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Abstract

Word-based or ”alignment-free” sequence comparison has become an active research area in bioinformatics. While
previous word-frequency approaches calculated rough measures of sequence similarity or dissimilarity, some new
alignment-free methods are able to accurately estimate phylogenetic distances between genomic sequences. One of these
approaches is Filtered Spaced Word Matches. Here, we extend this approach to estimate evolutionary distances between
complete or incomplete proteomes; our implementation of this approach is called Prot-SpaM. We compare the performance
of Prot-SpaM to other alignment-free methods on simulated sequences and on various groups of eukaryotic and
prokaryotic taxa. Prot-SpaM can be used to calculate high-quality phylogenetic trees for dozens of whole-proteome
sequences in a matter of seconds or minutes and often outperforms other alignment-free approaches. The source code of
our software is available through Github: https://github.com/jschellh/ProtSpaM.

Keywords: alignment-free, phylogeny, spaced words, micro-alignment, proteome, protein comparison, distance method,
Kimura, Wolbachia, amino-acid substitutions

Introduction

Evolutionary relationships between species are usually inferred
by comparing homologous gene or protein sequences to each
other. Here, groups of orthologous sequences have to be iden-
tified first, for which then multiple alignments are to be cal-
culated. There are generally two different strategies of resolv-
ing phylogenies based on multiple alignments. In the so-called
supermatrix approach, multiple sequence alignments of single
genes or proteins are concatenated. A phylogenetic tree is in-

ferred from the resulting matrix, e.g., using maximum likelihood
[1] or Bayesian inference [2]. Alternatively, gene or protein trees
are inferred for every single multiple sequence alignment, and
the resulting phylogeny is inferred using coalescent models [3]
or supertree [4] approaches.

All of these steps are time consuming, and manual inter-
vention is often required. Therefore, word-based or alignment-
free alternatives have been proposed recently, which are much
faster and require much less data preparation. Most alignment-
free methods compare the word composition of sequences [5, 6,
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7, 8, 9, 10], with some approaches also considering background
word frequencies [11, 12, 13, 14]; see [15] for a review of these lat-
ter approaches. More recently, the spaced-word composition of
sequences has been used for sequence comparison [16, 17, 18,
19]. Other alignment-free methods are based on the so-called
matching statistics, i.e., they use the length of maximal common
subwords [20, 21]. This has been extended to maximal common
subwords with a certain number of mismatches [22, 23, 24, 25].
Alignment-free approaches have been recently reviewed in de-
tail [26, 27, 28].

Accurate alignment-free tools are urgently needed because
of the huge volume of data generated by new sequencing tech-
niques. Another advantage of alignment-free methods, com-
pared to alignment-based approaches, is the fact that they can
be applied to incomplete data, e.g., to unassembled sequencing
reads or to partially sequenced genomes [29]. Note that some
of the so-called alignment-free approaches are based on com-
paring words of the input sequences to each other. So, strictly
speaking, they are not alignment-free since they align these
words to each other. The term ”alignment-free” is used never-
theless by most researchers, since these word-based approaches
circumvent the need to calculate full pairwise or multiple align-
ments of the sequences under study.

The above-mentioned approaches to alignment-free se-
quence comparison calculate ad hoc measures of sequence sim-
ilarity or dissimilarity. They are not based on stochastic models
of molecular evolution, and they do not try to estimate distances
between sequences in a statistically rigorous way. More recently,
some alignment-free approaches have been proposed that are
based on explicit models of DNA evolution. These methods are
able to estimate the number of substitutions per site that have
happened since two nucleic-acid sequences have evolved from
their last common ancestor [30, 31, 32, 33, 34, 35].

A main application of alignment-free approaches is com-
parison of whole genomes. Consequently, most alignment-free
methods have been designed to work on DNA sequences. If dis-
tantly related species are studied though, phylogenetic trees are
usually inferred from protein sequences rather than from DNA
sequences. The reason for this is that protein sequences are
more conserved than DNA sequences, as synonymous substi-
tutions are not visible in proteins. Thus, for distal species, it
may be hard to detect similarities between genes at the DNA
sequence level, while homologies may still be detectable among
protein sequences. It is therefore highly desirable to have ac-
curate alignment-free software tools that work on protein se-
quences, in addition to the available tools for DNA sequence
comparison. Generic word-frequency methods can be applied
to both DNA and protein sequences; the program Feature Fre-
quency Profile (FFP), e.g., has been used for whole-proteome
comparison [36]. As mentioned above, however, these methods
do not estimate phylogenetic distances in a rigorous way. To
date, there are no alignment-free approaches available that can
accurately estimate evolutionary distances between protein se-
quences.

