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Abstract

Ligand-induced protein allostery plays a central role in modulating cellular signaling pathways. 

Here, using the conserved cyclic-nucleotide binding domain of protein kinase A’s (PKA) 

regulatory subunit as a prototype signaling unit, we combine long-timescale, all-atom molecular 

dynamics simulations with Markov state models to elucidate the conformational ensembles of 

PKA’s cyclic-nucleotide binding domain A for the cAMP-free (apo) and cAMP-bound states. We 

find that both systems exhibit shallow free-energy landscapes that link functional states through 

multiple transition pathways. This observation suggests conformational selection as the general 

mechanism of allostery in this canonical signaling domain. Further, we expose the propagation of 

the allosteric signal through key structural motifs in the cyclic-nucleotide binding domain and 

explore the role of kinetics in its function. Our approach integrates disparate lines of experimental 

data into one cohesive framework to understand structure, dynamics, and function in complex 

biological systems.

Introduction

Since the introduction of the allosteric effect in L-threonine deaminase1,2, researchers have 

sought to understand the mechanisms of allostery. The classical phenomenological models 

proposed by Monod-Wyman-Changeux3 and (Pauling)-Koshland-Nemethy-Filmer4,5 have 

been extended over time to emphasize population shifts or modulations in the 

conformational ensemble of the proteins6,7. Fundamentally, it is the character of the 

underlying free-energy landscape that determines the mechanism of allostery6–11.
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While experimental and computational approaches provide insight into allosteric 

mechanisms12,13, a robust atomic-level description of the free-energy landscape remains a 

challenge due to a variety of methodological limitations. Without an atomic-level 

description of the conformational ensemble and its corresponding free-energy landscape, the 

details of allostery can remain hidden within ensemble averages or constrained perspectives 

of protein conformation and dynamics.

The objective of our work is to apply cutting-edge computational approaches to explore the 

conformational ensemble of a protein with and without a bound ligand, thereby gaining 

insight into how the ensemble gives rise to protein function. This work focuses on the 

mechanism of ligand-driven allostery in the cyclic-nucleotide binding domain of protein 

kinase A’s (PKA) regulatory subunit. Despite extensive research conducted on this 

system14, questions still remain.

The intercellular activation of PKA by cAMP is a prototypical example of ligand-protein 

allostery, which occurs through the cooperative binding of cAMP to tandem cyclic-

nucleotide binding domains, designated A and B, in each of PKA’s regulatory subunits14. 

Crystallographic data shows that the regulatory subunit, isoform Iα, undergoes significant 

conformational changes upon binding cAMP. It transitions from an extended holo-enzyme 

conformation that inhibits PKA’s catalytic subunits to a compact cAMP-bound 

conformation that releases and activates PKA’s catalytic subunits15,16. Within the cyclic-

nucleotide binding domain, the inactive holo-enzyme and the active cAMP-bound 

conformations of the regulatory subunit are characterized by the conformational changes in 

three structural motifs: the N3A motif, the phosphate-binding cassette (PBC), and the B/C 

helix17,18, leaving the core β-barrel sub-domain largely unchanged (Figure 1). These 

structural motifs represent the fundamental signal transduction component and form the 

binding interface between the cyclic-nucleotide binding domain and PKA’s catalytic 

subunit.

The existing crystallographic data provides only two conformational states for the cyclic-

nucleotide binding domains, the holo-enzyme (a.k.a. H or inactive)16,19 and the cAMP-

bound conformation (a.k.a. B or active)15. NMR dynamics data of the minimal functional 

component of PKA’s regulatory subunit, the A cyclic-nucleotide binding domain (aa. 119–

244), indicates the presence of two dominant conformational states20–22 and suggests 

conformational selection as the mechanism of allostery23. Upon cAMP binding, changes in 

NMR chemical shift data implicate the phosphate-binding cassette as a major dynamic 

element, while few changes are observed in the N3A motif or the B/C helix.

However, such experiments are limited in their ability to elucidate details of the full 

structural ensemble. Instead, they provide averaged metrics that correlate to dynamic 

motions. Achieving an atomistic description of the underlying conformational ensemble and 

resolving the corresponding free-energy landscape will clarify the mechanisms by which 

cAMP modulates the function of the cyclic-nucleotide binding domain.

Because the PKA holo-enzyme contains four cyclic-nucleotide binding domains, cAMP-

induced activation is a complicated process. A recent study by Boras et al.24 provided a 
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general blueprint of the events during activation at the subcellular level, but the molecular 

mechanism of activation remains to be elucidated.

To build a foundation on which to address these questions, we simulated fully solvated 

atomistic models of the conformational ensembles of the A cyclic-nucleotide binding 

domain (hereafter referred to as the cyclic-nucleotide binding domain or CBD), with and 

without cAMP bound. Extensive molecular dynamics (MD) simulations were integrated 

using Markov state model theory to explore PKA’s conformational space and long-timescale 

dynamics. Markov state models depict the interaction dynamics of discrete interconnected 

states as a transition probability matrix, at a fixed lag time, assuming that the transitions 

between states are independent of previous transitions (i.e., Markovian)25–28. By assigning 

individual frames extracted from MD trajectories to discrete conformational states, sampling 

from many separate trajectories can be integrated into one coherent framework that captures 

the kinetics and thermodynamics of the conformational ensemble at atomic resolution.

Similar approaches have been used to study protein folding29, biased transition pathways 

between functional states30,31, identification of cryptic allosteric sites32, and ligand 

regulation of G-protein coupled receptors33. Our work is unique in that it directly assesses 

the atomic conformational landscape using initial unbiased long-timescale MD simulations 

augmented with adaptive sampling of one protein in two functional states, as opposed to 

only combining many short-timescale simulations or sampling along a predetermined 

reaction coordinate.

