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Abstract

Motor recovery after stroke relies on functional reorganization of the motor network,

which is commonly assessed via functional magnetic resonance imaging (fMRI)-based

resting-state functional connectivity (rsFC) or task-related effective connectivity (trEC).

Measures of either connectivity mode have been shown to successfully explain

motor impairment post-stroke, posing the question whether motor impairment is

more closely reflected by rsFC or trEC. Moreover, highly similar changes in

ipsilesional and interhemispheric motor network connectivity have been reported for

both rsFC and trEC after stroke, suggesting that altered rsFC and trEC may capture

similar aspects of information integration in the motor network reflecting principle,

state-independent mechanisms of network reorganization rather than state-specific

compensation strategies. To address this question, we conducted the first direct

comparison of rsFC and trEC in a sample of early subacute stroke patients (n = 26,

included on average 7.3 days post-stroke). We found that both rsFC and trEC

explained motor impairment across patients, stressing the clinical potential of fMRI-

based connectivity. Importantly, intrahemispheric connectivity between ipsilesional

M1 and premotor areas depended on the activation state, whereas interhemispheric

connectivity between homologs was state-independent. From a mechanistic perspec-

tive, our results may thus arise from two distinct aspects of motor network plasticity:

task-specific compensation within the ipsilesional hemisphere and a more fundamen-

tal form of reorganization between hemispheres.
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1 | INTRODUCTION

Motor recovery after stroke relies on various intra- and inter-

hemispheric processes aiming at compensating the loss of specialized

neural tissue, commonly referred to as functional reorganization

(Cramer, 2008). In humans, cerebral reorganization can be assessed by

functional magnetic resonance imaging (fMRI) and specifically by the

analysis of connectivity, that is, changes in inter-regional interactions

(Grefkes & Fink, 2014). In particular, two fMRI-based connectivity

approaches have frequently revealed changes in the motor network
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after stroke: resting-state functional connectivity (rsFC) and task-related

effective connectivity (trEC). rsFC is typically estimated via temporal

correlations between time series of different brain regions recorded

at rest. It can be easily acquired even in severely affected patients,

but is highly susceptible to confounds such as head motion (Power

et al., 2014; Thiel & Vahdat, 2015). trEC describes the causal influence

one brain region exerts on another (Friston, 1994). It is commonly

estimated during task performance using Dynamic Causal Modeling

(DCM), a model-based framework conceptualizing connectivity as

directed facilitatory or inhibitory influences (Buxton, Wong, & Frank,

1998; Friston, Harrison, & Penny, 2003; Stephan & Friston, 2010).

While trEC enables more specific insights regarding the nature of con-

nectivity and causality, results are highly task- and model-dependent,

which may limit their generalizability (Friston et al., 2003).

Assessing motor network connectivity during unilateral hand

movements in healthy subjects, DCM has repetitively shown positive,

excitatory coupling from bilateral premotor areas onto the primary

motor cortex (M1) contralateral to the moving hand and negative,

inhibitory coupling from the contralateral to the ipsilateral M1 (Grefkes,

Eickhoff, Nowak, Dafotakis, & Fink, 2008; Pool, Rehme, Fink,

Eickhoff, & Grefkes, 2013; Rehme, Eickhoff, Wang, Fink, & Grefkes,

2011; Volz, Sarfeld, et al., 2015). In the acute and subacute phase post-

stroke, the excitatory influence from ipsilesional premotor areas onto

ipsilesional M1 has been reported to be reduced, resulting in decreased

excitation of the ipsilesional M1 during paretic hand movements

(Rehme, Eickhoff, et al., 2011). Moreover, the inhibitory influences typi-

cally observed from ipsilesional M1 and premotor areas onto contra-

lesional M1 were attenuated (Rehme, Eickhoff, et al., 2011).

Importantly, altered trEC has been linked to stroke-induced motor

impairment: ipsilesional influences of premotor areas on M1 and inter-

hemispheric inputs onto contralesional M1 were related to motor per-

formance and functional recovery (Grefkes et al., 2010; Grefkes &

Ward, 2014; Rehme, Eickhoff, et al., 2011; Volz, Sarfeld, et al., 2015).

Motor network alterations assessed via rsFC feature a characteristic

time-course of changes deemed to reflect functional reorganization

(Grefkes & Fink, 2014). Interhemispheric rsFC between bilateral motor

areas, especially between bilateral M1, first decreases and subsequently

re-increases alongside functional recovery, thereby resembling inter-

hemispheric trEC changes (Carter et al., 2009, 2012; Golestani,

Tymchuk, Demchuk, & Goodyear, 2013; Park et al., 2011; van Meer

et al., 2010, 2012; Zheng et al., 2016). Moreover, increased rsFC

between ipsilesional premotor areas and M1 has been found post-

stroke and has also been linked to behavioral performance in line with

findings obtained from DCM studies (Lee et al., 2017; Rehme, Volz,

Feis, Bomilcar-Focke, et al., 2015; Volz et al., 2016).

In summary, both approaches highlight changes in ipsilesional

premotor–M1 as well as interhemispheric motor network connectivity

in the subacute phase post-stroke that relate to motor performance

of the paretic hand. However, it remains unclear whether rsFC or trEC

is better suited to explain motor impairment in (sub)acute stroke with

implications for potential clinical applications. From a mechanistic per-

spective, the similarity of post-stroke changes in motor network con-

nectivity between rsFC and trEC leads to the question whether some

fundamental aspects of stroke-induced changes in information inte-

gration may be similarly captured during rest and task-performance,

that is, in a state-independent fashion by both rsFC and trEC. Con-

versely, both approaches probe the brain during vastly different physi-

ological states: while rsFC describes the brain during wakeful rest,

trEC reflects network interactions underlying the performance of a

given task, resulting in largely unrelated motor network rsFC and trEC

in healthy subjects (Rehme, Eickhoff, & Grefkes, 2013).