Here, we propose an alignment-free method that estimates
the phylogenetic distance between two taxa based on the aver-
age number of amino-acid substitutions in the whole proteoms
since they evolved from their last common ancestor. Our ap-
proach is based on filtered spaced word matches (FSWM), a con-
cept we introduced recently for whole-genome sequence com-
parison [33]; see [31, 35] for related approaches. We call the
implementation of this new approach proteome-based spaced-
word matches (Prot-SpaM). The basic idea is to use gap-free pair-
wise alignments of fixed-length words with matching amino-

acid residues at certain pre-defined positions. Such spaced-word
matches can be rapidly identified and, after discarding random
background matches, the remaining ”homologous” spaced-word
matches can be used to estimate the phylogenetic distance be-
tween two taxa. To our knowledge, this is the first approach that
accurately estimates evolutionary distances between protein se-
quences without the need to calculate full sequence alignments.

To evaluate our approach, we used simulated protein se-
quences and real-world whole proteomes. Test runs on the sim-
ulated sequences show that our distance estimates are very
close to the true distances for distance values of up to around
2.0 substitutions per sequence position. On the real-world se-
quences, we evaluated our approach indirectly by phylogenetic
analysis, as is common practice in the field. We used Prot-SpaM
to estimate pairwise distances for various sets of taxa, and we
applied the neighbor-joining algorithm [37] to calculate phylo-
genetic trees from the resulting distance matrices. These trees
were finally evaluated by comparing them to reference trees that
were determined by standard methods and can be considered to
be reliable. We show that the trees obtained with our approach
are often of high quality, and they are generally more similar to
the respective reference trees than trees generated with other
alignment-free approaches.

Method

We consider sequences over an alphabetA. Here,A consists of 20
characters representing the 20 different amino acids. Prot-SpaM
is based on so-called spaced-word matches between sequences.
For a wildcard character ‘∗’ with ∗ �∈ A and a binary pattern P of
length � – , i.e., for a length-� word P over {0, 1} –, a spaced-word
with respect to P is a length-� word W over the alphabet A ∪ {∗}
such that W(i) = ∗ if and only if P(i) = 0. An index i ∈ {1, . . . , �}
is called a match position of P or W, respectively, if P(i) = 1, and
a don’t care position otherwise. The number of match positions
in a pattern or spaced-word is called its weight w. We say that a
spaced word W with respect to P occurs in a sequence S at some
position i if one has W(k) = S(i + k − 1) for all k ∈ {1, . . . , �} with
P(k) = 1 – , i.e., for all match positions of P.

Moreover, we say that there is a spaced-word match w.r.t. P
between two sequences S1 and S2 at (i1, i2) if the same spaced
word w.r.t P occurs at position i1 in S1 and at position i2 at S2. In
other words, there is a spaced-word match between S1 and S2 at
(i1, i2) if and only if one has S1(i1 + k − 1) = S2(i2 + k − 1) for all
match positions k of P. Below is an example for a spaced-word
match between two sequences S1 and S2 at (2,3) with respect
to the pattern P = 1100101; the spaced word TN∗∗D∗P occurs at
position 2 in S1 and at position 3 in S2:

Similar to our original FSWM approach, we estimate dis-
tances between protein sequences based on selected spaced-
word matches between them, with respect to one or several pre-
defined patterns. Distance values are obtained by comparing the
amino-acid residues that are aligned to each other at the don’t-
care positions of the selected spaced-word matches. This is sim-
ilar to estimating distances in standard alignment-based ap-
proaches; the only difference from those standard approaches is
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that we are using don’t-care positions of spaced-word matches
instead of full sequence alignments.

