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Human Ku70 is a well-known endogenous nuclear protein involved in the non-homologous
end joining pathway to repair double-stranded breaks in DNA. However, Ku70 has been
studied in multiple contexts and grown into a multifunctional protein. In addition to the
extensive functional study of Ku70 in DNA repair process, many studies have emphasized
the role of Ku70 in various other cellular processes, including apoptosis, aging, and HIV
replication. In this review, we focus on discussing the role of Ku70 in inducing interferons
and proinflammatory cytokines as a cytosolic DNA sensor. We explored the unique
structure of Ku70 binding with DNA; illustrated, with evidence, how Ku70, as a nuclear
protein, responds to extracellular DNA stimulation; and summarized the mechanisms of the
Ku70-involved innate immune response pathway. Finally, we discussed several new
strategies to modulate Ku70-mediated innate immune response and highlighted some
potential physiological insights based on the role of Ku70 in innate immunity.
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INTRODUCTION

Innate immunity includes diverse areas of host defense response to pathogen invasion, such as
bacterial or viral infection. In this system, pattern recognition receptors (PRRs) expressed in host
cells recognize the conserved pathogen-associated molecular patterns (PAMPs) which are derived
from microbes and then mediate innate immune responses (Medzhitov and Janeway, 1997;
Medzhitov and Janeway, 2000; Akira et al., 2006; Pichlmair and Reis e Sousa, 2007; Mogensen,
2009; Takeuchi and Akira, 2009; Yoneyama and Fujita, 2010). Detection of pathogenic cytosolic
Abbreviations: DNA-PK, DNA-dependent protein kinase; NHEJ, non-homologous end-joining; PRRs, pattern recognition
receptors; PAMPs, pathogen-associated molecular patterns; TLRs, Toll-like receptors; RIG-I, retinoic acid-inducible gene I;
NF-kB, nuclear factor kB; IFN, interferon; IRF3, Interferon regulatory factor 3; IL-1b, interleukin-1bb; DDX41, DEAD-box
helicase 41; IFI16, gamma-interferon-inducible protein; DAI, DNA-dependent activator of IFN-regulatory factors; dsDNAs,
double-stranded DNAs; LRRFIP1, Leucine-rich repeat flightless-interacting protein 1; DHX, DEAH box protein; AIM2, absent
in melanoma 2; PYHIN, pyrin- and HIN200-domain-containing protein; MyD88, myeloid differentiation primary response
88; cGAS, cyclic GMP-AMP synthase; ASC, apoptosis-associated speck-like protein; XRCC, X-ray repair cross-complementing
protein; NLS, nuclear localization signal; RD, rhabdomyosarcoma; VACV, vaccinia virus; HBV, hepatitis B virus; HSV, herpes
simplex virus; HDACs, histone deacetylases; TSA, trichostatin A; N–C, nuclear-cytoplasmic; EAE, experimental autoimmune
encephalomyelitis; IN, integrase; Ub, ubiquitination; CT DNA, calf thymus sonicated DNA; HTLV-1, human T-lymphotropic
virus type 1; NTD, N-terminal domain; CTD, C-terminal domain; ISD, interferon stimulatory DNA.
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nucleic acids: double-stranded (ds) or single-stranded (ss) DNA
and RNA is essential to initiate innate immunity. PRR families
include the retinoic acid-inducible gene I (RIG-I)-like receptors,
toll-like receptors (TLRs), and a diverse member of cytosolic
DNA sensors (Bowie and Haga, 2005; Kaisho and Akira, 2006;
Yoneyama and Fujita, 2008; Beutler, 2009; Kawai and Akira,
2009; Yoneyama and Fujita, 2009; Barber, 2011; Keating et al.,
2011; Thompson et al., 2011; Paludan and Bowie, 2013; Dempsey
and Bowie, 2015). Once PAMPs are sensed by PRRs, the
recognition subsequently mediates intracellular signaling
pathways and activates transcription factors, interferon (IFN)
regulatory factors (IRFs) or nuclear factor kB (NF-kB), which in
turn leads to the increased production of antiviral interferons
and proinflammatory cytokines (Lee and Kim, 2007;
Mogensen, 2009).

DNA is a potent trigger of innate immune responses in host
cells (Sharma and Fitzgerald, 2011). Many studies have
emphasized the importance of cytosolic DNA sensing in the
innate immune response against invading pathogens. The DNA-
mediated innate immune response includes diverse signaling
pathways leading to the production of IFN-a, IFN-b, interleukin
(IL)-1b, or IL-18 (Christensen and Paludan, 2016). For instance,
the DNA-dependent activator of IFN-regulatory factors (DAI)
(Takaoka, 2007) is the first identified DNA sensor to recognize
dsDNA and activate the STING-TBK1-IRF3 signaling pathway.
After that, gamma-interferon-inducible protein (IFI16)
(Unterholzner et al., 2010; Monroe et al., 2014; Thompson
et al., 2014) and DEAD-box helicase 41 (DDX41) (Zhang
et al., 2011c) were found as cytosolic DNA sensors in diverse
cellular processes to recognize DNA. Leucine-rich repeat
flightless-interacting protein 1 (LRRFIP1), another discovered
cytosolic DNA sensor, binds dsDNA and activates b-catenin to
induce downstream signaling (Yang et al., 2010). DEAH box
protein 9 (DHX9) and DHX36 bind with dsDNA in dendritic
cells and activate NF-kB through myeloid differentiation primary
response 88 (MyD88) (Kim et al., 2010; Zhang et al., 2011b).
More recently, cyclic GMP-AMP Synthase (cGAS) has been
identified as a cytosolic DNA sensor (Gao et al., 2013; Sun
et al., 2013; Cai et al., 2014; Zhang et al., 2014; Xia et al., 2016).
Once cGAS detects dsDNA, it undergoes a conformational
change to open the catalytic pocket followed by synthesis of
cGAMP from ATP and GTP: a potent activator of the STING-
TBK1-IRF3 signaling pathway. In addition to the induction
pathway of IFNs, Absent in melanoma 2 (AIM2) has been
found to associate with cytosolic DNA and activate
inflammasomes by recruiting apoptosis-associated speck-like
protein (ASC) and pro-caspase-1, and then produce mature
forms of IL-1b and IL-18 (Burckstuummer, 2009; Fernandes-
Alnemri et al., 2009; Hornung, 2009).

The DNA-mediated innate immune response is not restricted
to the induction of type I IFNs and proinflammatory cytokines:
cytosolic DNA also induces type III IFNs. Type III IFNs are new
members of the IFN family (Ank et al., 2006; Ank and Paludan,
2009; Donnelly and Kotenko, 2010; Kotenko, 2011; Syedbasha
and Egli, 2017). Type III IFNs are also called IFN-ls, which
include IFN-l1, IFN-l2, IFN-l3 (also known as IL-29, IL-28A,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
and IL-28B, respectively) and IFN-l4 (Ank et al., 2006; Uzé and
Monneron, 2007; Ank and Paludan, 2009; Kotenko, 2011; Booth
and George, 2013; Lu et al., 2015). Compared with type I IFNs,
they use a different heterodimeric receptor complex (IFN-lR1/
IL-10R2) to get into the cells (Ank and Paludan, 2009; Kotenko,
2011). Similar to type I IFNs, stimulation by virus infection or
TLR agonist induces type III IFNs (Kotenko et al., 2003; Coccia
et al., 2004; Spann et al., 2004). Of note, Donnelly et al. found
that the gene encoding the mouse ortholog of human IFNL1
contains a stop codon in the region of exon 1 and lacks the entire
exon 2. Therefore, the gene Ifnl1 in mice does not encode a
functional IFN-l1 protein (Donnelly and Kotenko, 2010).