To address these questions, we here for the first time directly com-

pared rsFC and trEC in a group of 26 acute to early subacute stroke

patients tested within the first two weeks post-stroke. First, we probed

the potential of both connectivity approaches to explain variance in

motor impairment. Considering that trEC-estimates are based on data

recorded during the performance of an active motor task, we expected

trEC to be more closely related to motor performance than rsFC. Next,

we assessed which aspects of both connectivity approaches were best

suited to explain motor performance. Considering previous findings

after stroke, we hypothesized that interhemispheric M1–M1 connectivity

would be particularly relevant for both rsFC and trEC (Carter et al., 2009,

2012; Golestani et al., 2013; Park et al., 2011; van Meer et al., 2010,

2012; Zheng et al., 2016), while the driving input from ipsilesional

premotor areas onto the affected M1 should be of particular importance

for trEC (Grefkes et al., 2010; Grefkes & Ward, 2014; Rehme, Eickhoff,

et al., 2011; Volz, Sarfeld, et al., 2015).

Second, we tested for an association between rsFC and trEC: If

rsFC and trEC indeed reflected similar state-general aspects of informa-

tion integration within the stroke-afflicted motor network, we would

expect rsFC and trEC to be associated across patients. In particular,

connections that typically exhibit stroke-induced alterations at rest and

during task performance such as ipsilateral premotor–M1 and inter-

hemispheric M1–M1 may show similar changes and may thus be asso-

ciated across patients. Finally, aiming to disentangle whether

differences between rsFC and trEC can be ascribed to the activation

state (task vs. rest) or the connectivity mode (functional vs. effective),

we additionally computed task-related functional connectivity (trFC). If

motor network changes observed after stroke were primarily driven by

the activity state of the brain, we would expect trFC and trEC to be

associated across patients. Alternatively, if connectivity estimates were

rather mode-dependent than state-dependent, that is, assuming that

the methodological approach used to compute connectivity heavily

impacted our observations, one would expect to find a correlation

between trFC and rsFC. Besides further elucidating the clinical poten-

tial of fMRI-based motor network connectivity estimates as biomarkers

reflecting motor impairment, our findings help to more accurately inter-

pret the commonly observed changes in rsFC and trEC after stroke.

2 | METHODS

2.1 | Data set

fMRI data analyzed here were initially obtained to assess the longitu-

dinal effect of repeated intermittent theta-burst-stimulation (iTBS) on
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the recovery of hand function and motor network reorganization

(Volz et al., 2016). To rule out any confounding effects of the iTBS-

intervention, we here only analyzed data obtained at baseline, that is,

before iTBS was applied.

2.2 | Participants

Twenty-six first-ever ischemic stroke patients (mean age = 67 years,

SD = 13, 9 females, 22 right-handed) were recruited from the Univer-

sity Hospital of Cologne, Department of Neurology (see Table S1 for

demographic and lesion information). Inclusion criteria comprised age

between 40 and 90 years, ischemic stroke as verified by diffusion-

weighted magnetic resonance imaging (DWI) with a symptom onset

within the past 2 weeks (average: 7.3 days ±3.6, one patient was

included 16 days after stroke), unilateral hand motor impairment, no

lesions affecting M1 hand representation or other cortical areas used

in the network analysis, no severe aphasia, apraxia, or neglect, no

visual field deficits or other neurological disorders. Exclusion criteria

were defined as any contraindications to transcranial magnetic stimu-

lation or MRI, infarcts in multiple territories, and hemorrhagic stroke.

The study was carried out under the Declaration of Helsinki and had

been approved by the local ethics committee of the University of

Cologne. All subjects provided informed consent.

2.3 | Data acquisition

Participants underwent fMRI scans consisting of a resting-state

sequence of 7 min and the subsequent performance of an active

motor task. During the motor task, participants performed 20 blocks

of unimanual rhythmically paced fist-closures. Each block lasted for

15 s, interrupted by breaks of 15 s (plus a temporal jitter of 1–2.5 s).

Left- or right-hand-use was randomized across blocks.

Motor performance was assessed on the day of the fMRI scan

using three different behavioral measures. First, as a robust parameter

of basal hand motor performance, relative grip strength was deter-

mined as the ratio between the maximum grip strength of the affected

and unaffected hand. We further included the Jebsen Taylor Test

of Hand Function (JTT, Jebsen, Taylor, Trieschmann, Trotter, &

Howard, 1969) and the Action Research Arm Test (ARAT, Lyle, 1981)

as representations of more complex upper limb motor skills. For the

JTT, each subtest was timed with a maximum time limit of 120 s,

which was also assigned in case a subtask could not be performed

(Duncan et al., 1998). In line with previous work (Rehme, Fink, von

Cramon, & Grefkes, 2011), we computed a composite motor score by

extracting the first principal component from a principal component

analysis (PCA) comprising relative grip strength, ARAT, and JTT scores

(explained variance by the first component = 90.95%), resulting in

a measure that generalizes across different aspects of hand motor

function with higher motor scores reflecting better performance.

fMRI data were recorded using a Siemens Trio 3.0 Tesla scanner

(Siemens Medical Solutions, Erlangen, Germany). Resting-state images

were acquired using a gradient-echo-planar (EPI) imaging sequence

with the following parameters: repetition time (TR) = 2,200 ms, echo

time (TE) = 30 ms, field of view (FOV) = 200 mm, 33 slices, voxel size:

3.1 � 3.1 � 3.1 mm3, 20% distance factor, flip angle = 90�, 184

volumes. EPI volumes during the motor task were recorded using the

same parameters for a total of 283 volumes. The slices covered

the whole brain extending from the vertex to lower parts of the

cerebellum. DWI were recorded to determine the localization and

extent of acute stroke lesions (TR = 5,100 ms, TE = 104 ms,

FOV = 230 mm, 30 slices, voxel size = 1.8 � 1.8 � 3.0 mm3).

2.4 | Processing of fMRI data

Preprocessing of all fMRI-sequences was carried out using Statistical

Parametric Mapping (SPM, The Wellcome Centre for Human Neuroim-

aging, London, UK, http://www.fil.ion.ucl.ac.uk/). Scans of six patients

with right-hemispheric lesions were flipped along the mid-sagittal plane

to ensure that all lesions were consistently located in the left hemi-

sphere. The first four EPIs of each session were discarded as dummy

images. The remaining volumes were realigned to the mean image of

each time series. Based on the DWI showing the greatest lesion extent,

we created lesion masks using MRIcron (www.sph.sc.edu/comd/

rorden/MRicron), which were applied to the functional images. The

DWI and lesion masks were co-registered with the realigned EPI

images. Spatial normalization to the standard template of the Montreal

Neurological Institute (MNI) was achieved through unified segmenta-

tion (Ashburner & Friston, 2005). Images were spatially smoothed using

an isotropic Gaussian kernel of 8 mm full-width-at-half-maximum

(FWHM).

