L)

Check for
updates

COVID-19 lockdowns drive decline in active fires in

southeastern United States

Benjamin Poulter®", Patrick H. Freeborn P, W. Matt Jolly ®, and J. Morgan Varner®

2Earth Sciences Division, Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771; bRocky Mountain Research Station, Fire
Sciences Laboratory, US Forest Service, Missoula, MT 59803; and “Tall Timbers Research Station, Tallahassee, FL 32312

Edited by Ruth DeFries, Columbia University, New York, NY, and approved August 17, 2021 (received for review April 6, 2021)

Fire is a common ecosystem process in forests and grasslands
worldwide. Increasingly, ignitions are controlled by human activi-
ties either through suppression of wildfires or intentional ignition
of prescribed fires. The southeastern United States leads the
nation in prescribed fire, burning ca. 80% of the country’s extent
annually. The COVID-19 pandemic radically changed human
behavior as workplaces implemented social-distancing guidelines
and provided an opportunity to evaluate relationships between
humans and fire as fire management plans were postponed or
cancelled. Using active fire data from satellite-based observations,
we found that in the southeastern United States, COVID-19 led to
a 21% reduction in fire activity compared to the 2003 to 2019 aver-
age. The reduction was more pronounced for federally managed
lands, up to 41% below average compared to the past 20 y (38%
below average compared to the past decade). Declines in fire activ-
ity were partly affected by an unusually wet February before the
COVID-19 shutdown began in mid-March 2020. Despite the wet
spring, the predicted number of active fire detections was still
lower than expected, confirming a COVID-19 signal on ignitions. In
addition, prescribed fire management statistics reported by US
federal agencies confirmed the satellite observations and showed
that, following the wet February and before the mid-March
COVID-19 shutdown, cumulative burned area was approaching
record highs across the region. With fire return intervals in the
southeastern United States as frequent as 1 to 2 y, COVID-19 fire
impacts will contribute to an increasing backlog in necessary
fire management activities, affecting biodiversity and future fire
danger.
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In early 2020, policies were implemented worldwide to pre-
vent and slow the spread of the coronavirus disease 2019
(COVID-19). These policies mandated the closure of workpla-
ces, forcing a large proportion of society to “work from home,”
starting first in Asia in February 2020 and then across North
America in mid-March 2020. Almost immediately, as society
adjusted in ways never experienced before, changes were
observed in air quality (1), water quality (2), surface vibrations
(3), and nightlights (4). For example, reductions in atmospheric
nitrous oxide concentrations were measured over almost all
urban centers and travel corridors across the globe (5).
Improvements in water quality due to reduced turbidity from
shipping activity revealed new inland-water habitats for fisher-
ies (6). Annual carbon dioxide (CO,) emissions declined
between 5% and 7% for 2020 (7), detectable from energy con-
sumption data (8) and also from the Orbiting Carbon Observa-
tory-2 (OCO-2) greenhouse gas satellite (9), although surpris-
ingly, the growth rate of atmospheric CO, remained the same
as previous year (10). To help track the indirect and direct
effects of COVID-19 on the Earth system, new frameworks
proposing novel feedbacks have emerged (11, 12). Pathways
highlighted in these frameworks suggest interacting impacts of
COVID-19 on natural ecosystems via reductions in air pollu-
tion that would affect cloud condensation nuclei and mesoscale
climate processes and that longer-term impacts of COVID-19
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on CO, emission reductions would affect even longer-term cli-
mate dynamics (11).

