was utilized, in addition to the purity
assay detailed above.

Quantification of cyanobacterium and heterotroph abundances. The abundances of cyanobacte-
ria were quantified by flow cytometry using a Guava EasyCyte 8HT flow cytometer (Millipore, Burlington,
MA) with populations of Prochlorococcus and Synechococcus differentiated in cocultures by their red and
red/yellow fluorescence, respectively (35, 100). Heterotrophs in mono- and coculture experiments were
quantified by viable counting with serial dilutions on YTSS–1.5% agar plates incubated at 24°C.

Transposon mutagenesis. Mutants of Alteromonas macleodii strain EZ55 incapable of growing on
nitrate (NO3

2) as a sole N source were generated by transposon mutagenesis using a mini-Himar1
Mariner transposon carrying a kanamycin resistance-selectable marker (101). The RB1 plasmid vector
containing the transposon was propagated in Escherichia coli strain WM3064, a pir1 and 2,6-diaminopi-
melic acid (DAP) auxotroph donor strain (102). Cultures of the donor strain grown overnight were inocu-
lated from cryopreserved stocks (280°C in LB plus 10% glycerol) into 5 mL of LB amended with 10 mg/
mL of kanamycin and 150 mL of 100 mM DAP (Alfa Aesar, Haverhill, MA) and incubated with shaking at
37°C. Conjugations with EZ55 were performed by plating both the donor and recipient onto YTSS agar
plates for 8 h. Exconjugants were selected on plates containing YTSS plus 10 mg/mL kanamycin.
Selected colonies were screened for NO3

2 utilization by replica plating (103) on AMP-A agar with 1.5%
Noble agar (Difco) amended with 500 mM sodium pyruvate (Sigma-Aldrich) and either 400 mM NH4

1 or
882 mM NO3

2 as the nitrogen source. Replica-plated colonies growing solely on plates containing NH4
1

were transferred again into tubes of AMP-A with excess carbon and different nitrogen sources to con-
firm that the mutants were unable to grow on nitrate or nitrite. The insertion location of the Mariner
transposon within the nirB gene was verified by arbitrary PCR (104), Sanger sequencing, and BLAST com-
parisons with the EZ55 genome (IMG accession number 2785510739).
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