We find that the conformational ensembles of cAMP-free (CBD-Apo) and cAMP-bound 

(CBD-cAMP) functional states exist within a shallow free-energy landscape that allows 

access to both experimentally determined functional conformations, indicating 

conformational selection as the principal mechanism of allostery with the isolated cyclic-

nucleotide binding domain. We find that the addition of cAMP modifies the principal 

motions of the cyclic-nucleotide binding domain, which correspond to transitions between 

active and inactive states. Furthermore, our approach exposes the propagation of the 

allosteric signal through the cyclic-nucleotide binding domain’s signaling motifs.

Our results complement existing structural15,16 and dynamical20–23,34 experimental data, 

and extend our understanding of the mechanism of ligand-induced allostery within the 

cyclic-nucleotide binding domain. Further, they provide a general framework for 

understanding the function of the ancient and ubiquitous cyclic-nucleotide binding 

domain35,36 and allosteric mechanisms more generally.

Results

Modeling the Conformational Landscape

To explore and map the conformational landscapes of the cyclic-nucleotide binding domain, 

we integrated multiple molecular dynamics (MD) simulations with Markov state models. 

Explicit solvent MD simulations of the cyclic-nucleotide binding domain were performed 

with and without cAMP-bound systems (CBD-cAMP and CBD-Apo, respectively).
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The MD simulations of both systems sampled a totaled 74 µs (Supplementary Table 1). The 

simulations were composed of four long-timescale, ~13 µs simulations on the Anton 

supercomputer37 (at the Pittsburgh Supercomputing Center) and multiple parallel short-

timescale, 0.5–1 µs simulations using GPU-accelerated AMBER1238–40. For both systems, 

sampling simulations were initiated from experimentally determined atomic coordinates of 

the cyclic-nucleotide binding domain15,16 in both the inactive and active conformations. 

Initial sampling was followed by multiple rounds of directed sampling (10–15 ns 

simulations using GPU-accelerated AMBER1238–40) to refine the Markov state models41. 

Directed sampling simulations were initiated from intermediate conformations selected near 

poorly sampled transitions within the Markov state model. For both the CBD-cAMP and 

CBD-Apo systems, no single simulation sampled a complete transition between the 

experimentally determined inactive and active structures. However, simulations started from 

either experimental conformation overlapped in conformational space, based on alpha 

carbon root mean squared distance (RMSD), indicating that the MD trajectories could be 

integrated meaningfully into a single Markov state model (Supplementary Figure 1).

To build the Markov state models, we needed to define the conformational space, and then 

divide the space into discrete conformational states. As in protein-folding models29, the 

cyclic-nucleotide binding domain conformations are defined by the atomic coordinates of 

each residue’s alpha carbon. We divided the sampled conformational space into discrete 

conformational states through RMSD clustering using MSMBuilder242. We pre-aligned 

structures to a common reference frame to calculate RMSD to capture important 

translational motions lost using the standard minimum RMSD approach, which aligns each 

pair of compared structures to each other before determining RMSD. Inspection of the 

individual MD trajectories indicated that the β-barrel of the cyclic-nucleotide binding 

domain was stable relative to the motions of the N3A motif, the phosphate-binding cassette 

(PBC), and the B/C helix (Supplementary Figure 2). Therefore, we used the β-barrel as our 

common reference frame.

All conformations sampled from the MD simulations of both the CBD-Apo and CBD-cAMP 

systems were clustered together to create a comprehensive framework of conformational 

states. Once the conformation states were identified, Markov state models were built for 

each system. This means that the models were built using the same division of 

conformational space, but each model included only states sampled in its respective 

simulations. (A comparison between this approach and clustering conformations from CBD-

Apo and CBD-cAMP separately is discussed below.)

The Markov state models were built by specifying the maximum distance or cut-off for the 

clustering algorithm, which determined how the conformational space was divided, and a 

lag time for the model. Model parameters were selected because they were Markovian, as 

indicated by implied timescale plots, and could maximize the number of conformational 

states. Additionally, consistency between the Markov state models and the MD simulations 

were determined by the Chapman-Kolmogorov test26 (i.e., were the models’ generated 

trajectories similar to the results from the original MD simulations?) (Supplementary 

Figures 3–10). An evaluation of several RMSD cut-offs and lag times indicated that the best 
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Markov state model utilized a clustering cut-off of 3.0 Å and a lag time of 9.6 ns 

(Supplementary Figures 3–4).

Graphs of the Markov state models for CBD-Apo and CBD-cAMP are visualized as a 

network (Figure 2). Each node corresponds to a cluster of similar conformations or a single 

conformational state. The diameters of the nodes are proportional to the log of equilibrium 

population of the conformational state. Thus, smaller nodes indicate conformations that are 

more rarely sampled. The location of each node is determined by the RMSD of the structure 

of the cluster’s generator, approximately the centroid of the cluster, to the inactive and 

active crystallographic structures. We note that the location of each node gives a general 

indication of the conformation of each state relative to the experimental structures, but node 

locations are a projection from a higher-dimensional space. (Separation of the 

experimentally determined active node, indicated in Figure 2, from the bulk of the other 

nodes is an artifact of the clustering algorithm in MSMBuilder242, which selects the first 

molecular dynamics frame [i.e., the equilibrated starting active conformation] as a generator 

for the first cluster. Notice that the separation of the active conformation node from its 

neighbors is approximately 3 Å or the RMSD cut-off of the clustering algorithm.)