Beyond weather and climate, however, human activities
directly impact ecosystem structure, composition, and function
through forest management, fuelwood harvest, and deforesta-
tion (13). In most parts of the world, fragmentation and habitat
degradation have also affected disturbance processes, such as
fire (14). Fire is a natural process and is found in almost all ter-
restrial ecosystems where fuel loads, moisture conditions, and
ignition sources converge to support combustion and fire
spread (15). Modern fire is an increasingly anthropogenic pro-
cess, with fire suppression, ignitions, and fragmentation from
land-cover change or drainage of peatlands creating novel fire
regimes and increasing the need for active management, such
as prescribed fire (16). In the United States, over 80% of
wildfires are caused by a combination of intentional and unin-
tentional human ignitions, accounting for more than 40% of
annual burned area (17). Human-ignited prescribed fires typi-
cally exceed or mirror annual wildfire extents in the United
States (18). Because of this relationship between humans and
fire, consequences from COVID-19 would likely have direct
impacts on ecosystems, rather than indirect, by affecting both
the number of ignitions and the effectiveness of fire suppres-
sion. For example, by mid-March 2020, fire management activi-
ties on public and private lands in the United States were
temporarily shut down as state and federal agencies closed or
as fire managers postponed prescribed fire plans to reduce the
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The coronavirus pandemic, COVID-19, led to strict social-dis-
tancing guidelines that severely impacted human livelihood
and economic activity. Workplace closures reduced travel,
and early in spring 2020, improvements in air and water
quality, reduced seismic activity, and reductions in green-
house gas emissions were observed. COVID-19-related shut-
downs emerged at the beginning of the prescribed fire
season in the southeastern United States, where 80% of
fires are human caused. Using active fire satellite observa-
tions and fuel treatment statistics, we estimated a 21%
reduction in active fires from March to December 2020 (up
to 40% on federal lands). This reduction in active fire may
increase fire risk in the future and is detrimental to biodiver-
sity and other ecosystem services inherent to fire-dependent
ecosystems.
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risk of transmitting COVID-19 in the workplace, exacerbating
smoke-related respiratory problems to nearby communities, or
as fire crew members were affected by contracting COVID-19
themselves. In addition, concerns about fire suppression capa-
bilities were raised, for example, how to safely support emer-
gency wildfire firefighting crews that typically live in close
quarters and in large numbers (19, 20).

Here, we present results on how COVID-19 affected fires in
the southeastern United States, a landscape of fire-dependent
ecosystems categorized in the “intermediate-cool-small” pyrome
(21). This pyrome is strongly influenced by human activities, both
in natural and managed systems, including agriculture (22). Agri-
cultural fires in the region account for about 16% of fire counts,
with about 35% of fire counts in Florida attributed to agriculture
(22). The forested ecosystems in this nine-state region,* covering
1.2 Mkm?, include longleaf pine (Pinus palustris) savannas that
support numerous threatened and endangered plant and animal
species, given the requirement for fire to occur as frequently as 1
to 2y (23). Using remote-sensing data from the NASA Land,
Atmosphere Near real-time Capability for Earth Observing Sys-
tems Fire Information for Resource Management System
(FIRMS), we were able to track fire activity at subdaily frequency
and compare these observations to historical records from the
past 20 y. Tracking active fires has relevance for informing fire
managers, interpreting changes in air quality, and identifying
increased fire danger risk from “missed” fuel treatments. An
unusually wet spring, with cold fronts driving heavy precipitation
events, required that meteorological effects be separated from
how COVID-19 affected fire ignitions. Thus, we developed an
empirical model to predict fire activity based on historical meteo-
rological conditions and range of variability and evaluated the
COVID-19 effect as the departure from this forecast. To substan-
tiate uncertainties in the satellite record (e.g., downlink problems
experienced with the Moderate Resolution Imaging Spectrome-
ter [MODIS] aboard Aqua in late August and early September
2020), we also evaluated prescribed fire statistics reported for
federally owned lands in the region managed by the US Depart-
ments of Agriculture (National Forests) and Interior (National
Wildlife Refuges, National Parks, and Preserves).

Decline in 2020 Active Fires Detected from Space

The NASA FIRMS database provides near-real time (NRT)
access to active fire data for a number of space-based satellite
instruments. Here, we used two of the longer-term active fire
datasets from 1) the MODIS instrument onboard the Terra
(launched December 1999) and Aqua spacecraft (launched
May 2002) and 2) from the Visible Infrared Imaging Radiome-
ter Suite (VIIRS), launched October 2011, and one of several
instruments onboard the Suomi National Polar-Orbiting Part-
nership. Using multiple instruments helps overcome limitations
in overpass time (24), with the Local Time Descending Node
for Terra at 1030 and 2230 hours, Aqua at 1330 and 0130 hours,
and VIIRS at 1330 and 0130 hours. In addition, the instru-
ments have different spatial resolutions at nadir (1 km for
MODIS and 375 m for VIIRS) and sensitivities to surface tem-
perature anomalies, which provides an opportunity to evaluate
detection efficiency of small fires.