Ku70 and Ku80, proteins with molecular weight (MW) of 70
KDa and 80 KDa, respectively, are the essential components in
the non-homologous end-joining (NHEJ) pathway. They are first
identified in humans (Mimori et al., 1981). Ku70 is encoded by
the X-ray repair cross-complementing protein (XRCC) 6 gene
located on chromosome 22, and Ku80 is encoded by the XRCC5
gene on chromosome 2. Hetero dimerization of Ku70 and Ku80
is essential for the stability of each protein. The lacking of one
subunit leads to dramatically decreased intracellular level of the
other subunit, suggesting that most Ku70 and Ku80 exist as a
heterodimer (Nussenzweig et al., 1996; Gu et al., 1997). Such
functional homologs have been identified in some prokaryotic
lineages and almost all eukaryotes, including vertebrates, insects,
and fungi (Dynan and Yoo, 1998; Aravind and Koonin, 2001;
Bowater and Doherty, 2006). The Ku70/Ku80 heterodimer (so-
called Ku) and a catalytic kinase subunit (DNA-PKcs) are often
referred to as the subunit of the DNA-dependent protein kinase
(DNA-PK) complex, which assembles in response to DNA
double-strand breaks to repair the damaged DNA via NHEJ
pathway (Fell and Schild-Poulter, 2015). The region between
residues 439–592 at Ku80 C-terminus interacts with DNA-PKcs
(Gell and Jackson, 1999; Singleton et al., 1999; Davis et al., 2013)
and promotes the autophosphorylation of DNA-PKcs at DNA
double-stranded breaks.

Ku70 and Ku80 are predominantly observed in the nucleus
(Koike, 2002). Following translation of each protein in the
cytosol, the Ku subunits can translocate from the cytoplasm
into the nucleus together (Koike, 2002), or independently (Koike
et al., 1999a), since each subunit possesses its own nuclear
localization signal (NLS) (Koike et al., 2000). However, further
functional studies have reported that Ku70 is not only involved
in nuclear activities like DNA repair, transcription, and
replication but is also involved in multiple cytosolic activities.
Bax, a cytoplasmic protein, has been discovered to interact with
Ku70, and this Ku70-Bax binding is indicated to inhibit Bax-
mediated apoptosis (Cohen et al., 2004). In addition, many
studies have implicated that cytosolic Ku has been shown to
serve as a PRR that recognizes viral DNA in human cells and
then induces type I and type III interferons or proinflammatory
cytokines (Zhang et al., 2011a; Ferguson et al., 2012; Li et al.,
2016b; Sui et al., 2017; Wang et al., 2017; Burleigh et al., 2020;
Sui et al., 2021; Wang et al., 2021). This article summarized
and discussed the Ku70-mediated innate immune response in
detail and then highlighted potential strategies to modulate the
October 2021 | Volume 11 | Article 761983
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innate immune cascades. The homology modeling for Ku70 and
Ku80 is illustrated in Figure 1, the diverse functions of Ku70 are
listed in Figure 2. The studies for Ku70 related to innate
immunity are summarized in Table 1 and illustrated in
Figure 3. Beyond the role of Ku70 in innate immunity, roles of
Ku70 in viral life cycle of Human Immune deficiency virus (HIV)
(Figure 4) and in bacterial pathogen invasion are reviewed
and discussed.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
STRUCTURE AND DIVERSE FUNCTIONS
OF KU70 AND KU80

Ku70 forms a heterodimer with Ku80. Homology modeling for
human Ku70 and Ku80, the proteins alone, and the complex with
an oligo DNA substrate are shown in Figure 1. The entire
structure of Ku70/Ku80 was not crystallized (Walker et al.,
2001) due to the difficult experimental conditions of solving
A

B

C

FIGURE 1 | Schematic of Ku70/80 heterodimer domains and ribbon diagrams. (A) Domains in Ku70 and Ku80. In Ku70, the vWA domain is colored in orange, the
DNA-binding domain is colored in firebrick, the SAP domain is colored in pink, the nuclear localization sequence (NLS: 539–556) is colored in yellow, and other parts
are colored in light pink. In Ku80, the vWA domain is colored in purple, the DNA-binding domain is colored in blue, the c-terminal domain of Ku80 is colored in
green, the NLS (561-569) of Ku80 is colored in black, and other parts are colored in light grey. (B) Unbound Ku70/Ku80 heterodimer with a view of Ku70 NLS
(yellow) in the front (left panel). The range in the Ku70 model is from 35–609 amino acids, where the first 34 residues in the N-terminal domain (NTD) are truncated.
The range in the Ku80 model is from 6–541 amino acids, where the first 5 residues in the NTD and residues 542–732 in the C-terminal domain (CTD) are truncated.
The CTD domain of Ku80 is colored in green, and the corresponding NLS (561–569) is colored in black (right panel). (C) The structure model of the Ku70/Ku80
heterodimer bound with DNA. The left and the right panel demonstrate the side and top view, respectively, and bound DNA is colored in dark grey.
October 2021 | Volume 11 | Article 761983
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regions such as the Ku70 NLS. The homology modeling
technique was used here to predict such missing segments. The
hetero-oligomeric modeling pipeline implemented in SWISS-
MODEL (Biasini et al., 2014) was used to predict the Ku70/Ku80
dimer structure. The target sequences of Ku70 (XRCC6, UniProt:
P12956) and Ku80 (XRCC5, UniProt: P13010) were used as the
input, and the crystal structure (PDB ID: 1JEQ (Walker et al.,
2001)) was retrieved as the template for the final modeling. The
target modeling segments show high sequence identities with
their respective templates when aligned with those templates
(95% for Ku70 and 97% for Ku80). Finally, the Ku70 structure
was modeled, including 575 amino acids with the first 34 amino
acids truncated, while the Ku80 structure with amino acids 6–
541 was modeled. To create the C-terminal domain of the Ku80
model, we used the PDB ID of 6ZHE (Chaplin et al., 2021) as the
template due to its relative completeness in this domain
(Figure 1B). For incorporating the DNA coordinate into the
Ku70/Ku80 model (Figure 1C), the PDB structure of 1JEY
(Walker et al., 2001) was used as the anchor for fitting the
model. Both the Ku70 and Ku80 protein possess a three-domain
topology, including an N-terminal vWA (von Willebrand factor
A) domain, a DNA-binding domain, and a C-terminal arm
(Walker et al., 2001) (Figure 1A). The homology modeling of
Ku heterodimer suggested a quasi-symmetric basket-like
molecule with a narrow-preformed ring, which facilitates the
binding of DNA to Ku (Walker et al., 2001) (Figures 1B, C).

The N-terminal vWA domains of Ku70 or Ku80 are composed
of a six-stranded b-sheet in a Rossman fold (Walker et al., 2001).
Disrupting the vWA domains in yeast Ku70/80 has been found to
impair the function of Ku in DNA repair and telomere regulation
(Ribes-Zamora et al., 2007). Although the amino edge of the vWA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
domain locates close to the DNA-binding groove, the vWA domain
is not required for DNA binding. However, the Ku vWA domains
may facilitate protein-protein interactions. For instance, the vWA
domain of Ku80 has been found to interact with APLF, an NHEJ
repair protein important for recruiting other repair factors (Grundy
et al., 2013). So, the N-terminal vWA domains have minimal
contribution to heterodimerization or DNA binding but are
potentially involved in protein-protein interactions.

Meanwhile, the middle domain consists of a seven-stranded
anti-parallel b-barrel and plays an essential role in Ku DNA
binding and heterodimerization (Walker et al., 2001).
Heterodimerization leads to a positively charged DNA-binding
ring that fits sterically around the minor and major DNA
grooves. Ku threads inwards on DNA like a nut threaded onto
a bolt, with Ku70 positioned close and Ku80 far away to the DNA
end (Yoo et al., 1999; Doherty and Jackson, 2001; Abbasi et al.,
2021). Ku binds to dsDNA ends, 5′ and 3′ overhangs, or blunt
ends with a higher binding affinity (Kd = 10–9 M). And it has a
much lower binding affinity with circular DNA or the ends of
single-stranded DNA (ss DNA) (Fell and Schild-Poulter, 2015).