Ligand-meditated Changes in the Conformational Ensemble

A comparison of the models of the conformational state ensembles for the CBD-Apo and 

CBD-cAMP systems allowed us to assess how the binding of cAMP modifies the overall 

free-energy landscape. We compared the distribution of conformational states between the 

two systems, the overall character of the free-energy landscape, and the kinetics of 

traversing the free-energy landscape between functional conformations states. For this 

comparison, and throughout this work, we assumed that the crystallographic structures 

represent the functional conformations (active or inactive states) of the cyclic-nucleotide 

binding domain. The nodes containing the functional conformations are indicated in Figure 

2.

When comparing the conformational landscapes of CBD-Apo and CBD-cAMP, we noticed 

two striking features: the large number of shared states (Figure 2) and the character of the 

unique states. The models indicate that the systems share ~70% of the total number of 

sampled conformational states (Supplementary Table 2). Notably, the shared conformational 

states of CBD-Apo and CBD-cAMP comprise 66% and 38%, respectively, of the total 

population for each ensemble.

Many of the unique CBD-Apo conformational states contain structures in which the cAMP-

binding site is formed poorly and, thus, sterically prevented from occurring when cAMP is 

bound (Supplementary Figure 11). Many of the most populated unique CBD-cAMP 

conformational states exhibit structures in which the C-terminus is interacting with cAMP 

(Supplementary Figure 12). These states include the dynamical capping of cAMP’s 

adenosine ring by Y244, part of the C-helix, that substitutes the native capping residue 

W260 from the “B” CBD in the full regulatory subunit15,43. These capping interactions with 

Y244 have been observed experimentally in the truncated RIα (aa. 1–259)43 but not 

previously observed in simulations. Additionally, fluorescent experiments studying the 

dynamics of R239 (located on the C-helix) indicate that the C-helix has a higher propensity 

Malmstrom et al. Page 5

Nat Commun. Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to interact with the core cyclic-nucleotide binding domain in the presence of cAMP34. The 

unique CBD-cAMP conformational states are not sterically excluded from the CBD-Apo 

conformation ensemble, and interactions between the C-terminus and the cAMP-binding 

sites were observed in the CBD-Apo ensemble. Therefore, the absence of unique states in 

the CBD-cAMP ensemble is likely due to the absence of stabilizing interactions between 

cAMP and the C-terminus. Importantly, both models sampled the active and inactive states, 

yet neither state is the most populated conformational state in either system.

Using the most probable conformational state as the reference state, at physiological 

conditions the depth of free-energy landscape is 6.6 kcal mol−1 for CBD-Apo and 7.6 kcal 

mol−1 for CBD-cAMP. The free energies for the individual conformational states follow a 

Gaussian distribution with a mean depth of the free-energy landscape at 3.1 kcal mol−1 +/− 

1.4 kcal mol−1 for CBD-Apo and 4.2 kcal mol−1 +/− 1.6 kcal mol−1 for CBD-cAMP. The 

transition free energy out of a conformational state to any of its neighboring conformational 

states (i.e., only states that it is connected to) ranges from 5.8 to 8.6 kcals mol−1 for both 

systems. (5.8 kcal mol−1 corresponds to a transition made at approximately the lag time of 

the Markov state model and, thus, is the lowest bound transition free energy calculated from 

the Markov state model.) The absolute difference in free energy between the active and 

inactive states is 0.1 kcal mol−1 for CBD-Apo and 0.9 kcal mol−1 for CBD-cAMP. Overall, 

the free-energy landscapes of both systems provide access to both functional states at 

physiological conditions, with cAMP binding deepening the free-energy landscape by ~1 

kcal mol−1.

Transition pathway theory44,45 identified the 10 highest flux paths between the functional 

conformational states for each ensemble (Supplementary Figure 13). The proportion of the 

highest flux path relative to the total flux for each functional state ensemble was striking: 

For CBD-Apo, the highest flux path was only 9% of the total flux, and for CBD-cAMP, it 

was only 4% of the total flux (Supplementary Table 3). The lack of a dominant path and the 

variety of paths identified in the analysis indicate that there are multiple pathways between 

functional conformational states. Inspection of the pathways indicated no common order of 

conformational changes or shared features at the bottlenecks of the pathways.

Therefore, to understand the transition between active and inactive conformation states 

across the free-energy landscape, we needed to look at the transition pathways collectively. 

We measured the kinetics of the transition between active and inactive states using mean 

first passage times (i.e., the fastest average time it takes for the system to move across the 

free-energy landscape from active to inactive state, or vice versa) (Table 1). Interestingly, 

the mean first passage times for the transition from inactive to active state are similar with or 

without cAMP bound: ~30 µs. However, the addition of cAMP slows the transition from 

active to inactive state by a factor of five, from 16 µs to 84 µs.

These results indicate that CBD-Apo favors the inactive state, which inhibits PKA’s 

catalytic subunit, whereas CBD-cAMP favors the state that activates PKA’s catalytic 

subunit. Thus, the dynamics of the cyclic-nucleotide binding domain derived from the 

Markov state models are consistent with the function of the regulatory subunit in PKA.
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Taken together, our results indicate conformational selection as the governing mechanism of 

allostery in the cyclic-nucleotide binding domain. The weakest evidence for this mechanism 

is the number of shared states between both models because it is largely a function of the 

clustering algorithm. However, when the conformations for each system are clustered 

separately, the results are the same. In fact, the joint clustering approach better captures the 

principal motions of the CBD at a 3.0 Å clustering cut-off, as determined by implied 

timescale plots (Supplementary Figure 14).