Smoothed EPIs of the fMRI motor task time series were tempo-

rally high-pass filtered at 1/128 s. For the first-level analysis, a general

linear model (GLM) using box-car vectors for the three experimental

conditions (affected hand movement, unaffected hand movement,

visual instructions) convolved with a canonical hemodynamic

response function was used. Realignment parameters were included

as covariates to reduce movement-related variance. For the second-

level analysis, the first-level parameter estimates of the conditions

“movement of the affected hand” and “movement of the unaffected

hand” were entered into a full-factorial design with the within-subject

factor “hand” (levels: unaffected vs. affected). The significance thres-

hold for voxel-wise activation was set to T > 5.1 (p < .05, family-wise

error-corrected at the voxel-level).

While trying to keep the preprocessing of resting-state and task-

based fMRI data as similar as possible, several methodological idiosyn-

crasies resulted in subtle differences between both approaches. To

remove variance attributable to known confounds from the resting-

state time series, we included the six head motion parameters, their

squared values and their first-order derivatives, as well as the mean-

centered global gray matter, white matter, and cerebrospinal fluid

signal intensities per time point obtained by averaging across tissue-

class-specific voxels and their squared values as confound regressors

into the analysis (Power et al., 2014; Satterthwaite et al., 2013).
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Of note, for our primary analyses we did not use PCA-denoising to

minimize preprocessing differences of resting-state and task-related

data. A temporal bandpass filter was applied, retaining only frequen-

cies between 0.01 and 0.08 Hz (Biswal, Zerrin Yetkin, Haughton, &

Hyde, 1995; Fox & Raichle, 2007). To probe for the robustness of our

results, we repeated our analyses (a) with PCA-denoising, using the

first five principal components extracted by means of a PCA as regres-

sors and (b) without global signal regression (GSR).

2.5 | Estimation of task-related effective
connectivity

The analysis of trEC was carried out using DCM as implemented in

SPM 12 (SPM12, The Wellcome Centre for Human Neuroimaging,

London, UK, http://www.fil.ion.ucl.ac.uk/). DCM treats the brain as a

deterministic and dynamic system in which inputs, that is, experimen-

tal conditions, cause the system to enter a specific state, which hence

generates a certain output, that is, the local blood-oxygen-level-

dependent signal (Friston et al., 2003). The following bilinear differen-

tial state equation expresses state changes over time:

dz
dt

¼ Aþ
Xm
j¼1

uj B
jð Þ

" #
zþCu

Z represents the neuronal state the system is in, u stands for the

experimental input, and A, B, and C are matrices containing the

coupling parameters, that is, the rates of change in neuronal popula-

tion activity that arise from synaptic influences (Stephan et al., 2010;

Stephan & Friston, 2010). More specifically, matrix A contains the

endogenous connectivity inherent to the system in the absence of

external perturbations. Matrix B captures the state changes elicited

by external inputs such as experimental conditions, while matrix C

contains the corresponding extrinsic influences. Thus, in our case,

there were two DCM-B-matrices, one capturing changes elicited by

affected hand movements and the other capturing changes related to

unaffected hand movements. Of note, DCM is a hypothesis-driven

technique that relies on a priori assumptions about the relevant brain

regions involved. As computational constraints limit the maximum

number of regions, we focused on regions highlighted as essential for

the motor recovery process after stroke: bilateral M1, supplementary

motor area (SMA), and ventral premotor cortex (PMv) (Grefkes, Nowak,

et al., 2008; Grefkes et al., 2010; Rehme, Eickhoff, et al., 2011).

For each region of interest (ROI), we extracted the first

eigenvariate of the time series adjusted for effects of interest within a

10 mm sphere around the local activation maximum (see Table S2 for

the subject-specific VOI coordinates). The regions were determined

individually for each subject by superimposing the subject-specific

activation maps showing the contrasts “movement of the unaffected

hand vs. rest” for regions in the right hemisphere and “movement of

the affected hand vs. rest” for regions in the left hemisphere on

a corresponding T1-weighted image. In line with previous work,

definition of local activation maxima was aided by anatomical land-

marks (Rehme, Eickhoff, et al., 2011; Volz, Sarfeld, et al., 2015): M1

on the rostral wall of the central sulcus (“hand knob formation”)
(Yousry, 1997), SMA on the medial wall within the interhemispheric

fissure between the paracentral lobule and the coronal plane running

through the anterior commissure (Picard & Strick, 2001), and PMv

near the inferior precentral gyrus and pars opercularis (Rizzolatti,

Fogassi, & Gallese, 2002). Determining individual ROIs via the local

activation maximum enabled us to rule out that ROIs fell into lesioned

and therefore no longer functional brain areas.

We computed a total of 44 DCMs that differed concerning their

task-related DCM-B matrix, while the fully connected endogenous

DCM-A matrix remained constant (Rehme, Eickhoff, et al., 2011;

Volz, Sarfeld, et al., 2015). Driving inputs were set on the premotor

regions, that is, bilateral SMA and PMv, and the DCM-C matrix was

designed accordingly. We generated 44 models differing in task-

related connectivity structures (i.e., DCM-B matrix, cf. Figure S1),

grouped into four model families differing in terms of lateralization

and directionality: (a) nonlateralized/bidirectional, (b) lateralized/

bidirectional, (c) non-lateralized/unidirectional, and (d) lateralized/

bidirectional. Directionality specified whether M1 only received

inputs (unidirectional) or whether there was a feedback onto

premotor areas (bidirectional). Lateralization described whether con-

nections targeting bilateral M1 were present in the DCM-B matrix

for movements of each hand (nonlateralized) or whether only the

M1 contralateral to the moving hand was assumed to interact with

premotor areas (lateralized).

To determine the model with the best balance between model fit

and generalizability (“winning model”), we performed a Bayesian

Model Selection (BMS) random effects analysis across all 44 models

(Stephan, Penny, Daunizeau, Moran, & Friston, 2009). Additionally,

Bayesian Model Averaging (BMA) was carried out for the model family

showing the highest family-wise exceedance probability, and the

resulting estimates were entered into a BMS to determine the most

suitable model family for the given data. Connections were tested for

significance using one-sample t-tests (p < .05, false discovery rate

(FDR)-corrected for multiple comparisons).