C terminal regions of Ku contain a flexible linker and a
globular structural domain (Figure 1). The C-terminal region of
Ku70 contains a SAP (SAF-A/B, Acinus, and PIAS) domain
encoded by residues 559–609 (Walker et al., 2001). Studies on
other SAP domain proteins have implicated that SAP domains
can bind DNA (Göhring et al., 1997; Suzuki et al., 2009). Using a
pair of even shorter versions of Ku70, the Ku70_251-438 and
Ku70_439-609 truncated mutants, Anisenko et al. have
determined that the dsDNA is bound within the C-terminal
part of the protein containing SAP domain (Anisenko et al.,
2017b). While DNA binding to Ku, the SAP domain undergoes
FIGURE 2 | The overview of functions of Ku70/80 heterodimer in various cellular contexts. Ku70/80’s involvement in multiple cellular activities with indicated
cellular localization and critical mediators. This illustration was created by using BioRender. The figure was adapted from the 2021 review by Abbasi et al.
(Abbasi et al., 2021).
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displacement, making itself close to the DNA-binding region of
the Ku heterodimer (Rivera-Calzada et al., 2007; Makowski et al.,
2016). Even the exact function of Ku70-SAP has not been
completely investigated yet, the helical C-terminal arms of Ku
contribute to heterodimerization and stabilize the interaction of
Ku to DNA (Walker et al., 2001; Keijzers, 2018).

Notably, Ku70 and Ku80 per se possess an NLS in the
molecule (as shown in Figure 1 with Ku70 NLS in yellow and
Ku80 NLS in black). The various NLS are classified into two
types based on the pattern of molecular sequences: (1) a single
cluster of basic amino acids, such as the NLS of the SV40 T-
antigen, and (2) a bipartite type in which two basic amino acid
regions are separated by a stretch of approximately 10 non-basic
amino acids (Görlich and Mattaj, 1996). The Ku70 NLS belongs
to type 2, and the sequence of Ku70 NLS is highly conserved
among human, mouse, rat, hamster, and chicken (Koike et al.,
1999b). While importing into the nucleus of the cells, the Ku70
NLS is recognized by the nuclear targeting complex, PTAC58,
and PTAC97 (Koike et al., 1999b). Given that Ku70 is an NLS-
possessing protein, it has been found predominately in the
nucleus of unstimulated cells, such as HeLa, HEK (human
embryonic kidney cells), and rhabdomyosarcoma (RD) cells
(Sui et al., 2021).

Consistent with the illustrated structure, many studies have
suggested that Ku possesses unusual DNA-binding properties,
binding potently to the ends of dsDNA molecules in a sequence-
independent manner. The unusual end-binding properties are
required for various nuclear processes, such as NHEJ DNA
repair (Critchlow and Jackson, 1998; Dobbs et al., 2010;
Radhakrishnan et al., 2014; Menon and Povirk, 2016; Scully
et al., 2019), V(D)J recombination of immunoglobin (Jackson
and Jeggo, 1995; Fugmann et al., 2000; Bassing et al., 2002),
telomerase maintenance (Bertuch and Lundblad, 2003; Indiviglio
and Bertuch, 2009; Wood et al., 2015; Shay andWright, 2019; Sui
et al., 2020), transcription (Li et al., 1995; Giffin et al., 1996; Ono
et al., 1996; Giffin et al., 1997; Dynan and Yoo, 1998; Mo and
Dynan, 2002; Bunch et al., 2015), DNA damage response (Wang
et al., 2000; Zhou and Elledge, 2000; Rouse and Jackson, 2002;
Harper and Elledge, 2007; Jackson and Bartek, 2009; Fell and
Schild-Poulter, 2012; Nowsheen and Yang, 2012; Blackford and
Jackson, 2017), RNA biology (Yoo and Dynan, 1998; Peterson
et al., 2001; Stellwagen et al., 2003; Ting et al., 2005; Pfingsten
et al., 2012; Lamaa et al., 2016; Zhang et al., 2016b; Dutertre and
Vagner, 2017; Shao et al., 2020; Thapar et al., 2020), and DNA
replication (Barnes and Rio, 1997; Shao et al., 1999; Novac et al.,
2001; Cosgrove et al., 2002; Matheos et al., 2002; Schild-Poulter
et al., 2003; Park et al., 2004; Rampakakis et al., 2008; Miyoshi
et al., 2009; Foster et al., 2011; Abdelbaqi et al., 2013; Sánchez and
Russell, 2015; Teixeira-Silva et al., 2017). Such unusual DNA-
binding properties also facilitate Ku70’s activities in the
cytoplasm of the cells. Those activities include participating in
Bax-mediated apoptosis (Cohen et al., 2004; Gomez et al., 2007;
Mazumder et al., 2007; Kim et al., 2014) and serving as a
cytosolic DNA sensor to activate the DNA-mediated innate
immune response. An overview of Ku70/80 heterodimer
functions in the various cellular processes is illustrated in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Figure 2. In the following paragraphs, we will discuss roles of
Ku70 in innate immunity, aging-related cytoplasmic DNA
sensing, HIV replication and bacterial invasion in detail.
KU70 IS IDENTIFIED AS A NOVEL
CYTOSOLIC DNA SENSOR THAT
MEDIATES INNATE IMMUNE RESPONSES

Our lab previously reported, for the first time, that Ku70 is a
novel DNA sensor to induce expression of IFN-l1 rather than
that of type-I IFNs (Zhang et al., 2011a). Plasmid DNA
transfection or DNA virus infection-mediated IFN-l1
induction was detected in HEK cells, RD cells, monocyte-
derived macrophages, immature dendric cells, and—with a
much lesser level—HeLa cells (Zhang et al., 2011a). These
results indicated that the Ku70-mediated IFN-l1 induction is
consistently presented in multiple cell types.

Different forms of DNA transfection (e.g., single-stranded
DNA, fragmented human genomic DNA, and bacterial DNA)
and infection of DNA virus induce IFN-l1 (Zhang et al., 2011a);
IFN-l1 mRNA was induced by both supercoiled or linearized
forms of DNA plasmids. However, the linearized plasmid DNA
significantly enhanced activation. This result was consistently
supported by the property of Ku, which detects the end structure
of DNA. Zhang et al. confirmed that over 500 bp of DNA triggers
IFN-l1 induction with the dependency of DNA length. By
contrast, the production of IFN-l1 was not detected with the
transfection of DNA that was only 50 bp in length (Zhang et al.,
2011a). One study demonstrated that titration of Ku to a fixed
amount of linear dsDNA fragments produced ladders of shifted
bands, which are proportional to the length of DNA. This data
implicated that many Ku heterodimers bind to multiple sites on
one dsDNA in a sequence-independent pattern (Blier et al.,
1993). Based on those Ku properties, it was apparent that
Ku70 induces activation of IFN-l1 and that Ku70 recognizes
intracellular DNA by DNA transfection or infection with a DNA
virus, such as herpes simplex virus (HSV) type 1 (HSV-1) or type
2 (HSV-2), without any restriction in structure or sequence
(Zhang et al., 2011a).