Almost immediately following the stay-at-home orders issued
in mid-March 2020,” a drop in the number of active fire

*The study area includes the states of Mississippi (125,434 km?), Louisiana (134,264 km?),
Alabama (135,765 km?), Arkansas (137,732 km?), Florida (170,304 km?), Georgia
(153,909 km?), South Carolina (82,932 km?), North Carolina (139,389 km?), and Tennessee
(109,151 km?).

"The stay-at-home orders were advised at the federal level on March 16, 2020, and
implemented at the state level for Mississippi (April 4), Louisiana (March 30), Alabama
(April 3), Arkansas (none), Florida (April 3), Georgia (April 3), South Carolina (April 7),
North Carolina (March 30), and Tennessee (April 2).
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detections across the southeastern United States was observed
(Fig. 14). The decline was even more pronounced on federally
owned lands (Fig. 1B), which saw almost no fire from mid-
March until October 2020 (week 40). Across the coastal plain
from Alabama through Georgia, active fires were lower than
the long-term mean (Fig. 1C), and by April, the declines over
federal lands were visually striking across the landscape (Fig.
1D). Relative to 2003 to 2019, the decline in annual active fire
by state (SI Appendix, Fig. S2) was largest for the states of
South Carolina (37%), Tennessee (33%), and Mississippi
(28%). On federally owned lands (SI Appendix, Fig. S3), Geor-
gia had the largest decline (68%), followed by Tennessee (57%)
and South Carolina (51%). By the end of 2020, active fires
were 21% lower than average relative to MODIS era, 2003 to
2019 (third lowest), and 10% lower relative to the VIIRS era,
2012 to 2019 (second lowest). On federally owned lands, the
reduction in active fires was 41% for MODIS and 38% for
VIIRS, the lowest recorded for both eras.

Between early February and mid-March, cold fronts brought
substantial precipitation across the southeastern United States
(SI Appendix, Fig. S5) at the same time when prescribed fire
activity typically peaks (25, 26). By mid-February, cumulative
precipitation (SI Appendix, Figs. S6 and S7) was higher than
observed since 1980 for the states of Arkansas, Alabama, Mis-
sissippi, Louisiana, Tennessee, and South and North Carolina
but remained low for Florida. Negative active fire anomalies
were observed for all states and ownerships in this time period
between early February and early March (Fig. 2 A and B), but
it is possible smaller fires did not decline as much as detected
by VIIRS (Fig. 2 C and D). In the last week of February and
first 2 wk of March 2020, active fire anomalies were observed to
be close to average or positive across almost all states and own-
erships (Fig. 2 A-D), bringing the number of active fire pixels
back to average counts for this time of year (SI Appendix, Figs.
S2 and S3). After March 15, 2020, however, fire activity
abruptly declined following the stay-at-home orders, continuing
the decline until late June, when private landowners then took
advantage of opportunities to burn in summer (e.g., mid-July to
August; Fig. 2 A and C). In contrast, on federal lands, the
active fire pixel counts remained anomalously low until late
November and early December when fire activity increased
again in Arkansas, Louisiana, Mississippi, and Alabama (Fig. 2
A and C).

Decline in Prescribed Fire from Statistical Reporting

Remote sensing of active fires does not discriminate between
wildfires, prescribed fires, and the burning of biomass on agri-
cultural lands (22). Additionally, remote sensing of active fires
is an imperfect record of thermal anomalies when clouds are
present, when fire sizes or intensities are imperceptible, or
when fires are burning between overpasses. To confirm the
satellite record, we used statistics on prescribed fire burn area
utilized for fuel treatments reported by US federal land man-
agement agencies within the Department of Agriculture (i.e.,
US Forest Service) and the Department of Interior (i.e., the
Bureau of Land Management, US Fish and Wildlife Service,
National Park Service, and Bureau of Indian Affairs). The data
reported by the Department of Agriculture to the Forest Ser-
vice Activity Tracking System database and the data reported
by the Department of Interior to the National Fire Plan Opera-
tions and Reporting System database are integrated by the
National Wildfire Coordinating Group to develop a harmo-
nized Integrated Interagency Fuels Treatment Decision Sup-
port System (IIFTDSS) (27).