2.6 | Estimation of resting-state functional
connectivity

rsFC was computed as seed-to-seed correlations between the same

motor regions as included in the DCM analysis, using identical individ-

ual regional coordinates to allow for comparisons with interregional

DCM coupling parameters (Rehme et al., 2013). We used the same

approach as defined in the DCM analysis to extract the first

eigenvariate within a 10 mm sphere around each seed voxel. Next,

we computed Pearson correlations between the time series of all

region pairs. The resulting correlation coefficients were Fisher's

Z-transformed using the formula Z¼1=2� ln 1þ r½ �= 1� r½ �ð Þ¼ atanh rð Þ
(Biswal et al., 1995) and tested for significance through one-sample

t-tests (p< .05, FDR-corrected).
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2.7 | Estimation of task-related functional
connectivity

We computed trFC as seed-to-seed correlations between all possible

region pairs individually for each subject. Based on the same coordi-

nates as defined in the DCM- and resting-state analyses, we extracted

the first eigenvariate from the time series of each ROI recorded during

movement of the affected hand. Pearson correlations were computed

on a single-subject level and Fisher's Z-transformed (Biswal et al.,

1995). Significance was tested across subjects through one-sample

t-tests (p < .05, FDR-corrected).

2.8 | Explaining motor impairment through
connectivity estimates

To assess the relationship between connectivity measures and behav-

ioral performance, we computed Spearman rank correlations between

measures of rsFC as well as trEC (i.e., coupling parameters of the

DCM-B-affected as well as DCM-B-unaffected matrix) and the

composite motor score, as well as the individual motor scores.

Next, we tested to which extent rsFC and trEC explained variance

in behavioral performance. We, therefore, computed multiple linear

backward regression models with elimination based on the Bayesian

information criterion (BIC, k = log(n) with n = 26), using the compos-

ite motor score as the outcome variable and either rsFC or trEC mea-

sures as predictors. We chose to base the selection of model

predictors on the BIC rather than the AIC as the BIC allowed us to

account for the relatively small sample size. With respect to the con-

nectivity measures, we decided to focus on connections that have

been shown to play a major role in motor network reorganization post

stroke, that is, connections between bilateral premotor areas and

affected M1 as well as interhemispheric connectivity between bilat-

eral M1. Ideally, one would start the backward elimination process

with the same number of connectivity measures in the trEC as in the

rsFC-model. However, as trEC is directional whereas rsFC is non-

directional, trEC is expressed by two values per region pair, while rsFC

only provides one value per region pair. As a result, the trEC starting

model automatically contains twice as many values as the rsFC model.

In our case, this meant that we started with one model with 10 trEC-

coupling parameters and a second model with five rsFC-z-values. To

ensure that a potential superiority of the trEC-based model was not

merely driven by the difference in dimensionality, we repeated

the rsFC-backward regression using a starting model with all 15 rsFC-

measures. Moreover, to fully capture the potential of the trEC-based

model given its higher granularity and number of connectivity esti-

mates, we computed a trEC-based stepwise backward regression

starting with all coupling parameters linked to either of the two M1.

To minimize the likelihood of overfitting, model performance was

compared via BIC values, penalizing model complexity.

Of note, using backward regression models for a comparison

of different connectivity methods has two significant limitations:

First, potential multicollinearity of predictor variables may render

inference about the influence of individual connections difficult. Sec-

ond, as described above, the fact that trEC is directional while rsFC is

nondirectional results in a higher number of trEC measures, that is, a

higher number of predictors for the corresponding starting model,

hindering an unbiased comparison of the explanatory power of rsFC

and trEC. To circumvent these limitations, we performed dimensional-

ity reduction for rsFC and trEC by means of PCA, thereby translating

measures of both connectivity types into an equal amount of

meaningful, independent components. Three separate PCAs were cal-

culated for rsFC as well as trEC, representing (a) ipsilesional,

(b) contralesional, and (c) interhemispheric connections separately for

rsFC and trEC (cf. Figure 1). Next, the estimated factor scores of the

first principal components were used as predictors in the multiple lin-

ear regression models. First, each component was entered separately

as a predictor to assess how much variance could be explained by

each component individually. In other words, we computed three sep-

arate simple linear regressions for the rsFC-components and another

three for the trEC-components. In a next step, multiple linear regres-

sion models were estimated, including the three first principal compo-

nents of rsFC or trEC, respectively.

2.9 | Association of functional and effective
connectivity

We assessed the relationship of rsFC, trEC, and trFC by computing

Spearman rank correlations between the three DCM-matrices, the

resting-state Z-values and the task-related Z-values for corresponding

region pairs. We primarily used coupling parameters of the fully con-

nected DCM-model as its B-matrix contains all connections present in

the resting-state network. To ensure the reliability of our findings, we

repeated the correlation analysis using (a) the winning model of the

BMS, (b) the BMA results of the winning family, as well as resting-

state Z-values obtained (c) without GSR and (d) with PCA-denoising.

We assessed the significance of the resulting correlation coefficients

by performing one-sample t-tests (p < .05, FDR-corrected).

3 | RESULTS

3.1 | Group-level motor network connectivity

Significant rsFC and trEC group-level averages are shown in Figure 2

and Figure S2. On the group-level, almost all rsFC connections

reached statistical significance, resulting in a densely connected

resting-state motor network (Figure 2a). DCM group results revealed

facilitatory influences from bilateral premotor areas onto the

ipsilesional M1 and inhibition from ipsilesional M1 onto premotor

areas (Figure 2b) during movements of the paretic hand in line with

previous findings (Diekhoff-Krebs et al., 2017; Rehme, Eickhoff,

et al., 2011).
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3.2 | Motor impairment and connectivity:
Correlation analyses

To address whether specific connections were indicative of motor

performance after stroke, Spearman rank correlations were computed

to probe for a relationship between the composite motor score with

resting-state Z-values as well as coupling parameters modulated

during hand movements of the affected or unaffected hand. No signif-

icant correlations were observed between rsFC or trEC and motor

impairment (p > .1, FDR-corrected). Of note, highly similar results

were obtained when repeating these analyses using individual

behavioral scores (relative grip strength, ARAT, and JTT scores) rather

than the composite motor score.