In addition to the fact that Ku70 senses DNA to induce type III
IFNs, subsequent other studies indicated that Ku70 perse, or Ku70
in Ku70/Ku80 heterodimer, or Ku70 in the DNA-PK complex
involves in the induction of type I IFNs and other inflammatory
cytokines directly or indirectly. For example, Ku70 has also been
reported to detect human T-lymphotropic virus type 1 (HTLV-1)
reverse intermediate product ssDNA90 and induce IFN-a, IFN-b,
IFN-l, and RANTES (Wang et al., 2017). Additionally, the Ku70/
Ku80 heterodimer senses the in vitro adenovirus-delivered
hepatitis B virus (HBV) DNA and induces CCL3 and CCL5,
thereby implicating that Ku70 modulates HBV replication (Li
et al., 2016b). More interestingly, a recent study suggested that the
Ku70/80 complex senses cytoplasmic DNA in aged CD4+ T cells
and that this detection potentiated T-cell activation and aging-
related autoimmune responses (Wang et al., 2021). Furthermore,
October 2021 | Volume 11 | Article 761983
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Ferguson et al. reported that DNA-PK, a heterotrimeric protein
complex composed of Ku70, Ku80, and DNA-PKcs, is able to
activate downstream STING-TBK1-IRF3 signaling pathway when
it recognizes foreign DNA (Ferguson et al., 2012). It has been
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
further demonstrated that DNA-PK co-localizes with vaccinia
virus (VACV) DNA during VACV infection. Virus infection-
mediated IFN response is aborted when the components of DNA-
PK were knocked-out (Ferguson et al., 2012).
TABLE 1 | List of studies about Ku70-involved innate immune response.

Sensor
proteins

The source of
nucleotides

Host cells Signaling pathway Induced
cytokines

In vivo References

Ku70 Plasmid DNA, bacterial
DNA. HSV-2G, HSV-1

HEK, RD, THP-1, macrophages STING-TBK1-IRF3, IRF1, and
IRF7 pathway

IFN-l1 N/A (Zhang et al.,
2011a;
Sui et al.,
2017;
Sui et al.,
2021)

DNA-PK VACV, E. coli, ISD, HSV-1,
MVA

Fibroblasts, MEF STING-TBK1-IRF3 IFN-b, CXCL10,
IL-6

Mice (Ferguson
et al., 2012;
Peters et al.,
2013;
Scutts et al.,
2018)

Ku70 pAAV-HBV plasmid, HBV Liver-derived cells: Sk-Hep-1, Hep
G2, Huh7, primary HSECs

DNA-PKcs and PARP1-IRF1 CCL3, CCL5 HBV-infected
human patients

(Li et al.,
2016b)

Ku70 HTLV-1 RTI ssDNA90 HeLa cells, PMA-THP-1 STING-TBK1-IRF3 IFN-b, IFN-l, and
TNF-a

N/A (Wang et al.,
2017)

DNA-PK CT DNA Human U937 cells,
primary human hepatocytes, human
fibroblasts

HSPA8-IRF3 (STING-
independent sensing pathway)

IFN-b N/A (Burleigh
et al., 2020)

Ku70/
Ku80

ISD Jurkat T cells, aged CD4+ T cells ZAK-AKT-mTOR IL-2, IFN-g, T-cell
proliferation

Mice (Wang et al.,
2021)
October 20
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FIGURE 3 | The involvement of Ku70 as a cytosolic DNA sensor to activate the innate immune response. Ku70 is identified as a cytosolic DNA sensor that induces
type III IFNs through a STING-TBK1-IRF3, IRF1, and IRF7 signaling pathway. In this signaling pathway, cytoplasmic translocation of Ku70 is an initial and essential
step (black arrows) (Zhang et al., 2011a; Sui et al., 2017; Sui et al., 2021); Ku70 and Ku80, together with DNA-PKcs (DNA-PK), are also involved in a STING-
dependent (Ferguson et al., 2012) (solid arrow) and STING-independent (Burleigh et al., 2020) (dashed arrow) pathway to induce type I IFNs (red arrows). Ku70 is
reported to sense HTLV-1 transcription intermediate product ssDNA90 and interacts with STING to induce IFNs and inflammatory cytokines, thereby modulating
HTLV-1 replication (Wang et al., 2017) (brown arrows). The Ku70/80 heterodimer recognizes HBV-infection-derived DNA, then activates DNA-PKcs and PARP1 to
induce CCL3 and CCL5 inflammatory cytokines (Li et al., 2016b) (green arrows). DNA-PK (the complex of DNA-PKcs, Ku70, and Ku80) senses aging-related
cytoplasmic DNA in CD4+ T cells. This DNA sensing then induces T-cell proliferation and activation, as well as autoimmunity through the ZAK-AKT-mTOR pathway
(Wang et al., 2021) (blue arrows). This illustration was created by using BioRender.
Article 761983

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Sui et al. Ku70’s Role in Innate Immunity
Ku70, Ku protein, or DNA-PK have been implicated in having a
role in sensing a variety of DNA or DNA viruses without
restrictions. More importantly, many other DNA sensors, such as
cGAS, require binding of double-stranded DNA to activate the
sensor protein: a conformation change, thereby activating
downstream signaling (Cai et al., 2014; Dempsey and Bowie,
2015; Xia et al., 2016). However, the Ku protein or DNA-PK
complex does not have such conformational restriction; therefore,
the Ku/DNA-PK-mediated innate immune response may become a
perfect complementary pathway in the host defense system when
other DNA-sensing pathways are impaired.
THE DOWNSTREAM SIGNALING
PATHWAY OF KU70

Many studies have indicated that Ku70, as a cytosolic DNA
sensor, binds with DNA and mediates the downstream
signaling pathway. However, “What is the adapter at the
downstream signaling of Ku70?” was the next question. In
Ku70-mediated type III IFN response, an investigation was
initiated from the observation of IFN-l1 induction in HEK and
293T (SV40-T antigen transformed HEK cell line) cells with GFP-
encoding DNA plasmid transfection. With a similar green
fluorescence signal observed between HEK 293 cells and 293T
cells, DNA-induced IFN-l1 induction was detected in HEK 293
cells but not in 293T cells. By comparing the expression level
among different signal mediators associated with the cytosolic
sensor, we found that the stimulator of interferon genes (STING)
is not endogenously expressed in 293T cells. The gain-of-function
and loss-of-function study confirmed the hypothesis that STING
is the downstream adaptor of Ku70 to activate the IFN-l1
signaling pathway. The co-immunoprecipitation assay further
illustrated that Ku70 interacts with STING in the cytoplasm
and forms a complex upon DNA stimulation (Sui et al., 2017).
At this point, the activating pathway is quite similar to the DNA-
PK-mediated STING-dependent pathway. DNA-PK was reported
as a DNA cytosolic sensor to induce IFN-a or IFN-b (Ferguson
et al., 2012). However, the interaction between DNA-PK and the
downstream STING is in a transient pattern. After binding at
three hours after DNA stimulation, STING dissociates from the
complex, and this dissociation activates downstream signaling
(Ferguson et al., 2012). STING is also the downstream target of
Ku70 in sensing HTLV-1 intermediate product ssDNA90 and,
therefore, induces type I interferons and inflammatory cytokines
through phosphorylation of IRF3 (Wang et al., 2017).

In addition to STING as the downstream adaptor of Ku70 or
DNA-PK, other proteins, namely DNA-PKcs and PARP1, are
also reported as the adaptor proteins to Ku70/80 in sensing HBV
DNA (Li et al., 2016b). While sensing aging-related DNA
cytoplasmic accumulation, DNA-PK interacts with ZAK, AKT,
and mTOR, inducing T-cell proliferation and aging-related
autoimmunity (Wang et al., 2021). Another study recently
claimed that DNA-PK is a potent sensor that activates the
innate immune response with STING-independent signaling
pathway. However, this pathway only exists in human cells
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
and is not present in mouse cells (Burleigh et al., 2020).
In this pathway, HSPA8/HSC70 is the adaptor protein for
inducible phosphorylation and then activates downstream
innate immune signaling (Burleigh et al., 2020). All those
different Ku70-involved mechanisms determine the diverse
patterns of innate immune response in a cell-type-dependent
pattern. The coexistence of various molecular mechanisms is
always an interesting topic in the research field of innate immunity.