Similar temporal trajectories were observed in the satellite-
based active fire data and the interagency fuels treatment data
(SI Appendix, Fig. S4) using IIFTDSS prescribed fire categories
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Fig. 1. Time series of cumulative active fire pixels detected by MODIS Aqua and Terra on (A) all lands and (B) federally owned lands (Department of Inte-
rior, Department of Defense, Department of Agriculture). The black vertical line in A and B is March 15, 2020, the approximate date of COVID-19-driven
stay-at-home orders. Maps of (C) March 2020 and (D) April 2020 active fire anomalies (relative to 2003 to 2019) with federally owned lands shown by
black polygons. See S/ Appendix, Fig. S1 for the same figures but using VIIRS (2012 to 2019).

(see Materials and Methods). Across the southeastern United  than on record. For example, by March 15, 2020, 2,050 km? of
States, the IIFTDSS data showed a decrease in burned area  prescribed fire area was reported, relative to the previous 9 y
during the high-precipitation period of February 2020 and then  average when only ~1,600 km? (minimum to maximum: 1,060
a rapid early March increase in burned area to levels greater  to 2,097 kmz) was burned by this date. This was followed by an
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almost complete cessation of prescribed fire in all states on
March 15, 2020, when the federal stay-at-home orders were
issued. At the end of 2020, just 2,850 km? of land was reported
to have been burned during prescribed fire fuel treatments
compared to the previous 9-y average of 3,480 km? (minimum
to maximum: 2,865 to 4,333 kmz), about a 21% reduction in
burned area.

Meteorological Effects on Fire Danger

A statistical model was developed to forecast expected fire
activity for March to August (MAMJJA) based on the Keetch-
Byram Drought Index (KBDI ) (28). We calculated KBDI using
meteorological data from the NASA Global Modeling and
Assimilation Office (GMAO) and used KBDI anomalies, rela-
tive to their 99th percentile, to fit a linear model (see Materials
and Methods; see SI Appendix, Table S1 for statistical summa-
ries). Models were fit to MODIS Terra and Aqua active fire
pixel counts for each state, both inside and outside federally
owned lands. The MAMIJJA period was chosen because it
reflected the main period of COVID-19 social-distancing
restrictions.

In all cases, the 2020 active fire pixel counts were signifi-
cantly lower than what would have been predicted based on his-
torical relationships for MAMIJA (Fig. 3). This departure from
expected conditions illustrates the COVID-19 effect on fire
activity and was stronger for federally owned lands. For exam-
ple, active fires were as much as 42% (1-sigma range; 29.9% to
55.7%) lower than forecast on federal lands for Arkansas, 56%
(21.2% to 90.8%) for Georgia, and 46.5% (24.9% to 67.9%)
for Tennessee. While the model provided additional insight into
the COVID-19 effect, the relationship is very much a first-
order approximation of climate-fire behavior. More informa-
tion to improve the statistical forecast at sub-state levels,
including covariates for fire history, vegetation type, and fuel
load, would contribute to reducing uncertainties.