The stronger evidence supporting conformational selection is the change in the free-energy 

landscape and the corresponding transition kinetics. Weinkam and coworkers8 classified 

allosteric mechanisms based on the difference between the change in free energy of two 

functional states and the binding free energy of the ligand. Although the current Markov 

state models do not allow determination of the free energy of cAMP binding, and there has 

been no direct experimental measurements of cAMP binding in our construct, we can 

estimate the binding free energy of cAMP through previous work on the isolated A cyclic-

nucleotide binding domain46. The free energy of binding of cAMP to the isolated A cyclic-

nucleotide binding domain is approximately −3 kcal mol−1 46. This value is greater than the 

difference in free energy between the active and inactive states, ~-1 kcal mol−1, supporting 

conformational selection as the general mechanism of allostery. Additionally, the on-rate for 

cAMP to the A cyclic-nucleotide binding domain of R, ~4.8x104 s−1 46, is faster than the 

transition times between active and inactive states in the CBD-cAMP system. And the fact 

that the transition rates between inactive and active conformations are independent of ligand 

binding indicate conformational selection as described by Zhou9. Experimental results23,47 

support conformational selection as the mechanism of ligand-induced allostery, thus 

complementing the interpretations of our Markov state model presented here.

One limitation of our models is the potential bias towards conformational selection because 

the simulations were initiated at both experimentally determined active and inactive states, 

which were included in and connected through the Markov state models. However, nothing 

sterically hinders cAMP from binding either functional conformational state in the absence 

of the catalytic subunit, and no restraints were required to keep cAMP bound during the 

simulations. Thus, all four systems used to initiate the simulations are potential members of 

the conformational ensemble. Starting the simulations in each experimental conformation 

does not predispose them to becoming members of highly populated or networked states or 

bias the transition kinetics between active and inactive states.

Conformational Space, Principal Motions, and Function

While our results indicate conformational selection as the general mechanism of allostery 

for the CBD, this finding is not wholly novel due to previous experimental work23,47. 

However, our work provides a foundation to delve further into the mechanisms of allostery 

at an atomic scale in ways inaccessible to current experimental methods: We can explore 

structural characteristics of the equilibrium conformational space, and the principal motions 

of the CBD and its functional macrostates.

To understand the structural characteristics of the conformational landscapes, we built 

stationary probability density volumes of the positions of the alpha carbons. In other words, 

Malmstrom et al. Page 7

Nat Commun. Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we sought to determine the probability of finding the mass of the alpha carbons in a given 

volume of space at equilibrium. The volumes were determined by dividing the space in 0.1 

Å voxels and calculating the probability of finding an alpha carbon within 3 Å (the RMSD 

cut-off for the Markov state model) of the voxel for each conformational state. By summing 

over all states, we obtained a map of the stationary probability density, which provides a 

visual representation of the conformational ensembles.

Figure 3 shows the probability of density surfaces at 66%, 95%, and 99.9%. The volume 

enclosed by each surface has a probability greater than the cut-off of being occupied by an 

alpha carbon. This figure shows the wide range of motion sampled by the α-helical 

structural subdomain at equilibrium; this range of motion is similar for the CBD-Apo and 

CBD-cAMP systems. Similar to the graphical representation of the Markov state model, the 

stationary probability density volumes indicate the similarity of the conformations sampled 

by CBD-Apo and CBD-cAMP.

However, the differences between the stationary probability density volumes give us new 

structural insight into the mechanisms of allostery within the CBD. The first notable 

difference is the unique density formed by the B/C helix proximal to cAMP in the CBD-

cAMP ensemble (Figure 4A). This density corresponds to the interactions between the C-

terminus and the adenosine ring of cAMP discussed above. A second difference is the higher 

probability that the N3A motif extends over the B/C helix in the CBD-Apo ensemble 

(Figure 4B). This density corresponds with the experimentally determined binding interface 

between PKA’s catalytic and regulatory subunits.16 Interestingly, the CBD-Apo system only 

increased density by about 10% in forming the interface. This small variation shows how 

seemingly small changes in a conformation ensemble give rise to inhibitory function of the 

CBD-Apo system by increasing the probability of formation of the binding interface 

between PKA’s catalytic and regulatory subunits.

To determine the principal motions of the CBD, we built kinetic coarse-grained models from 

the Markov state models of each system to identify metastable states or the principal 

motions of CBD arising from the conformational ensemble. These models were generated 

by complementarily employing principal component and Markov clustering 

analysis25,28,32,42,48,49.

The CBD-Apo implied timescale plots (Supplementary Figure 3) suggest at least one 

dominant slow motion followed by numerous secondary faster motions. The dominant slow 

motion of the CBD-Apo ensemble is between conformations similar to the active and 

conformations similar to the inactive conformational states (Figure 5). Of note, the second 

most dominant motion is integration of the unfolded N-helix (the N3A motif) into the core 

β-barrel (Supplementary Figure 15). These conformations are only observed in the CBD-

Apo ensemble as they deform the cAMP-binding site, sterically excluding cAMP. 

Integration of the unfolded N-helix requires partial unfolding of the core β–barrel, which 

was observed in previous NMR work21. We recognize that these conformations may be an 

artifact of the truncated CBD and, therefore, may not be part of the mechanisms of allostery 

for the regulatory subunit in vivo. Still, the consistency between the results of the 
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simulations and the NMR work indicates that the models are able to replicate structural 

events seen experimentally.

Like the CBD-Apo system, the implied timescale plot for the CBD-cAMP system indicates 

one dominant slow motion followed by a number of faster motions (Supplementary Figure 

4). Although the dominant motion is structurally similar to that of CBD-Apo (i.e., it is also 

the transition between active and inactive conformations [Figure 5]), it is slower than that of 

CBD-Apo (compare Supplementary Figures 3 and 4). Interestingly, the second slowest 

motion within the CBD-cAMP system corresponds to those states where the C-terminus is 

interacting with cAMP.