3.3 | Motor impairment and connectivity: Multiple
linear backward regression

As single rsFC or trEC connections were not indicative of motor

impairment across patients, multiple linear backward regression

models were used to combine information from various connections

across the motor network. Regression models obtained through

F IGURE 2 Group-level connectivity. Significant connections of the (a) resting-state Z-values and (b) DCM-coupling parameters during
movement of the affected hand (DCM-B-affected matrix of the fully connected model), p < .05, FDR-corrected for multiple comparisons. The
displayed values are group-level averages across patients. Missing connections between the displayed cortical regions did not reach significance
after FDR-correction. DCM, dynamic causal modeling

F IGURE 1 Principal components derived via PCA. The figure shows all connections that were summarized via PCAs. For the ipsilesional
component, we used all connections between M1, SMA and PMv within the affected hemisphere, that is, three measures in case of rsFC and six
measures in case of trEC. The interhemispheric component was derived from all interhemispheric connections, that is, from 9 measures in case of
rsFC and 18 in case of trEC. For the contralesional component, all connections between M1, SMA and PMv within the unaffected hemisphere
were used, that is, three measures in case of rsFC and six in case of trEC. DCM, dynamic causal modeling; PCA, principal component analysis;
PMv, ventral premotor cortex; rsFC, resting-state functional connectivity; SMA, supplementary motor area; trEC, task-related effective
connectivity
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stepwise backward elimination (starting with all premotor–M1 and

the interhemispheric M1–M1 connection, that is, 10 trEC or 5 rsFC-

measures) reached statistical significance for both rsFC and trEC

(p < .05; see Figure 3). Specifically, the rsFC-model yielded 33.49%

explained variance (p = .009, adjusted R2 = 27.71%, BIC = 24.25),

while the trEC-based model explained 55.41% (p = .001, adjusted

R2 = 46.92%, BIC = 20.37). Interestingly, the final rsFC-model con-

tained only two ipsilesional premotor–M1 connections, highlighting

the role of premotor–M1 connectivity within the affected hemisphere

(see Equation (1)) early after stroke. While those connections were

also included in the resulting trEC-model, it further comprised the

interhemispheric M1–M1 connection (see Equation (2)). These find-

ings are well in line with previous findings that stress the importance

of those connections for stroke recovery.

Motor score¼�2:5M1a�SMAa�1:9M1a�PMvaþ1:2 ð1Þ

Motor score¼�2:2M1a�PMvaþ2:3 SMAa�M1aþ2:9PMva

�M1aþ4:4M1a�M1u�1:2
ð2Þ

Given the higher adjusted R2 as well as the lower BIC-value of

the final trEC-based model compared to the rsFC-based model, it

seems like trEC may be more indicative of motor impairment than

resting-state connectivity. To rule out that this finding was driven by

the higher number of connectivity measures in the trEC-starting

model (10 for trEC vs. 5 for rsFC), we computed an additional back-

ward regression containing all 15 rsFC-measures in the initial model.

The resulting model explained 62.67% of behavioral variance

(p = .006), thereby outperforming the trEC-based model. However,

when adjusting for the number of connections in the final model, it

performed on a similar level as the trEC-based model according to the

adjusted R2-value of 48.14% while featuring a higher, that is, worse,

BIC (BIC = 25.52). Last, to better capture the full potential of trEC,

we computed a trEC-based backward regression starting with 18 con-

nections that yielded an explained variance of 82.25% (p < .001,

adjusted R2 = 70.42%, BIC = 15.97).

In summary, multiple linear backward regression models signifi-

cantly explained variance in motor impairment across patients for

both rsFC and trEC. While for rsFC premotor–M1 connections within

the affected hemisphere were sufficient, trEC premotor–M1 coupling

parameters and interhemispheric connectivity between bilateral M1

were needed to explain motor impairment.

3.4 | Dimensionality reduction via PCA: Regression
results

As highlighted by the backward regression results, a direct comparison

between trEC and trFC is hindered by a differing number of connec-

tivity measures per region pair. Thus, we condensed trEC and rsFC

into three components each (cf. Figure 1), reflecting ipsilesional, con-

tralesional, and interhemispheric connectivity by performing dimen-

sionality reduction via PCA. The six resulting principal components

were entered into linear regression models to explain the composite

motor score (see Figure 4 for the explained variance of the individual

components). Significant results were exclusively obtained for compo-

nents derived from rsFC scores: While the principal component of the

ipsilesional rsFC values reached 26.98% explained variance (p = .007),

the interhemispheric component accounted for 21.32% when entered

individually into the regression model (p = .018). The remaining com-

ponents did not result in significant regression models. Concerning

the overall model including all three principal components, rsFC scores

explained 29.35% of variance (p = .050), while the model based on

trEC did not reach significance. In other words, for rsFC, ipsilesional

premotor–M1 connectivity and interhemispheric connectivity could

be aggregated to explain motor impairment, while trEC of each cate-

gory did not sufficiently explain behavioral variance across patients.

F IGURE 3 Results of the stepwise backward regression. Connections included in the resulting models are displayed with corresponding
weights. Both models were able to explain behavioral variance as indicated by the overall model significance (rsFC-based regression model:
R2 = 33.49%, adjusted R2 = 27.71%, p = .009, BIC = 24.25; trEC-based regression model: R2 = 55.41%, adjusted R2 = 46.92%, p = .001,
BIC = 20.37). The connections that remain after backwards elimination are mostly ipsilesional premotor–M1 connections and the
interhemispheric M1–M1 connection in case of trEC. rsFC, resting-state functional connectivity; trEC, task-related effective connectivity
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3.5 | Comparison of functional and effective
connectivity

DCM parameters and resting-state Z-values of the cortical motor net-

work were not significantly correlated (cf. Figure 5). To exclude that

this result stemmed from using the fully connected DCM model or a

specific resting-state preprocessing approach, we repeated the corre-

lation analyses for (a) the winning model of the BMS, (b) average con-

nection parameters obtained from the BMA procedure of the winning

model family (i.e., Family 1), and resting-state Z-values obtained

(c) with PCA-denoising and (d) without GSR. For all of these analyses,

no significant correlations were observed between trEC and rsFC

except for the interhemispheric M1a–PMvu connection, which

showed an association between rsFC and trEC values of the DCM-A

matrix when using resting-state Z-values obtained without GSR

(cf. Figure S3 for correlations of the alternative models).

rsFC and trFC showed significant correlations for the inter-

hemispheric connections of homolog region pairs, while no significant

correlations were observed for trFC and trEC (cf. Figure 5, Figure S4).