Compared with the induction of type I IFNs, the kinetics of
Ku70-mediated IFN-l1 induction indicates a delayed induction
profile. The IFN-l1 mRNA expression is initiated at about 12
hours after DNA transfection. A profound protein level of IFN-l1
can be detected at 48 hours after DNA transfection (Sui et al.,
2017). As we know, cGAS- or IFI16-mediated innate immune
response is usually induced as an earlier event after stimulation:
for example, at six hours after stimulation (Unterholzner et al.,
2010; Sun et al., 2013; Cai et al., 2014). The activation of
downstream of cGAS or IFI16 is the STING-TBK1-IRF3
signaling pathway. IRF3 is endogenously expressed in most
cells. The activation of IRF3 is detected at three hours after
stimulation, indicating that IRF3 facilitates the induction as a
faster and earlier event. By contrast, Ku70-mediated IFN-l1
induction relies on activating the STING-TBK1-IRF3, IRF1, and
IRF7 axis (Zhang et al., 2011a; Sui et al., 2017). IRF3 is activated
first to produce a profound expression of IRF1 and IRF7, since
IRF1 and IRF7 are not endogenously expressed in the cells. Once
IRF1 and IRF7 are produced, IFN-l1 and then can be
significantly induced. In summary, similar to other DNA
sensor-mediated innate immune responses, the kinetics of Ku70
involved innate immune response depends on the specific
signaling pathway by which interferon or inflammatory
cytokines are produced.
THE CYTOPLASMIC TRANSLOCATION OF
KU70 IS THE INITIAL STEP FOR KU70 AS
A CYTOSOLIC DNA SENSOR

Ku70 was initially characterized as a DNA repair protein; its
primary function serves in the nucleus. However, more and more
studies have identified Ku70 as a cytosolic DNA sensor that
mediates innate immune response. The downstream adaptor
STING and another protein, HSPA8, were all found in the cells’
cytoplasm (Ferguson et al., 2012; Sui et al., 2017; Burleigh et al.,
2020). So how can a nuclear protein sense cytosolic DNA and
thereby initiate a downstream signaling pathway? This question
led to identify the molecular mechanism at an earlier time point.
In the case of Ku70-mediated IFN-l1 induction by DNA
transfection, Ku70 was observed predominately located in the
cytoplasm of the cells, thereby facilitating the interaction
between STING and Ku70 (Sui et al., 2017). So, it was
speculated that upon DNA stimulation, Ku70 translocates
from the nucleus to the cytoplasm of the cells. And this
process is closely correlated with the induction of IFN-l1.

The subsequent study using confocal microscopy confirmed
that the cytoplasmic translocation of Ku70 is observed in the cells
October 2021 | Volume 11 | Article 761983
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in which IFN-l1 is induced by DNA transfection, such as HEK
and RD cells. And consistently, such cytoplasmic translocation of
Ku70 is not observed in HeLa cells, and similarly, DNA
transfection does not induce IFN-l1 induction in HeLa cells
(Sui et al., 2021). In addition to DNA plasmid transfection, HSV-
1, a DNA virus infection, also triggered the cytoplasmic
translocation in HEK cells with a virus-strain-dependent
manner. Ku70 cytoplasmic translocation and IFN-l1 induction
only in HEK cells infected with the HSV-1 McKrae strain. Those
results further emphasized that the cytoplasmic translocation of
Ku70 is a required step for Ku70-mediated IFN-l1 induction
(Sui et al., 2021). A quantification analysis with Western blot
using cytosolic fractions was adapted to characterize the
accumulation kinetics of cytoplasmic Ku70. The data
demonstrated that the cytoplasmic translocation of Ku70 was
started right after DNA stimulation and obtained the highest
level at six hours after transfection, and then the accumulation of
cytoplasmic Ku70 returned to a similar level as that in
unstimulated cells (Sui et al., 2021). These data testified two
points. First, the cytoplasmic translocation of Ku70 is a kinetics
process. Ku70 translocates freely from the nucleus to the
cytoplasm or from the cytoplasm back to the nucleus. How
DNA transfection triggers the translocation remains unclear, but
we hypothesized it is due to a change in a dynamic balance
between the accumulation level of Ku70 in the nuclear and the
cytoplasm. When cytosolic Ku70 recognizes and associates with
cytoplasmic DNA, such interaction may interrupt the
equilibrium between the cytosolic and the nuclear Ku70 and
then drive the translocation of Ku70 from the nucleus to the
cytoplasm. Second, the kinetic study further demonstrated that
the translocation of Ku70 from the nucleus to the cytoplasm is an
initial and essential step in the DNA-mediated IFN-l1 innate
immune response. Compared with the time course of IFN-l1
induction, the translocation of Ku70 occurred one hour right
after DNA transfection and peaked at six hours. All this
happened before IFN-l1 induction. Consequently, it is
reasonable to speculate that the translocation of Ku70
happened first and that IFN-l1 induction occurred later since
we further confirmed that recombinant IFN-l1 does not induce
the cytoplasmic translocation of Ku70 (Sui et al., 2021). Like
Ku70, IFI16, another DNA sensor protein, has been reported to
recognize and sense DNA not only in the cytoplasm but also in
the nucleus of the cells, and its sensing capabilities depend on the
distribution of IFI16 (Li et al., 2012; Dell’oste et al., 2014; Ansari
et al., 2015). IFI16 detects and binds to herpes viral DNA in the
nucleus of the cells. However, detection of transfected DNA or
cytoplasmic viral DNA occurs in the cytoplasm. Ku70
ubiquitously expresses in the nucleus as a nuclear protein;
however, there is no evidence to indicate that Ku70 can also
serve as a nuclear DNA sensor protein.

In addition to our detailed study about the cytoplasmic
translocation of Ku70, Li et al. also reported that the
cytoplasmic-translocated Ku70/Ku80 complex senses HBV
DNA and then induces hepatitis-associated chemokine
secretion (Li et al., 2016b). This kind of nuclear-cytoplasmic
(N-C) trafficking has become a conventional mechanism for
these multifunctional DNA sensors. As we know, cGAS
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recognizes cytosolic DNA. This detection produces the second
messenger 2’3’-cGAMP, and the cGAMP in turn initiates
STING-dependent downstream signaling to induce type I
IFNs. However, more recently, Sun et al. demonstrated that
cGAS is located both in the cytoplasm and in the nucleus, and
cGAS is required to export into the cytoplasm in response to
DNA stimulation. (Sun et al., 2021). Therefore, the N-C
trafficking is required for Ku70 and other multiple-functional
proteins to conduct their cytosolic and nuclear activities.
THE COOPERATIVE PATTERN OF KU70,
KU80, AND DNA-PKcs IN MEDIATING
INNATE IMMUNE RESPONSE

Ku70 is a subunit of the heterotrimeric protein complex DNA-
PK composing of Ku80 and the catalytic subunit DNA-PKcs.
While we identified Ku70 as a novel cytosolic DNA sensor that
induces IFN-l1 innate immune response (Zhang et al., 2011a;
Sui et al., 2017; Sui et al., 2021), we hope to determine whether
Ku80 or DNA-PKcs are also involved in the cytosolic-DNA-
sensing activity.

It has been reported that DNA-PK serves as a PRR,
recognizing cytoplasmic DNA and inducing the production of
type I IFNs (Ferguson et al., 2012; Burleigh et al., 2020). The Ku
heterodimer (Walker et al., 2001) and DNA-PKcs (Hammarsten
and Chu, 1998) can directly bind to DNA; however, in the
absence of either Ku70 or Ku80, the binding affinity of DNA-
PKcs with DNA is dramatically decreased (Yaneva et al., 1997).
These findings implicated that each subunit of the DNA-PK
complex plays an essential role. Consistent with this study, we
also observed the existence of Ku80, but not DNA-PKcs, in the
complex of Ku70-STING (Sui et al., 2017). Additionally, we
observed the co-localization of Ku80 with Ku70 in the nucleus of
unstimulated cells and the cytoplasm of DNA-transfection-
stimulated cells. Those data suggest that Ku80 is translocated
with Ku70 from the nucleus to the cytoplasm (Sui et al., 2021).