To strengthen the relationship between motions of the CBD and its function, we generated a 

functional coarse-grained model of the conformational ensembles. The model identifies 

which conformational stats have a higher probability of transitioning to either the active of 

inactive state, thus indicating the role of each conformational state in the function of the 

system. Using committer analysis from transition pathway theory44,45, the ensembles were 

divided into two functional macrostates. Each macrostate was composed of conformational 

states with a >50% probability of transitioning to the active or inactive state. In other words, 

the functional coarse-grain model can be conceptualized as the “continental divide” of the 

free-energy landscape, indicating to which functional state (active or inactive) an individual 

conformational state is connected to most strongly.

The functional coarse-grain model of CBD-Apo (Figure 4) contains similar populations for 

the active and inactive macrostates, with a preference for the inactive macrostate. CBD-

cAMP (Figure 4), however, prefers the active macrostate (Table 2). These results agree with 

NMR studies that show similar inactive and active conformational populations at very-low-

cAMP concentration and domination of the active macrostate at high-cAMP 

concentrations21. Additionally, the relationship of the half-life of either functional 

macrostate is similar to the mean first passage time between functional conformational states 

in that transitions from inactive to active states have similar kinetics in both systems, 

whereas the presence of cAMP slows the transition from active to inactive state (Table 2).

The functional coarse-grain model and the kinetic coarse-grain model closely correlate with 

each other as determined by conformational state membership in the functional or kinetic 

macrostates. Correlation between the two coarse-grained models is expected as they both 

depend on the transition kinetics of the Markov state models; however, which motion 

corresponded to the change in functional states is not clear a priori. This correlation 

indicates that the functional macrostates determined by transition pathway theory 

correspond to the slowest motion of the cyclic-nucleotide binding domain (Figure 4). It also 

supports the assumption that the crystallographic conformations represent the active and 

inactive states of the cyclic-nucleotide binding domain and that its slowest motion is the 

transition between active and inactive states.

The coarse-grained models combined with observations of the change in stationary 

probability densities for the two systems support a general explanation that the modification 

of the transition kinetics by cAMP gives rise to function. In CBD-Apo, transitions between 
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states occur with a tendency towards the inactive conformation, which increases the 

likelihood of generating the interface that allows for the regulatory subunit to bind the 

catalytic subunit leading to inactivation of PKA. With cAMP bound, the transition between 

inactive and active states is slower, which is likely the result of interactions formed between 

the C-terminus and cAMP. The preference for the active-like conformations in the CBD-

cAMP system decreases the probability of forming the binding interface and allowing 

activation of PKA.

Motions of the Signaling Motifs

To gather more detail on the allosteric mechanism, we examined the propagation of an 

allosteric signal through the helical signaling motifs of the cyclic-nucleotide binding domain 

by building new Markov state models for the three principal signaling motifs using the same 

MD trajectories (apo and cAMP-bound). While the motions of the signaling motifs are 

captured in the Markov state models of the full CBD, as discussed above, individual models 

elucidate the conformational ensembles of focused structural elements and provide an 

unobstructed view of their modulation by cAMP. The Markov state models for the 

individual motifs were developed and analyzed using the same methods for the full system 

(Supplementary Figures 5–10). They indicate conformational selection as the general 

mechanism of allostery, due to well-connected active and inactive conformational states 

(Figure 7) with multiple pathways across the free-energy landscape for each of the three key 

motifs (Supplementary Table 3).

When we compared the conformational state distribution between the apo and cAMP-bound 

systems, we observed that the N3A motif and the B/C helix share a majority of their 

conformational states (Figure 7 and Supplementary Table 2), similar to the full cyclic-

nucleotide binding domain. The B/C helix generally explores the conformational space 

between the experimentally determined active and inactive structures (Figure 7A). However, 

the N3A motif explores conformations dissimilar to either experimental conformation 

(Figure 7C). These models are consistent with the observed motions of these domains 

(Supplementary Figure 2), particularly with the unfolding of the N-helix (Supplementary 

Figure 11).

These results support and help explain why there is no observed change in chemical shifts in 

NMR experiments21 for the N3A motif or the B/C helix despite the changes in the 

crystallographic structures (Figure 1). Simply put, in solution the conformational space 

explored by the N3A motif and the B/C helix is largely independent of cAMP, though 

cAMP does modulate the relative populations of the conformational states and their kinetics.

In contrast, the phosphate-binding cassette showed significant changes in chemical shifts 

upon binding cAMP.21 While these changes appear to be driven by interaction with cAMP, 

the Markov state model of the phosphate-binding cassette illuminates another aspect of these 

changes: that, upon binding of cAMP, the phosphate-binding cassette loses about half of its 

conformational states, representing a significant loss in conformational entropy (Figure 7B, 

Supplementary Table 2). Additionally, the kinetic and functional coarse-grain models of the 

phosphate-binding cassette show significant changes between apo and cAMP systems 

(Supplementary Figure 17 and Supplementary Table 5) unlike the other signaling motifs 
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(Supplementary Figures 16, 18 and Supplementary Tables 4, 6). Without cAMP, the 

phosphate-binding cassette has a shallow free-energy landscape with quick transition 

between metastable macrostates (Table 1, Supplementary Figure 17, and Supplementary 

Table 5). With cAMP bound, there is one dominant (slow) transition between two 

metastable macrostates (Table 1, Supplementary Figure 17, and Supplementary Table 6; also 

compare implied timescale plots in Supplementary Figures 7 and 8). Unlike the other 

models (Figure 5 and Supplementary Figures 16 and 18), the conformational states that 

comprise these metastable macrostates do not correspond to the division of microstates seen 

in the functional coarse-grain model (Supplementary Figure 17). Instead the functional 

coarse-grain model indicates a strong propensity of the phosphate-binding cassette to 

assume a cAMP-binding conformation or active conformation even in the absence of cAMP 

(Supplementary Figure 17 and Supplementary Table 5). Overall, the model shows that, 

without cAMP bound, the phosphate-binding cassette explores a variety of conformations, 

but the binding site has a tendency to assume the active cAMP-bound conformation. cAMP 

binding selects the active conformation while allowing transition between active and 

inactive state but significantly slows the transition between these states (Table 1, 

Supplementary Table 16).