Thus, these results are in line with a mode-dependence of similarity in

connectivity after stroke.

4 | DISCUSSION

In the present study, we conducted the first direct comparison of motor

network rsFC and trEC in the early subacute stage after stroke. In line

with our hypothesis, trEC was superior in explaining variance in motor

performance when capitalizing on its richer informational complexity

(i.e., higher number of connections) compared to rsFC. However, when

balancing model complexity (i.e., using a similar number of connections),

both frameworks explained motor impairment to a similar degree across

patients. In line with previous findings, a combination of ipsilesional

premotor–M1 connections and interhemispheric M1–M1 connectivity

explained behavioral variance. As trEC and rsFC were unrelated for intra-

hemispheric as well as most interhemispheric connections, our findings

suggest that rsFC and trEC reflect distinct aspects of information integra-

tion in the lesioned motor network after stroke, potentially hinting at dis-

tinct roles in motor network reorganization. Moreover, the significant

associations observed between interhemispheric trFC and rsFC suggest

that interhemispheric information integration after stroke might occur in

a state-independent fashion, while ipsilesional premotor–M1 connectiv-

ity post-stroke seems to be state-dependent. Thus, our findings suggest

two distinct aspects of functional network reorganization: (a) task-

specific compensation via premotor–M1 in the ipsilesional hemisphere

and (b) a more fundamental (i.e., task-independent) change in the inter-

hemispheric interaction of motor homologs.

4.1 | Explaining motor impairment via resting-state
vs. task-related connectivity

Both trEC and rsFC significantly explained motor performance,

stressing the relevance of functional data as an indicator of motor

F IGURE 4 Explained motor impairment by individual PCA components. Values within the arrows indicate how much behavioral variance was
explained when entering just the respective component into a regression model to predict motor performance. Orange arrows indicate a significant
model; blue arrows indicate non-significance (significance threshold: p < .05). The combined R2 denotes explanation of variance when entering all three
components simultaneously into a regression model. Hence, the first principal component derived from the three ipsilesional rsFC-measures, as well as
the first principal component derived from interhemispheric rsFC-measures significantly explained motor impairment. In general, regression models with
PCA components based on resting-state connectivity yielded better results than PCA components based on DCM-coupling parameters, which failed to
reach significance. DCM, dynamic causal modeling; PCA, principal component analysis; rsFC, resting-state functional connectivity
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impairment, well in line with previous studies (Baldassarre et al., 2016;

Carter et al., 2009; Rehme, Volz, Feis, Eickhoff, et al., 2015; Rehme,

Volz, Feis, Bomilcar-Focke, et al., 2015; van Meer et al., 2010; Volz,

Sarfeld, et al., 2015). Directly comparing the propensity of rsFC and

trEC to explain variance in motor impairment, the trEC-based regres-

sion model yielded higher explained variance and superior model evi-

dence, as reflected by BIC (cf. Figure 3). However, the considerable

difference in model complexity arising from the distinct number of

rsFC and trEC connections renders a direct comparison of both

models difficult. Accordingly, when including all rsFC connections and

thus increasing their number above the number of trEC connections,

the rsFC-based model somewhat surprisingly explained behavioral

variance to a similar extent compared to the trEC-based model, yet at

the cost of increased model complexity as indicated by a higher

number of connections in the resulting regression model as well as an

increased BIC-value.

In summary, when utilizing the higher degree of information con-

tained in trEC, that is, the higher number of connections due to its direc-

tionality, it outperformed rsFC in explaining variance of motor

performance, in line with our initial hypothesis. However, trEC results are

less likely to generalize, given their strong task-dependence and the pro-

pensity of more complex statistical models to more easily over-fit the data

at hand. When reducing the number of connectivity estimates to enable a

more even comparison, rsFC and trEC both significantly explained motor

performance to a rather similar degree. Therefore, our results highlight

the potential role of both rsFC and trEC as potential biomarkers for motor

impairment. Given its superior feasibility in a clinical context, our current

findings particularly emphasize the clinical potential of rsFC.

F IGURE 5 Spearman rank correlations between trEC, rsFC, and trFC. The three charts entail correlations between (a) rsFC and trEC, (b) rsFC
and trFC, and (c) trFC and trEC. trEC is expressed in terms of coupling parameters of the DCM-A and B-affected matrix. rsFC is expressed as
Fisher's Z-scores derived from Pearson correlations of the predefined region pairs. trFC was computed from the time series recorded during
movement of the affected hand as Fisher's Z-scores derived from Pearson correlations of the predefined region pairs. Dashed lines indicate
significance at an uncorrected level (p < .05), solid lines indicate significance after FDR-correction for multiple comparisons (p < .05, FDR-
corrected). Of note, only rsFC and trFC (depicted in b) showed a significant relationship between interhemispheric homologous connections at a
corrected level, suggesting a similarity in functional connectivity during task and rest, that is, depending on the connectivity mode and
independent from the brain state. As FC is derived from a purely correlational approach, it is undirected and therefore contains only half as many
connections as EC. In other words, while EC differentiates between for instance M1a–M1u and M1u–M1a connectivity, those values are the
same for FC. Therefore, in the middle column (b) showing Spearman rank correlations between rsFC and trFC each correlation coefficient is
displayed twice. DCM, dynamic causal modeling; FC, functional connectivity; rsFC, resting-state functional connectivity; trEC, task-related
effective connectivity
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4.2 | Task-related motor network connectivity
after stroke

After the advent of fMRI, various studies have conclusively reported

increased BOLD-activity levels during paretic hand movements in

both the ipsi- and contralesional hemisphere (Rehme, Eickhoff,

Rottschy, Fink, & Grefkes, 2012). trEC has often been used to further

elucidate the mechanistic underpinnings of such altered activity pat-

terns from a network level-perspective (Grefkes & Fink, 2014). A com-

mon finding replicated across studies analyzing trEC in stroke patients

highlights the crucial role of excitatory ipsilesional premotor–M1 cou-

pling which is thought to enable movements by driving M1 activity

necessary to activate muscles via descending motor activity (Grefkes,

Nowak, et al., 2008; Grefkes et al., 2010; Hensel et al., 2021; Rehme,

Eickhoff, et al., 2011). In line with this notion, our current analysis

implies that stronger excitatory coupling from ipsilesional premotor

areas onto the affected M1 as well as stronger inhibitory feedback

from the affected M1 back onto the ipsilesional PMv were indicative

of better motor performance (cf. Figure 3). Thus, our current findings

highlight the functional importance of excitatory premotor–M1 con-

nectivity early after stroke.