Impacts on Trace Gas Emissions and Air Quality

Air quality was an early indicator that COVID-19 was affecting
the Earth system due to changes in human behavior. Landscape
fires are a source of particulate matter (PM2.5) and other trace
gases, and a reduction in their number would cause a decrease
in emissions production. We used data from the Global Fire
Emissions Database (GFED) and the Quick Fire Emissions
Database (QFED) to evaluate whether the decline in active
fires in 2020 led to a decline in carbon emissions. In 2018, fossil
fuel consumption in the southeastern United States emitted
320 Tg C (Tg = teragram; 10'* g). In comparison, wildfires in
the southeastern United States emit between 11.7 and 23.9 Tg
Cy ! (1997 to 2020 average, 15.7 Tg C y ') based on QFED
and 2.1 and 9.9 Tg C y ' (average, 5.7 Tg C y ') based on
GFED. In 2020, fire emissions were the lowest on record (Fig.
4), with QFED reporting 11.9 Tg C y ' and GFED reporting
4.3 Tg C y~'. While locally these reductions would be expected
to affect air quality, at regional scales, the emissions represent
less than ~3.7% of fossil fuel emissions and thus are unlikely to
be detected as anomalies in atmospheric column observations
of carbon monoxide or CO; (29).

Implications for Fire Management and Ecosystems

This study shows that COVID-19 had direct impacts on ecosys-
tems by changing human behavior linked to fire management
and ignitions. The reductions in active fires, prescribed fire
area, and emissions production are the largest in the more than
20-y record (1997 to 2020). In contrast to the Western United
States, where the 2020 fire season broke new records for arca
burned (17,000 km? burned in California alone), the southeast-
ern United States had a very different fire year.
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Fig. 3. Departure between expected MODIS active fire pixel detections
based on the relationship with March through August mean KBDI for
2003 to 2019 and observed MODIS active fire pixel detections in 2020.
Both the number of active fire pixel counts (Top) and the percentage rela-
tive to the average (Bottom) were lower than what would have been
expected because of the COVID-19 effect on ignitions. The statistical
model was consistent for federally owned lands, which showed significant
decreases in fire relative to what was predicted. Error bars are 1 SD, and
asterisks indicate the regression was significant at P < 0.15; for state-by-
state summary, see S/ Appendix, Table S1.

The consequences of reduced fire activity range from
impacts on local and regional air quality (30) to direct impacts
on biodiversity (31, 32) to impacts on fuel loading (33). Fire
management in the southeastern United States is limited by
seasonal burn windows and minimal resources (23), where large
numbers of fires are needed to maintain short fire return inter-
vals (1 to 3 y). Many rare and imperiled plant and animal spe-
cies require frequent fire for the maintenance and recovery
efforts (34, 35). Furthermore, the consequences of delayed or
“missed” prescribed fires as effective fuel treatments may lead
to more difficult fire suppression in the near term. Continually
missed opportunities for burning contribute to accumulating
backlogs. For example, 2019 was also a low burn year because
of the US Government federal shutdown, or furlough, that
lasted from December 22, 2018, to January 25, 2019 [the begin-
ning of the peak period in annual burning (25, 26)]. Early data
for 2021 show slightly above-average active fires, suggesting
that fire managers are working through these backlogs when
conditions permit.*

Previous work shows that in the southeastern United States,
fire-prone ecosystems with high productivity are associated with
rapid recovery of living and dead fuels. In pine flatwoods, for
example, significant differences in fuel loading, fireline inten-
sity, and rates of spread result from just a single year of addi-
tional growth (36). Even in more xeric upland pine ecosystems,
where productivity is lower, threshold responses occur in fuel
load and corresponding ecological conditions affecting fire
(37). These effects cascade to invertebrate and vertebrate

*https:/talltimbers.org/nasa-prescribed-fire-covid 19/
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responses that can also be degraded with additional fire-free
years in these frequent fire ecosystems (35). Based on the evi-
dence from these long-term studies (37), potential continued
COVID-19 restrictions lingering into the 2021 fire year may
increase fire hazard and alter a variety of ecological conditions.

Combining remote-sensing observations with federal statis-
tics helped address several limitations in the remote-sensing
data. The remote-sensing uncertainties include time of day of
overpass and obscuration of the land surface by clouds in spring
2020 but also errors of omission, as fire sizes may have become
smaller as fire managers adapted to smaller fire crews. How-
ever, according to the IIFTDSS data, median fire size for 2011
to 2019 was 1.5 km? and 2020 was 1.7 km?, but the data are not
yet available for private lands. Private land permit data would
also help reconcile uncertainties on nonfederal lands, but per-
mit data often include area statistics for places that may not
have actually burned if weather or plans changed after the per-
mit was released (25, 34). Using multiple lines of evidence from
diverse remote-sensing data combined with federal and state
statistics offers a robust approach to characterize the spatial
and temporal variation in fire.