The spatial arrangement of the helical signaling motifs suggests that the propagation of the 

allosteric signal would be from the phosphate-binding cassette to the B/C helix to the N3A 

motif (Figure 1). Even the natures of the conformation ensembles, described by the Markov 

state models, suggest propagation of the allosteric signal from a switch like the phosphate-

binding cassette out to the conformationally diverse N3A motif.

However, the kinetics of the signaling motifs suggest another mechanism. The mean first 

passage times between active and inactive states suggest that the movement of the B/C helix 

is the rate-limiting step for the functional transition because it has the slowest transitions 

between active and inactive states (Table 1). Like the full CBD, the B/C helix has similar 

transition times between active and inactive states whether or not cAMP is bound. However, 

cAMP significantly decreases the rate of the active-to-inactive transition (Table 1). This rate 

reduction is due to stabilization of the active conformation by cAMP through interactions 

between the C helix and cAMP (Figure 4), as observed and discussed above.

In PKA and other proteins, the experimental free energy of binding of cAMP to the cyclic-

nucleotide binding domain is dominated by enthalpic contributions50–52, suggesting that the 

contacts between cAMP and the phosphate-binding cassette and B/H helix are drivers for 

this phenomenon. Our model indicates that the binding of cAMP near the phosphate-binding 

cassette dampens the dynamics of that signaling motif, greatly increasing its propensity to 

adopt an active-like conformation, and that the motions of the B/C helix are the rate-limiting 

step in this transition.

Discussion

Overall, we find that the prototype cyclic-nucleotide binding domain is a highly dynamic 

system and that cAMP modulates its function by modifying the dynamics of the signaling 

motifs. By comparing CBD-Apo and CBD-cAMP ensembles, we see that the free-energy 
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landscape allows access to both active and inactive states through an ensemble of transition 

pathways (i.e., there is no one dominant pathway between states). Collectively, our analysis 

supports conformational selection as the general mechanism of allostery in this system. The 

addition of cAMP modulates the transition rates between the functional states but only 

between active-to-inactive states and not vice versa. This modulation of rates occurs by 

slowing motion in the CBD-cAMP ensemble, which is caused by interactions with cAMP. 

Finally, our work indicates that the change in dynamics of the B/C helix is the rate-limiting 

step in adopting a fully active conformation. Furthermore, the motion of the B/C helix is 

essential for signal propagation to the N3A motif and formation of the interface with the 

catalytic subunit. This mechanism could be tested experimentally though NMR by observing 

shifts in the relative populations of active and inactive ensembles caused by mutations in the 

C-terminus, specifically, mutations of residue 244, which should modify interactions with 

cAMP.

While the general mechanism of allostery for the cyclic-nucleotide binding domain is 

conformational selection, some elements of the mechanism appear to behave more like 

induced fit. Particularly notable in this regard are the interactions between the C-helix and 

cAMP, which generate multiple conformational states that are not sampled in the apo state, 

as compared to the motions of the individual signaling motifs that appear more similar to 

entropic mechanisms of allostery. Furthermore, in the context of activation of the full 

kinase, these mechanisms may change, as interaction with the catalytic subunit and the 

remaining portions of the regulatory subunit will almost certainly modulate the 

conformational ensemble of the cyclic-nucleotide binding domain. This work suggests that a 

clearer picture of the free-energy landscape, achieved through an integrated experimental 

and computational approach, is required to fully understand allosteric behavior.

Although a number of our conclusions were already observed experimentally, the power of 

our computational Markov-state-model-based approach is that it unifies multiple lines of 

existing experimental data into a single, cohesive framework and, thereby, achieves a more 

complete understanding of allostery. This approach builds on an emerging paradigm for 

understanding protein function and dynamics based on computational exploration and 

visualization of protein conformational ensembles and their underlying functional free-

energy landscapes in atomic detail.

Methods

System Preparation

Parameterization of cAMP—We parameterized cAMP for the MD simulations as a 

small organic molecule using the Generalized Amber Force Field (GAFF)53 to allow for 

consistent treatment of ligands in future studies. The coordinates for cAMP were taken from 

the 1RGS15 crystal structure. Partial atomic charges for cAMP were determined by single-

point energy calculations using Schrodinger’s QM module Jaguar (Suite 2012: Jaguar, 

version 7.9, Schrödinger, LLC, New York, NY, 2012) using Hartree-Fock level of theory 

and 6–311g** bases. GAFF atom types were assigned using antechamber54, and the 

parameters files were prepared with AMBER’s xleap.
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MD System Preparation—Using Schrodinger’s Maestro’s (Suite 2012: Maestro, version 

9.3, Schrödinger, LLC, New York, NY, 2012) PDB prep and the Desmond System Preparer, 

we prepared four systems for MD simulations, CBD-Apo and CBD-cAMP in both the active 

and inactive conformations. The heavy-atom atomic coordinates for the active and inactive 

conformations of CBD-Apo were taken for crystal structures 1RGS15 and 2QCS16 resides 

119 to 244, respectively. We added cAMP to the inactive conformation by aligning the 

cAMP-binding site of 1RGS and 2QCS and “cutting and pasting” the coordinates. For the 

CBD-Apo active conformation, the coordinates for cAMP were deleted from 1RGS. Within 

PBD prep, each system was capped to remove terminal charges, the systems were 

protonated at pH 7.0 with the pKa titratable residues determined with the Maestro-integrated 

PROPKA, and, due to the low resolution of 1RGS, all crystallographic waters were 

removed. Using the Desmond System Preparer, we solvated each system in a cubic water 

box using TIP3 waters55, counter ions, and 120 mM NaCl. No restraints were placed on 

cAMP.