Another recurrent, albeit more complex and variable finding lies

in altered interhemispheric M1–M1 connectivity. In healthy subjects,

unilateral hand movements have repetitively been shown to elicit an

inhibitory influence from the active M1 (contralateral to the moving

hand) onto the inactive M1 (ipsilateral to the moving hand; Grefkes,

Nowak, et al., 2008; Pool et al., 2013; Pool, Rehme, Fink, Eickhoff, &

Grefkes, 2014; Rehme, Eickhoff, et al., 2011; Volz, Hamada,

Rothwell, & Grefkes, 2015; Volz, Sarfeld, et al., 2015). After stroke,

distinct alterations of M1–M1 trEC have been reported presumably

depending on the time-point post stroke and severity of motor

impairment, ranging from a lack of inhibition of contralesional M1 by

ipsilesional M1 to additional facilitatory influence from the unaf-

fected M1 onto the affected M1 (Hensel et al., 2021; Rehme,

Eickhoff, et al., 2011). Accordingly, our present findings also empha-

size that interhemispheric M1–M1 connectivity is functionally rele-

vant after stroke. Specifically, stronger excitatory influences from

ipsilesional M1 onto contralesional M1 were indicative for better

motor performance. From a conceptual perspective, this result may

represent a mechanism of task-specific compensation. Mechanisti-

cally, pronounced excitation of the contralesional M1 by the

ipsilesional would lead to increased activation of the contralesional

M1 during paretic hand movements. This finding is well in line with

the vicariation model (Di Pino et al., 2014), ascribing a supportive role

to the over-activation of the contralesional M1 during motor task

performance with the paretic hand, as argued by various previous

studies (Rehme, Fink, et al., 2011; Tombari et al., 2004; Ward,

Brown, Thompson, & Frackowiak, 2003). A similar supportive role of

the ipsilateral M1 has also been observed in healthy subjects for

complex motor tasks, giving rise to the notion that additional ipsilat-

eral (i.e., contralesional in stroke patients) resources are activated

with increased task demands (Verstynen, Diedrichsen, Albert,

Aparicio, & Ivry, 2005).

However, the functional role of the contralesional M1 for motor

performance of the paretic hand ultimately remains controversial,

with evidence from several studies suggesting a maladaptive role of

the contralesional M1 (Grefkes et al., 2010; Grefkes, Nowak,

et al., 2008; Murase, Duque, Mazzocchio, & Cohen, 2004; Volz

et al., 2017; Volz, Sarfeld, et al., 2015). A reason for these diverging

findings and interpretations may lie in their dependence on the motor

task performed in a given study (Hartwigsen & Volz, 2021; Lotze

et al., 2006; Volz et al., 2017). Specifically, stroke patients typically

develop individual compensation strategies to master a given move-

ment impacting on trEC. Thus, such specific compensatory efforts of

the lesioned motor system might therefore comprise highly individual

changes that are less easily captured on the group level. In other

words, idiosyncratic patterns of trEC changes may be present in dis-

tinct subjects that do not generalize well to the group level.

4.3 | Task-independent motor network
connectivity after stroke

By contrast, rsFC offers the opportunity to assess the motor network

in a task-independent fashion, allowing for easier generalization of

findings and clinical application. After stroke, characteristic changes in

rsFC have convergingly been reported across different studies,

highlighting a crucial role of interhemispheric M1–M1 connectivity,

which has been shown to first decrease and then re-increase along-

side functional recovery in both humans and animal models (for refer-

ences regarding interhemispheric changes, see, e.g., Carter

et al., 2009; Golestani et al., 2013; van Meer et al., 2010, 2012). While

we did not observe a significant correlation between M1–M1 rsFC-

connectivity and motor performance in our current study, variance in

motor impairment was significantly explained when entering the first

principal component derived from all interhemispheric rsFC-

connections into a regression model (cf. Figure 4). In other words,

combining interhemispheric connections significantly explained motor

impairment, stressing the importance of premotor areas beyond inter-

hemispheric M1–M1 connectivity in rsFC early after stroke. Besides

interhemispheric connections, ipsilesional premotor–M1 connectivity

also played a major role: regression weights indicated a negative rela-

tionship between motor performance and ipsilesional SMA–M1 as

well as PMv–M1 connection strength (cf. Figure 3). Moreover, the

regression model containing the ipsilesional PCA-component achieved

the highest explained variance. While reported less frequently than

altered M1–M1 connectivity, previous studies have already outlined

the functional significance of premotor–M1 rsFC after stroke. For

example, Carter et al. found that interhemispheric rsFC alone was not

significantly related to behavioral impairment, yet it explained motor

impairment when complemented by intrahemispheric rsFC and lesion

size (Carter et al., 2012). Furthermore, Rehme and colleagues reported

their machine learning classification to be partially driven by increased

connectivity between ipsilesional premotor areas and the affected M1

(Rehme, Volz, Feis, Bomilcar-Focke, et al., 2015). Of note, this evi-

dence supporting a negative relationship between rsFC and motor
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performance post-stroke is challenged by data observing the opposite

relationship. For instance, a study investigating rsFC in patients within

the first 2 weeks post-stroke found a positive association between

ipsilesional PMv–M1 connectivity in the acute phase and motor

improvement over the course of the next 3 months for a subgroup of

severely affected patients (Lee et al., 2017). For the chronic stage,

there are also reports of a positive link between premotor–M1 rsFC

and motor function (Lam et al., 2018). Thus, the association of altered

ipsilesional rsFC post-stroke with motor impairment seems to vary

depending on the analytic framework, degree of motor impairment as

well as the time since stroke included in a specific study.