To help managers prioritize upcoming burns, seasonal fore-
casts can help inform how the burn window is emerging under
the changing climate (38). Fire danger has increased over
the past decades (39), making prescribed fire more urgent but
also more complex to implement (34, 40). The COVID-19
pandemic reveals how significantly humans have altered and
controlled fires across the southeastern United States and else-
where [i.e., smaller declines in Europe (41) and increases in
Colombia (42)] and emphasizes the need for a combination of
spaceborne and ground-based monitoring approaches to help
inform and optimize fire management in the future.

Materials and Methods

Satellite Data. The active fire detections for the three sets of observations fol-
low the same algorithm developed by refs. 43 and 44. This algorithm estimates
land-surface temperature (LST) derived from thermal band emissivities in 4.0
pm for MODIS and 3.74 pm for VIIRS using Planck’s blackbody function. For
MODIS, we used day and night detections provided by the MCD14DLv006
product that combines Collection 6 Terra (MOD14) and Aqua (MYD14) fire
products that use Collection 6 L1B MOD021KM and MYDO021KM radiance
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products. For VIIRS, we used day and night detections provided by the
VNP14IMGTDL_NRT L2 VIIRS product that uses channel I-4 brightness tempera-
tures for hot spot detection. The LST data are filtered for cloud effects, and
then a set of threshold criteria are applied to determine whether the tempera-
ture anomaly is an active fire. No “confidence” criteria were applied to filter
potential false positives in the active fire; instead, all active fire observations
were used. The decision to include all active fire detections avoided introduc-
ing uncertainty into the application-specific criteria confidence value used
(45). Including all confidence levels also allowed a more objective treatment
of the active fire detections across all years and states to avoid biases in cases
where fire size or intensity may change year to year. The data are available
through NASA FIRMS at https://firms.modaps.eosdis.nasa.gov/, and a visualizer
has been developed by Tall Timbers at https:/talltimbers.org/nasa-prescribed-
fire-covid19/.

Trace gas emission data were provided by GFED (GFED4.1S) and QFED
(QFEDv2.5r1). The two emissions databases use different approaches to esti-
mate burned area, with GFED4.1s using MODIS burned area (MODA45) and an
internal carbon cycle model (46), whereas QFEDv2.5r1 (47) uses fire radiative
power using the cloud correction method developed in the Global Fire Assimi-
lation System from MOD14 and MYD14. Thus, a comparison between the two
helps to quantify uncertainties and robustness of observations.

Ancillary Data. The US state boundaries were masked using the US Census
Bureau state shapefile, cb_2018_us_state_5m, at a scale of 1:5,000,000. Federal
ownership data were from the US Geological Survey Sciencebase Catalog,
shapefile fedlanp010g.shp_nt00966, 1:1,000,000 scale. An error in the Califor-
nia Federal Information Processing System codes in fedlanp010g.shp_nt00966
was corrected in which three properties incorrectly assigned California lands
to Arkansas.

Federal fire management statistics for 2011 onward were downloaded on
February 6, 2021, from the ArcGIS Online Integrated Interagency Fuels Treat-
ments feature service.® Fuel treatment types that incorporated prescribed fire
included broadcast burns, hand pile burns, machine pile burns, and jackpot
burns. Wildfires and wildland fire use fires that inadvertently burned a treat-
ment plot or were used opportunistically as a fuel treatment were not
included since these were likely unplanned events (S/ Appendix, Fig. S4). The
statistics are geospatial, provided in shapefile format, and were summarized
based on the reported completion date.