Molecular Dynamics Simulations

System Parameterization—System coordinates from Maestro were converted into an 

xleap-readable format using in-house Python scripts. Each system was parameterized in 

xleap using the Amber99SB56 force field, and periodic boundary conditions were 

implemented.

GPU-enabled Molecular Dynamics Simulations—All systems were minimized and 

equilibrated using the GPU version of Amber1238–40. We minimized the system in four 

stages: 1) 500 steps of hydrogen-only minimization, 2) 500 steps of solvent minimization, 3) 

500 steps with only the backbone constrained, and 4) 5,000 steps of full minimization. We 

equilibrated the system using harmonic equilibration at 310K over four sequential 500 ps 

runs, decreasing the restraint potential on the backbone each step. GPU-enabled AMBER12 

production runs were carried out as an NTP ensemble at 310K and 1 bar with a 2 fs time-

step and partial mesh Ewald electrostatic approximation. MD input files are provided on 

dryad.org57.

Anton Molecular Dynamics Simulations—MD simulations on Anton37 were 

performed on the same parameterized, minimized, and equilibrated systems as GPU-enabled 

AMBER12 simulations. The Anton simulation was run in the NTP ensemble, using Anton’s 

Berendsen thermostat-barostat, at 310K and 1 bar with a 2 fs time-step and partial mesh 

Ewald electrostatic approximation.

Initial and Adaptive Sampling—We sampled the conformational ensemble from the 

equilibrated conformation of each system, starting each run with a different set of initial 

velocities. Supplementary Table 1 contains the total sampling time for each system used in 

this analysis.

In conjunction with model building, we performed multiple adaptive sampling runs. These 

runs were initiated from preliminary Markov state model conformational states with <3 

members. These conformational states corresponded to clustered regions of the 
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conformational ensemble poorly sampled by the MD simulations and, therefore, the 

transitions to and from those states were poorly sampled. For each under-sampled 

conformational state, one conformation was selected. From that conformation, three new 

10–15 ns MD simulations were run, each with a new initial velocity using GPU-enabled 

AMBER12. The short MD simulations were sufficient to explore the local conformational 

landscape and return to a local energy minimum.

Building Markov State Models

Trajectory Preparation—MD trajectories were processed using CPPTRAJ58 and 

VMD59. All frames were aligned using Cα of residues 153 to 199 and 211 to 223, the stable 

β-barrel, to crystallographic active conformation. The alignment provided a common 

reference frame to compare all conformations while maximizing the difference between 

conformations. The frame rate for the trajectories was unified to 120 ps due to different 

conformational sampling rates between the GPU-enabled AMBER12 (0.5 ps) and Anton 

(120 ps) MD simulations. The trajectories were converted into NAMD’s60 “.dcd” trajectory 

format for analysis with MSMBuilder2.

Building the Markov State Model—We used MSMBuilder232,42, release 2.51, to 

preform cluster analysis, Markov state model building, and Markov state model selection. 

To have a common set of microstates for both the CBD-Apo and CBD-cAMP systems, all 

trajectories were clustered together using the hybrid k-centers k-medoids clustering 

algorithm using the custom distance metric option to calculate RMSD without first 

performing an alignment on the atomic coordinates (an option not available in 

MSMBuilder2). MSMBuilder2 allows for refinement of clustering through refinement of 

frame membership within a cluster as well as global refinement of cluster generators. For 

our systems, we found that any refinement only made the space discretization worse, as 

determined by implied timescale plots. Therefore, we didn’t use any refinement options for 

our clustering. Markov state models were then built on the CBD-Apo and CBD-cAMP 

trajectories separately using cluster generators to assign state membership to each frame of 

the trajectories. When the best conformational landscape partition and lag time were 

determined (see discussion below), a final Markov state model was built using the maximal 

likelihood estimator option in MSMBuilder2.

Model Selection—For the Markov state model of the whole systems, we selected a 

clustering cut-off distance of 3.0 Å and a lag time of 80 steps or 9.6 ns. For consistency in 

comparing models, a lag time of 9.6 ns was used for all.

Markov State Model Visualization—The Markov state models were visualized using 

in-house Python scripts leveraging the publically available NetworkX module61.

Markov State Model Analysis

Equilibrium Population—The equilibrium population was determined from the first 

eigenvalue of the Markov state model’s transition probability matrix that corresponds to the 

equilibrium distribution of the conformational states.
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Transition Pathway Theory Analysis and Transition Pathway Theory 
Clustering—Transition pathway theory analysis was preformed using MSMBuilder2 

transition pathway theory scripts42. Total flux was calculated as described in Prinz et al.45. 

Transition-pathway-theory-based clustering was preformed using in-house Python scripts 

leveraging MSMBuilder2 modules. The script assigned transition pathway theory 

macrostates to each microstate of the original Markov state model based on the probability 

of transitioning to either the inactive or the active conformation (cut-off 50%). The 

conformational state assignments for each frame of the trajectories were reassigned using in-

house Python scripts and a new Markov state model based on the macrostate assignments 

was built with MSMBuilder2.

Markov Cluster Analysis Macrostate Models—Markov cluster analysis clustered the 

states of the Markov state model based on their kinetic relationships within the Markov state 

model using a random walk algorithm to determine local sinks in the Markov state model48. 