However, we previously reported that DNA-mediated IFN-l1
induction substantially decreased, when Ku70 is transiently
knocked down; in contrast, knocking down of Ku80 has no
impact on the induction of IFN-l1. To further validate the role of
Ku70 and Ku80 in DNA-mediated innate immune response, the
IFN‐l1 promoter reporter assay by overexpressing each subunit
was utilized in the study. The result from the assay consistently
demonstrated that overexpression of Ku70 highly activates the
IFN‐l1 promoter. However, the overexpression of Ku80 had no
impact on IFN‐l1 promoter activation. Moreover, the results of
the co-immunoprecipitation assay directly exclude the presence
of DNA-PKcs in the complex of Ku70-STING. Therefore, all
those studies suggested that Ku80 and DNA-PKcs may not be
directly involved in DNA-mediated IFN-l1 induction (Zhang
et al., 2011a; Sui et al., 2017).

In studies about DNA-PK as the cytosolic DNA sensor to
induce the innate immune response, it seems that DNA-PKcs is
the key factor to mediate downstream signaling and that the
involvement of Ku70 or Ku80 enhances the sensing capability of
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DNA-PKcs (Ferguson et al., 2012; Burleigh et al., 2020). In HBV
infection, the Ku70/80 complex senses infected HBV DNA, and
DNA-PKcs and PARP1 act as a downstream adaptor to activate
hepatitis-associated chemokine secretion (Li et al., 2016b).

Ku70-involved innate immune response shows various
patterns for the participation and function of Ku70, Ku80, and
DNA-PKcs. In general, like their function in the DNA repair
process, they work together as a whole complex (Ferguson et al.,
2012; Burleigh et al., 2020; Wang et al., 2021), but in the case of
type-III IFN response and Ku70 sensing HTLV-1, the functional
element is Ku70 itself. However, we have become aware that
when Ku70 or Ku80 is expressed individually, neither of them
are stable (Satoh et al., 1995) and that the absence of one of the
subunits leads to a remarkable reduction in the stable level of the
other one (Errami et al., 1996; Gu et al., 1997; Singleton et al.,
1997). Consequently, it is hard to precisely elucidate the function
of Ku70 or Ku80 alone by completely knocking out one or the
other. Further study will help to illuminate the detailed
molecular mechanism of how Ku70, Ku80, or DNA-PKcs
cooperate and facilitate DNA-sensing activity.
THE POTENTIAL REGULATION FACTORS
INVOLVED IN KU70-MEDIATED INNATE
IMMUNE RESPONSE

Further studies have reported that Ku70, predominantly located
in the nucleus of the cells, has a cytoplasmic translocation from
the nucleus, then conducts its cytosolic activities, such as sensing
invading cytosolic DNA to induce an innate immune response
(Zhang et al., 2011a; Sui et al., 2017; Sui et al., 2021) or binding
with invading viral elements/proteins to modulate virus
replication (Li et al., 2016b). Therefore, abundant amounts of
cytoplasmic protein accumulation seem to be essential for Ku70
to successfully recognize cytosolic DNA and activate the
downstream IFN signaling pathway. Our observations, nuclear
retention of Ku70, because of the treatment with leptomycin B,
severely attenuates the IFN-l1 response to DNA stimulation (Sui
et al., 2021), indicating that cytoplasmic translocation is a critical
factor for Ku70’s cytosolic DNA sensing.

Our group confirmed that acetylation at Ku70-NLS regulates
the localization of Ku70 in the nucleus or in the cytoplasm, which
is consistent with the finding from other groups (Fujimoto et al.,
2018), and we first reported that acetylation modulates Ku70’s
DNA‐sensing activity (Sui et al., 2021). While importing into the
nucleus, Ku70 has to interact with the Impa/Impb complex to
facilitate nuclear translocation. With the acetylation at the region
of Ku70-NLS, the interaction between acetylated Ku70 and the
Impa/Impb complex is severely decreased. Therefore, acetylated
Ku70 is predominantly located in the cytoplasm of the cells
(Fujimoto et al., 2018). In line with Fujimoto’s finding, we further
demonstrated that acetylated Ku70 highly induces DNA-
mediated IFN-l1 induction (Sui et al., 2021).

The acetylation level of a protein depends on the dynamic
balance between the activity of acetylation and deacetylation
enzymes (Ansari et al., 2015; Gong et al., 2019). Multiple lysine
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residues have been identified as acetylation locations on Ku70
and Ku80 (Cohen et al., 2004; Subramanian et al., 2013; Al-
Emam et al., 2014; Koike et al., 2017). Acetylation at Ku70 lysine
residues, K539, K542 (Subramanian et al., 2005; Subramanian
et al., 2013) and K317, K331, K338 (Al-Emam et al., 2014)
impaired the function of Ku70 in NHEJ, since those lysine
residues of Ku70 are required for Ku70 binding with dsDNA
ends during NHEJ process. Two histone acetyltransferase
enzymes, CBP and PCAF, are responsible for Ku acetylation
(Cohen et al., 2004). Histone deacetylases (HDACs), a family of
deacetylation enzymes, regulate the deacetylation of multiple
non‐histone proteins and, therefore, impact functions by
changing their activity, such as cellular localization and
protein-protein interactions (Subramanian et al., 2005; Roger
et al., 2011). More than 50 non‐histone proteins, including p53
and Ku70, have been defined as the substrates of HDACs
(Chaudhary et al., 2014; Gong et al., 2019). Trichostatin A
(TSA), an inhibitor sensitive to class I/II deacetylases, was
utilized in our study to evaluate the impact of this deacetylase
inhibitor on the Ku70 cytoplasmic accumulation and DNA-
mediated IFN-l1 induction. The data implicated that TSA
treatment dose-dependently enhances the cytoplasmic
accumulation of Ku70 and increases DNA-mediated IFN-l1
induction. (Sui et al., 2021). As we demonstrated in our study,
the relationship of the acetylation levels of Ku70 and DNA-
mediated innate immune response may provide a simple and
elegant strategy, modulating the acetylation levels of the target
protein to regulate its localization-dependent activities.

Ku70 and Ku80 are generally believed to always form
heterodimers. And it has been consistently confirmed in our
previous study that Ku80 translocates from the nucleus to the
cytoplasm together with Ku70. The confocal microscopy analysis
indicated that Ku70 and Ku80 colocalized together in the nucleus
of unstimulated cells, and then both translocate from the nucleus
to the cytoplasm upon a DNA stimulation (Sui et al., 2021).
However, Koik et al. demonstrated that the localization of Ku80
does not entirely coincide with that of Ku70, Ku80 protein was
transported to the nucleus without heterodimerization with
Ku70. The Ku80 NLS was demonstrated to be mediated to the
nuclear rim by two components of PTAC58 and PTAC97. This
findings support the idea that Ku80 can translocate to the
nucleus using its own NLS independent of the translocation of
Ku70 (Koike et al., 1999a). On the other hand, using the site-
directed mutagenesis technique, the same group demonstrated
that Ku70 can also translocate to the nucleus without
heterodimerization with Ku80 or independent of DNA-PK
autophosphorylation (Koike et al., 2000).

The N-C or C-N translocation of DNA-PKcs is rarely
reported. We have confirmed DNA-PKcs is not involved in
Ku70-mediated IFN-l1 induction. Co-immunoprecipitation
assay suggested DNA-PKcs is not present in the Ku70-STING
complex. Therefore, implicating that DNA-PKcs does not
translocate together with Ku70 or Ku80 from the nucleus to
the cytoplasm upon a DNA transfection or DNA virus infection
(Sui et al., 2017). Other factors may involve in facilitating the
translocation of DNA-PKcs. Further study is required to help us
understand the translocation of DNA-PKcs.
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Regulation of the N-C translocation has been defined as an
essential mechanism to control protein activities. Whether some
other cellular factors may facilitate Ku70, Ku, or DNA-PK to
respond to specific stimuli by regulating its nuclear or
cytoplasmic localization remains to be identified. Better
understanding the N-C translocation of Ku70, Ku80 and
DNA-PKcs may provide unique insights into the multiple
functions of Ku70 in the DNA repair process, Bax-mediated
apoptosis, and innate immune response.