Meteorology Data. Meteorological data from the NASA GMAO Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA-2)
Reanalysis were used to analyze precipitation trends and to compute the fire

Yhttps:/doildt.maps.arcgis.com/home/item.html?id=acdb4a650c824c91ba7efd51d3fof008
#overview
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danger index. MERRA-2 is an assimilation system that uses surface, aircraft,
and spaceborne measurements to produce global, hourly, gridded meteoro-
logical variables (48). MERRA-2 data cover the time period of 1980 to present
day at 0.5 x 0.625 spatial resolution. For this analysis, the variables T2MMAX
(2-m air temperature) and PRECTOTCORR [corrected precipitation (49)] were
used. The variables were converted to daily mean temperature and daily total
precipitation.

KBDI Calculation. The KBDI was developed in 1968 (28) as a simple fire danger
index linking evaporative demand and precipitation to estimate cumulative
moisture deficit representative of fuel. The KBDI was used partly because it
was developed originally in the southeastern United States, but we acknowl-
edge that a range of other fire danger indices, such as the Canadian Fire
Weather Index, would be appropriate and yet give similar results at the spatial
scale (state to region) that we investigate (50). We use MERRA-2 variables
daily mean T2MMAX (TMAX, ‘C) and daily total PRECTOTCORR (P, mm) as
inputs for estimating KBDI. The KBDI values are transformed to their anoma-
lies relative to 95th or 99th percentile values (described as follows).

We used standard set of parameters to estimate the soil moisture deficit,
assuming a soil column (D) of 203.2-mm depth. Mean-annual rainfall (mm)
was estimated for 2000 to 2019. The soil moisture deficit was initialized at 0
mm on day 1 of the simulation (and then applying Egs. 1-6 on a daily time
step), requiring less than a year to reach quasi-equilibrium (and last 21 of 41y
used in the analysis ).

PEFF =P -5 [1]

ET = (?) 10° [21
a=D—SMD;_; [31

b — 049686(0'0875TMAX+1 5552)-8.3 [4]
c= 1 + 10_889—0.00173MAR [5]
SMD = SMD;_, — PEFF + ET. [6]

The KBDI values were converted to KBDI anomalies based on a percentile
method. We used Climate Data Operators (1.9.9rc2) to carry out the calcula-
tion. First, the 99th KBDI percentile for the 1980 to 2020 time period was
estimated relative to the long-term daily minimum (timmin) and maximum
(timmax) KBDI using the timpct/ function. This returns the KBDI value match-
ing the 99th percentile for the daily 41-y time series (1980 to 2020) with values
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ranging from 0 to 203 mm. The original daily KBDI values were compared
with the 99th percentile values to determine the KBDI anomalies. For exam-
ple, if the 99th percentile KBDI value was 150 mm (meaning that this value
was exceeded only 1% of the time) and if the daily observed KBDI value was
170 mm, then the KBDI percentile anomaly would be 20 mm greater than the
99th percentile value (i.e., the drying was 20 mm greater than three sigma val-
ues). Or, if the daily observed KBDI was 100 mm, then the percentile anomaly
would be —50 mm, meaning the KBDI is 50 mm lower (wetter) than three
sigma. We compared using 95th percentiles and found the threshold value
did not alter our conclusions.

Statistical Model. A statistical model was developed (using R version 3.6.0) to
predict the number of satellite-derived active fire pixels from the KBDI fire
danger index. The model was developed for each state, integrating the num-
ber of active fire pixels for the March to August (MAMJJA) period and averag-
ing KBDI for the same period. Active fire data from MODIS Terra and Aqua
were used, providing an 18 y (2003 to 2020) time period compared to 9 y for
VIIRS. For each state, individual linear models were fit between average
MAMIJJA KBDI and total MAMJJA fire pixel counts using the years 2003 to
2019 (excluding 2020). The fitted model was used to predict fire activity for
2020 given the 2020 MAMIJJA average KBDI. We calculated the difference
between the predicted number of MAMJJA active fire pixels and the observed
number with the departure in fires due to COVID-19 impacts. The analysis was
carried out for all lands and again for just federally owned lands. Combining
the data for a single southeastern United States model showed a similar
departure in the expected number of active fires from the active fires that
were actually documented in 2020 (S/ Appendix, Fig. S9).

Data Availability. All study data are included in the article and/or S/ Appendix.
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