In summary, premotor–M1-rsFC within the ipsilesional hemi-

sphere seems to play a crucial role after stroke and should not be

neglected next to the commonly reported interhemispheric connectiv-

ity changes (Carter et al., 2009; Golestani et al., 2013; van Meer

et al., 2010, 2012).

4.4 | Task-specific ipsilesional compensation and
general interhemispheric reorganization

We here showed for the first time that ipsilesional and inter-

hemispheric components of both rsFC and trEC readily explained

motor impairment post-stroke in the same cohort of patients, while

replicating previous findings obtained for either rsFC or trEC in isola-

tion. The observed overlap of explanatory components between rsFC

and trEC emphasizes the question whether both similarly capture fun-

damental aspects of motor network reorganization in a task-

independent fashion. Conversely, findings obtained from healthy

human subjects support the notion that rsFC and trEC rather reflect

differential, state-independent aspects of information integration

(Rehme et al., 2013). Our current results revealed a similar lack of

overlap between trEC and rsFC in the early phase post-stroke

(cf. Figure 5). Thus, despite the fact that stroke-induced changes in

motor network connectivity affect highly similar connections, rsFC

and trEC seem to reflect largely unrelated aspects of information inte-

gration. However, the fact that we observed significant correlations

between trFC and rsFC-measures of homologous interhemispheric

connections indicates a state-independent similarity of inter-

hemispheric connectivity after stroke (cf. Figure 5). In light of these

results, the lack of a relationship between interhemispheric rsFC and

trEC seems to depend on the mode, that is, to result at least in part

from the methodological approach used to calculate connectivity,

rather than the activity state of the brain. In other words, functional

connectivity between interhemispheric homologs seems to reflect

similar neural interactions post-stroke irrespective of whether the

motor system is engaged in task execution or at rest. Taken together,

task-independent changes of interhemispheric connectivity may result

from a general, task-independent aspect of motor network reorganiza-

tion. One might speculate that recruiting the computational resources

of the functional homolog in the other hemisphere may be a highly

efficient and domain-general way of functionally extending the

lesioned network by using the pre-existing prominent structural

connections via the corpus callosum allowing for direct information

exchange. Support for the notion that involving bilateral functional

homologs in the attempt to compensate for tissue loss may be a

highly general mechanism derives from the fact that changes in inter-

hemispheric activation and connectivity have been observed in multi-

ple functional systems such as the motor, language and cognitive

networks both at rest and during task-performance (Hartwigsen &

Volz, 2021).

Conversely, while we found that premotor–M1 connectivity onto

ipsilesional M1 crucially contributed to the explanation of motor

impairment for both rsFC and trEC, the lack of association between

rsFC and trFC suggests that premotor-M1 connectivity may indeed

be highly state-dependent. From a mechanistic perspective, this does

not seem surprising, given the pivotal role of premotor–M1 connec-

tions for the production of voluntary actions such as grasping or

reaching movements (Cunnington, Bradshaw, & Iansek, 1996;

Davare, 2006; Davare, Lemon, & Olivier, 2008; Kazennikov

et al., 1999; Rizzolatti et al., 2002). Conceptually, one might thus

assume that the state-dependence of ipsilesional premotor–M1 con-

nectivity reflects the network's attempt to maximize its functionality

to serve the specific task at hand. In sum, premotor–M1 connectivity

may thus be attributed to task-specific compensation, while inter-

hemispheric connectivity seems to change in a task-independent fash-

ion, potentially reflecting a general aspect of motor network

reorganization.

4.5 | Limitations

We here compared the two most commonly used methodological

approaches to estimate connectivity from fMRI data in stroke patients.

Importantly, while we included trFC to differentiate between state- and

mode-specific effects, we refrained from adding resting-state effective

connectivity (rsEC) to our analyses. Even though some efforts have

been made to estimate effective connectivity from resting-state data

using DCM-based approaches (Friston, Kahan, Biswal, & Razi, 2014;

Friston, Li, Daunizeau, & Stephan, 2011; Li et al., 2011; Razi, Kahan,

Rees, & Friston, 2015), such an approach has to the best of our knowl-

edge never been applied in stroke patients. While the assessment of

rsEC after stroke certainly represents a highly interesting scientific

question, the focus of the current study was to compare established

methodological frameworks which have previously reported similar

motor network alterations after stroke. Thus, the first assessment of

DCM-based rsEC after stroke is beyond the scope of the current manu-

script and should be addressed in future work.

Regression results are heavily influenced by methodological deci-

sions so that the reported connections contributing to the explanation

of motor impairment have to be interpreted with caution. For instance,

with respect to the stepwise backward regression, other starting

models might yield diverging results and other combinations of connec-

tivity measures might achieve similar explanatory power as the ones

reported here. An important parameter choice lies in the elimination

criterion used in the stepwise backward regression. To account for the
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high number of model parameters relative to our sample size we opted

for BIC to protect against overfitting. Of note, repeating our analyses

using AIC instead of BIC yielded slightly different surviving connections

in the final regression model, yet a similar percentage of explained vari-

ance, corroborating the robustness of our findings.

Although we here investigated a significantly bigger sample than

previous DCM-studies in stroke patients, the limited sample size does

still not allow for conclusions regarding the heterogeneity in lesion

location and size and the associated variability in reorganization pro-

cesses. Future research should therefore attempt to recruit larger

samples, including patients of the early acute or chronic stage and try

to expand the present findings to other functional networks.

5 | CONCLUSION

Comparing trEC and rsFC in the first 2 weeks after stroke, using the

superior complexity offered by trEC best explained variance in motor

performance. However, when balancing model complexity, connectiv-

ity measures of both frameworks explained motor performance in the

early subacute phase post-stroke to a similar extent, underscoring

the clinical potential of rsFC given its superior feasibility and general-

izability. For both approaches, connectivity between ipsilesional

premotor–M1 as well as interhemispheric M1–M1 explained motor

impairment early after stroke. Besides frequently observed alterations

of interhemispheric M1–M1 connectivity, our findings thus particu-

larly highlight the crucial role of premotor–M1 connectivity in early

motor network reorganization. From a mechanistic perspective,

premotor–M1 connectivity seems to primarily reflect state-dependent

compensation, while state-independent interhemispheric connectivity

between motor homologs may potentially arise from general aspects

of functional motor network reorganization reflected during both

task-performance and at rest.
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