In addition to regulating the N-C transport, the detailed
mechanisms regarding Ku70-mediated innate immunity offer
multiple strategies to downregulate cytosolic DNA-induced
autoimmunity or enhance innate immune response under the
context of DNA vaccination. For example, Wang et al. found that
the Ku70/Ku80 heterodimer recognizes aging-related DNA
accumulation in the cytoplasm of human or mouse CD4+ T
cells. The sensing by the Ku complex further recruits DNA-PKs
on the site and triggers the phosphorylation of ZAK.
Subsequently, it activates the AKT-mTOR signaling pathway,
which enhances the proliferation of CD4+ T cells and accelerates
the pathology progress of experimental autoimmune
encephalomyelitis (EAE) in mice (Wang et al., 2021).
Consequently, based on the discovered molecular mechanism,
the group further developed an inhibitor specific against ZAK to
dampen the pathology progress of EAE (Wang et al., 2021).

It is known that many viruses possess the system to escape from
the innate immune response by host cells. The mechanism of the
immune escape by a DNA virus, Vaccinia virus (VACV), has been
investigated (Bowie and Unterholzner, 2008; Elde et al., 2012). The
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
VACVC16proteinwas reported as thefirst protein to inhibitDNA-
PK-mediated signaling (Peters et al., 2013). It has been
demonstrated that the C-terminal region of C16 binds directly to
the Ku70/Ku80 complex, therefore blocking the sensing of Ku to
DNA. The protein VACV C16 is not endogenously expressed on
VACV strain Western Reserve. So the intranasal infection of this
virus strain inmice leads to enhanced innate immune response and
less symptoms of viral infection-related sickness (Fahy et al., 2008;
Peters et al., 2013). Another protein ofVACV, C4, is later identified
targeting DNA-PK to inhibit DNA-PK-mediated signaling. VACV
C4 possesses a similar sequence as C16, so it shares a similar
mechanism to block DNA binding to DNA-PK by binding to the
Ku complex. The absence of C4 promotes innate and adaptive
immune responses (Scutts et al., 2018). Overall, these findings
demonstrate that viral proteins help to evade the sensing of the
viral genome by inhibiting the activity of PRR, therefore
highlighting alternative strategies to regulate the innate
immune response.

Similar to VACV, DNA virus HSV-1 has also shown the
ability to evade innate immune responses in host cells (Su et al.,
2016; Lum and Cristea, 2021). Studies from Zheng’s lab
implicated that HSV-1 VP24, a serine protease, could also
inhibit dsDNA-initiated IFN production by blocking the
interaction between IRF3 and TBK1 and therefore dampening
the phosphorylation of IRF3 (Zhang et al., 2016a). Another
study demonstrated that HSV-1 VP16 could interrupt IRF3
recruiting the CREB-binding protein coactivator, thus
inhibiting IRF3-mediated downstream signaling (Xing et al.,
2013). Furthermore, US3 of HSV-1, another viral protein
FIGURE 4 | Ku70 is an indispensable host cellular factor in the early and late stages of the HIV-1 replication cycle. The interaction of IN with Ku70 during HIV
reverse transcription prevents IN from degradation by the K48-linked Ub proteasome pathway. The interaction between Ku70 and IN decreases the modification
level of IN by Ub in the cells. During the integration step, the initial binding of Ku70 and HIV-1 IN facilitates the recruitment of other members of the DNA-PK complex
to the post-integration site. Then Ku70 serves as a member of DNA-PK and participates in the DNA gaps repair process through the NHEJ pathway, thereby
completing the integration of viral DNA into the cell genome and enabling the HIV-1 viral replication. Ku70 is also packaged into HIV particles as early as its assembly
stage and becomes part of HIV virions, and this process is mediated by HIV IN.
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kinase, has been reported to prevent IRF3 activation and inhibit
type-I IFN production by hyper phosphorylating IRF3 at Ser175
(Wang et al., 2013; Wang et al., 2014). It has been reported that
HSV-1 ICP27 interacts with TBK1 and STING, which impairs
the activation of downstream transcription factor IRF3.
(Christensen et al., 2016). Our previous study also found that
the Ku70-mediated type-III IFN response was induced in an
HSV-1 strain-dependent manner: Infection with the HSV-1
McKrae strain triggers the cytoplasmic translocation of Ku70
and induces IFN-l1 induction, while infection with the HSV-1
MacIntyre strain does not. Therefore, we speculated that the
HSV-1 MacIntyre strain might encode specific viral proteins that
may inhibit the signaling pathway of IFN induction. Further
studies are needed to identify the specific molecular mechanism
for HSV-1 immune evasion. As we listed above, all these
observations implicated that HSV-1-encoded viral proteins to
facilitate HSV-1 immune evasion could interrupt the
downstream signaling of DNA-mediated signaling pathway,
therefore providing potential strategies to regulate any
signaling pathway with shared downstream signaling adaptors,
such as STING, TBK1, and IRF3.

In summary, with an aim to highlight innate immune
response mediated by DNA virus infection in a battle against
viral infection, a better understanding of the interplay between
host innate immune response and viral immune evasion would
provide intriguing novel strategies to help develop diverse
therapies to treat viral infection-related diseases.
BEYOND THE ROLE OF KU70 IN INNATE
IMMUNITY: A ROLE OF KU70 IN HIV
REPLICATION CYCLE AND BACTERIAL
INTERNALIZATION

HIV needs many cellular factors to facilitate its replication (Emig-
Agius et al., 2014). Ku70 and Ku80 are reported as host partners
involving in HIV replication (Waninger et al., 2004; Studamire and
Goff, 2008; Santos et al., 2012; Schweitzer et al., 2013; Emig-Agius
et al., 2014; Hultquist et al., 2016; Li et al., 2016a). Several studies
found that Ku70/Ku80 heterodimer binds with HIV genomic RNA
or TAR RNA at the 5’ end of mRNA transcripts. Those data further
implicated that the Ku complex may regulate the transcription
process of HIV. (Kaczmarski and Khan, 1993; Yoo and Dynan,
1998); the interactions between Ku and HIV RNA may also impact
the transcription level of HIV and the latency property of HIV
(Manic et al., 2013). Additionally, Ku could also regulate
transcriptional elongation by interacting with the RNA hairpin
structure of 7SK snRNA, a scaffold protein for forming the 7SK
snRNP complex (Shadrina et al., 2016; Shadrina et al., 2020). Several
contradictory studies also show that Ku involves in retroviral DNA
integration (Daniel et al., 1999; Baekelandt et al., 2000; Daniel et al.,
2004; Knyazhanskaya et al., 2016) in the transcription of integrated
provirus (Jeanson and Mouscadet, 2002; Tyagi et al., 2011; Manic
et al., 2013; Shadrina et al., 2016), and in functions of HIV-1 matrix
protein (Li et al., 2016a). Another evidence demonstrated that the
DNA-PK complex involves in the induction of apoptosis in
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activated CD4+ T cells at the early stage of HIV infection (Cooper
et al., 2013).