We performed the Markov cluster analysis using in-house Python scripts that assigned new 

Markov cluster analysis state assignments to the original state assignments and built a 

Markov state model. Additionally, we used MSMBuilders2’s PCCA+42 module to validate 

the division identified through Markov clustering.

Mean First Passage Time—Absolute MFPT between the putative functional microstates 

was calculated as described in Singhal et al.62.

Half-life—The half-life of coarse-grained microstates was calculated using a kinetic Monte 

Carlo scheme on the Markov state model’s transitions matrix as described in Shukla et al.63. 

Trajectories were generated by randomly selecting a starting state within a macrostate, then 

moving between states based on the transition’s probability as determined by the Markov 

state model. The passage time of the trajectory was the number of steps in the trajectory 

multiplied by the lag time (9.6 ns). The half-life was calculated by taking the average of 10 

median passage times from a collection of 1,000 trajectories.

Calculating Kinetics and Free Energies of the Conformational Landscape—
Assuming that transitioning out of one conformational state into its neighboring 

conformational states can be modeled as parallel reactions, we can treat the kinetics for the 

conformational changes between connected conformational states as first-order reactions. 

Therefore, we determined the rate constant using

where k in the first-order rate constant, p0 is the probability of starting in a given state (i.e., 

the starting concentration or 1), p1 is the probability of still being in that state at a given lag 

time (i.e., the concentration after a give time), and τ is the lag time (9.6 ns). The free energy 

of transition was calculated using Eyring’s equation as follows:
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where R is the gas constant, h is Plank’s constant, kB is Boltzmann’s gas constant, κ is the 

transmission coefficient assumed to be 1, T is temperature (310 K), and k is the rate constant 

calculated above.

The free energy of a single microstate was calculated using

where pi is the probability of a given microstate, pr is the probability of the reference 

microstate (the most probable microstate in the ensemble), R is the gas constant (0.0012 kcal 

mol−1 K−1), and T is temperature (310 K).64

Markov State Model Signaling Motifs

The Markov state models of the signaling motifs were built and analyzed using the same 

methods described above except we only used a subset of Cα. The residues used for the 

analysis of each subdomain were: 119 to 151 for the N3A motif, 199 to 211 for the 

phosphate-binding cassette, and 226 to 244 for the B/C helix. Markov state models were 

built with a clustering cut-off of 4.5 Å for the N3A motif, 1.5 Å for the phosphate-binding 

cassette, and 4.5 Å for the B/C helix. The lag time used was 9.6 ns.

Data Sharing

MD trajectories, sample MD input scripts, and the Markov state model analysis scripts are 

available for download through datadryad.org57.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimentally Determined Conformational Changes in the Cyclic-nucleotide Binding 
Domain
(RIα aa. 119 to 244) in cAMP bound active, right, and holoenzyme inactive, left, with key 

signaling structural sub-domains highlighted: phosphate binding cassette (PBC) – red, B/C 

helix – Ice blue, and N3A motif – ochre.
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Figure 2. Overlay of Markov State Models State Graphs for the Cyclic-nucleotide Binding 
Domain with (CBD-cAMP, magenta) and without (CBD-Apo, cyan) cAMP bound
The position of each conformational state node is the RMSD of the generator of each cluster 

relative to the reference conformations. The diameter of each conformational state node 

(cyan, magenta) is proportional to the relative the log of the equilibrium population. (i.e. The 

lager the node the more probable the state at equilibrium.) Cyan and magenta nodes are 

transparent; therefore dark purple nodes represent nodes that have occupancy in both CBD-

Apo and CBD-cAMP Markov state models (i.e., dark purple nodes overlap).
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Figure 3. Equilibrium Probability Density Surfaces for CBD-Apo and CBD-cAMP at 66%, 95%, 
and 99.9% Cutoffs
The surfaces correspond to the probability density surface for each residues alpha carbon. 

Densities contributed from key structural subdomains are colored: phosphate binding 

cassette (PBC) – red, B/C helix – Ice blue, and N3A motif – ochre. See figure 1 for 

description of CBD representations.
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Figure 4. Selected Difference Surfaces Between Equilibrium Probability Densities of CBD-Apo 
and CBD-cAMP
A) The different surface for 10% or more density for the N3A Motif of CBD-Apo over 

CDB-cAMP. Arrows indicate interface between PKA’s catalytic and regulatory subunits B) 

The different surface for 1% or more density for the B/C Helix of CBD-Apo over CDB-

cAMP.
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Figure 5. Comparison of Conformational State Assignment for Kinetic and Functional Coarse-
Grain Models
Conformational state meta-stable states for the first/slowed motions in the kinetic coarse-

grain Markov state model graph are colored below according to macrostate membership 

(red, white). Functional coarse-grain models are colored either white or maroon, depending 

on whether the state “would go” to the active or inactive conformations, respectively.
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Figure 6. Overlay of Markov State Model Conformational State Graphs for the Sub-Domains of 
Cyclic-nucleotide Binding Domain with (CBD-cAMP, magenta) and without (CBD-Apo, cyan) 
cAMP Bound
Markov state models conformational state graphs use the same conventions defined in 

Figure 2.
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Table 1

Mean First Passage Time Between Putative Functional Microstates.

Without cAMP With cAMP

System A→I A←I A→I A←I

CBD 16.1 µs 34.0 µs 83.7 µs 30.3 µs

PBC 2.9 µs 0.9 µs 4.9 µs 0.2 µs

B/C Helix 8.2 µs 13.4 µs 24.3 µs 10.6 µs

N3A 1.3 µs 2.9 µs 2.2 µs 1.6 µs
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