HIV-1 integrase (IN) is an essential viral enzyme involving in
several viral replication steps. Meanwhile, IN is also an unstable
protein and degraded by the N-end rule pathway through the host
ubiquitin-proteasome machinery (Mulder and Muesing, 2000).
However, it remains unknown how HIV-1 IN is protected from
degradation during HIV replication. Zheng et al. demonstrated
that Ku70 from host cells interacts with HIV-1 IN and prevents it
from the Lys48-linked polyubiquitination proteasomal pathway.
Additionally, Ku70 can decrease the overall protein
polyubiquitination level and specifically deubiquitinate IN by
binding with HIV-1 IN (Zheng et al., 2011). Mutagenic studies
by Anisenko et al. showed that the amino acid residues 51-160 of
HIV-1 IN interacts with 251-438 aa of Ku70. It is further reported
that the N-terminal region (1-250 aa) of Ku70 interacts with the
a6-helix region located at the 200-220 residues of IN, and the
single mutations at E212A or L213A abrogate the interaction.
Those findings highlighted the essential role of the 200-220 aa
residues of IN in forming a complex with Ku70 (Anisenko
et al., 2017a).

Additionally, knockdown of Ku70 significantly inhibits the
HIV-1 virus replication in virus-producing cell lines or HIV-
infected CD4+ T cells, and the copy number of two-long
terminal repeat (LTR) circles and integrated proviral DNA
cannot be detected. Those data implicated that Ku70 is an
indispensable factor at the early and the late stages of HIV-1
replication (Zheng et al., 2011) (as illustrated in Figure 4). HIV-1
IN is an essential enzyme in HIV virions and integrates the
proviral DNA into the host genomic DNA. Integration is a
critical step during HIV-1 replication. (Cherepanov et al., 2003;
Faure et al., 2005; Passos et al., 2017). In detail, IN binds viral
DNA and then catalyzes the cleavage of dinucleotides from both
3’-ends of viral DNA. The complex of 3’-processed viral DNA
and IN helps recruit some other viral and cellular proteins as
cofactors. Subsequently, the whole complex imports into the
nucleus. The second step of integration happens in the nucleus of
the host cells. IN inserts the processed viral DNA into one strand
of the genomic DNA of host cells (Lesbats et al., 2016). This
insertion leads to 5-nucleotide gaps (Vincent et al., 1990; Vink
et al., 1990; Lesbats et al., 2016). As a result, 3’-ends of viral DNA
are then covalently associated with the cellular DNA. However,
an overhang is formed at the 5′-ends because of an unpaired
dinucleotide (Knyazhanskaya et al., 2019). In order to complete
the integration process, the intermediate product has to be
repaired (Knyazhanskaya et al., 2016). Knyazhanskaya et al.
proposed that the direct binding between Ku70 and HIV-1 IN
greatly facilitates the recruitment of Ku80 and DNA-PKcs to the
integration site. And then, the whole DNA-PK complex
sufficiently functions in initiating the DNA repair process by
the NHEJ pathway and resumes efficient HIV-1 replication
(Knyazhanskaya et al., 2019).

Interestingly, Zheng et al. found that Ku70 is incorporated into
HIV viral particles (Zheng et al., 2011). Nascent HIV viruses
contain Gag and GagPol polyproteins, and viral genomic RNAs
(as illustrated in Figure 4). The polyproteins are composed
of several HIV proteins and immature forms of IN, located at
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the C’- terminus end (Imamichi et al., 2021). Thus, Ku70 maybe
incorporated in the virion during assembly via the immature IN.
As IN regulates viral maturation (Engelman et al., 1995; Bukovsky
and Göttlinger, 1996; Balakrishnan et al., 2013; Hoyte et al., 2017;
Imamichi et al., 2021). Further study may reveal more roles of
Ku70 during retrovirus infection and replication.

Overall, many studies have provided examples of how HIV-1
viruses commandeer host cellular machinery to protect
themselves and facilitate viral replication (Zheng et al., 2011).
Consequently, identifying the host cell factors that participate in
these processes and determining their functions in HIV viral
replication may lead to discovering novel therapeutic targets to
fight HIV (Adamson and Freed, 2010; Tintori et al., 2014). Ku70
may become an ideal therapeutic target to treat patients infected
with multi-drug-resistant HIV variants.

As we discussed in the current review, cytosolic Ku70, which
is translocated from the nucleus to the cytoplasm, can sense
cytosolic DNA to induce innate immune response (Zhang et al.,
2011a; Ferguson et al., 2012; Li et al., 2016b; Sui et al., 2017;
Wang et al., 2017; Burleigh et al., 2020; Sui et al., 2021; Wang
et al., 2021), and can inhibit Bax-mediated apoptosis (Sawada
et al., 2003; Mazumder et al., 2007). Additionally, Ku70 has also
been found localized in the plasma membrane, where it can
interact with metalloprotease 9 (MMP-9) (Monferran et al.,
2004b), fibronectin (Monferran et al., 2004a) and participate in
heterologous and homologous cell adhesion (Koike, 2002). It was
also reported that the cell-surfaced Ku70 acts as a receptor for the
infection of Rickettsia conorii (R. conorii), a negative gamma
bacterium; the rickettsial protein, rOmpB, binds to Ku70 as a
ligand. The interaction plays an important role in initiating
infection signals, ultimately leading to bacterial entry
(Martinez et al., 2005). The plasma membrane-associated Ku70
has also been identified in lipid rafts, and so it has been
speculated that the existence of Ku70 within these domains
may play an essential role in pathogen entry and signal
transduction (Lucero et al., 2003).

Beyond the role of Ku70 in innate immunity, those studies
about the involvement of Ku70 in pathogen invasion and HIV
replication highlighted a further understanding of the interplay
between the host protein Ku70 and pathogen. Further
investigation could lead to the development of novel, efficacious
therapies in the treatment and prevention of infectious diseases.
CONCLUSIONS AND PERSPECTIVES

The study of Ku70/80 is expanding to encompass numerous
research fields, including regulatory processes. More and more
promising research emphasizes the role of Ku in innate immunity,
the development of a small-molecule Ku inhibitor (Weterings
et al., 2016), and the essential clinical relevance of Ku. Exploring
the molecular mechanism by which the Ku- or DNA-PK-involved
innate immune response confers various strategies to regulate
innate immune cascade and could shed light on the role of Ku70
in autoimmune diseases, vaccine development, or aging-related
abnormalities. Further investigation could lead to more
discoveries at both the basic and translational research levels.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
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innate immune response, especially the cytoplasmic
translocation of Ku70, provides novel strategies to regulate
innate immune cascades in response to the invasion of foreign
microbe DNA or the accumulation of abnormal cellular DNA.
Some autoimmune diseases are caused by the persistent
induction of proinflammatory cytokines and IFNs. The
emergence of mutations in some genes, including Trex1, RNase
H, SAMHD1, and others (Crow et al., 2006a; Crow et al., 2006b;
Rice et al., 2009; Crow et al., 2015) leads to the abnormal
accumulation of cellular DNA. Those abnormal cytoplasmic
DNAs serve as dangerous PAMPs and are recognized by
potential PRRs in host cells, and then initiate continuous
production of innate immune cytokines. Hypothetically,
inhibition of the cytoplasmic translocation of DNA sensors,
such as Ku70 and IFI16, with some small compounds is
expected to abrogate the sensing of cytosolic DNA, therefore
downregulating IFN response and providing effective
interventions for these autoimmune diseases. Similar strategies
may also be used to decrease the over-response of host cells to
some viral infections (Sun et al., 2021).

Future research may reveal a more comprehensive
understanding of the multiple roles of Ku70, especially in the
field of Ku70-involved innate immune networks. These findings
would help us solve some remaining questions: how Ku70
regulates its activities in the nucleus and the cytoplasm, and
whether it is possible that Ku70 also serves as a nucleus DNA
sensor like IFI16 (Kerur et al., 2011; Unterholzner and Bowie,
2011; Li et al., 2012; Dell’oste et al., 2014; Ansari et al., 2015; Roy
et al., 2019). Overall, a better understanding of the multiple
functions of Ku70 at both the cellular and organismal level would
provide new insights into treatments of infectious diseases and
autoimmune abnormalities.
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