To estimate distances in this way, one has to make sure
that only those spaced-word matches are selected that repre-
sent homologies, i.e., that the involved spaced-word occurrences
go back to the same origin in the last common ancestor of the
two proteins that are compared. To distinguish such ”homolo-
gous” spaced-word matches from random background matches,
we calculate a score for each spaced-word match using the BLO-
SUM62 substitution matrix [38]. Similar to the previous version
of our program for nucleic-acid sequences, we define the score
of a spaced-word match as the sum of substitution scores of the
aligned amino acids at the don’t-care positions. Based on this
score, our algorithm decides if a spaced-word match is homol-
ogous or not. If its score is below a certain threshold T, then a
spaced-word match is considered a random match and is not
further considered. As a default, we use a threshold value of T
= 0. To see that this threshold accurately separates homologous
from background spaced-word matches, one can plot the num-
ber of spaced-word matches with a score s against s, see Fig. 1.
We call such a plot a spaced-word-match histogram, or spamo-
gram for short. In these plots, two peaks are typically visible, a
peak on the right-hand side representing homologous spaced-
word matches and a peak on the left-hand side representing
background matches. By default, we are using patterns with a
weight of w = 6 and with 40 don’t-care positions, i.e., with a
length of � = 46.

Moreover, we use a one-to-one mapping of spaced-word oc-
currences. Note that if sequences S1 and S2 are compared and
a spaced word W occurs n time in S1 and n

′
times in S2, then

this gives rise to a total of n × n
′

spaced-word matches. Taking
all of these spaced-word matches into account for phylogeny
reconstruction would overemphasize repeated regions where
the same spaced words occur multiple times. Instead of using
all possible spaced-word matches, we therefore use a one-to-
one mapping of spaced-word occurrences in the compared se-
quences. That is, we ensure that each spaced word occurrence
is involved in at least one of the selected spaced-word matches.
Formally, if there are two spaced word matches at (i1, i2) and
at (j1, j2), respectively, then we can include both of them si-
multaneously in our list of selected spaced-word matches only
if i1 �= j1 and i2 �= j2 hold. To achieve this, we use the same
”greedy” algorithm that we described previously [33]. For a given
spaced word W, we calculate the scores of all spaced-word
matches involving W. We then select them one-by-one in de-
scending order of their scores, always ensuring that each occur-
rence of W is used in at least one of the selected spaced-word
matches.

Finally, in order to estimate pairwise distances between two
input sequences, we consider the pairs of amino acids aligned
to each other at the don’t-care positions of the selected spaced-
word matches. Here, we are using the Kimura model [39] that ap-
proximates the PAM distance [40] between sequences based on
the number of mismatches per position. We are using these two
different models since the Kimura model is commonly used to
infer distances from the number of mismatches per position in
alignments. The BLOSUM matrices, on the other hand, are stan-
dard in homology searching. Generally, our procedure to filter
out background spaced-word matches is rather robust since the
homologous and background regions in our spamograms can be
easily distinguished, as can be seen, e.g., in Fig. 1. So, the choice
of the substitution matrix to distinguish homologous from back-
ground spaced-word matches does not affect the results of our
approach very much.

The accuracy and statistical stability of the described
approach depends on the number of selected spaced-word
matches; the more matches we obtain, the more accurate and
stable the results of our method will be. To increase the num-
ber of spaced-word matches, the default version of our program
uses multiple patterns instead of one single pattern P. More pre-
cisely, we are using a set P = {P1, . . . , Pm} of m binary patterns
such that all patterns in P have the same length � and the same
weight w but have their match and don’t-care positions arranged
differently. We then use spaced-word matches with respect to all
patterns Pi ∈ P . By default, our program uses sets of m = 5 pat-
terns. To find suitable pattern sets, we integrated the tool rasb-
hari [41] into our implementation. rasbhari uses a ”hill climbing”
algorithm to optimize pattern sets according to a user-defined
criterion. In our program, we use rasbhari to minimize the over-
lap complexity [42] of pattern sets. Note that rasbhari uses a
probabilistic algorithm. It is therefore possible that different pro-
gram runs of rasbhari return different pattern sets, even if the
same parameter values are used. Consequently, different runs of
Prot-SpaM on the same sequences and with the same parameter
setting can produce slightly different distance estimates.

Results

To assess the quality of our new approach and to compare it to
other alignment-free methods, we used artificially generated as
well as real-world protein sequences. For the test runs, we used
the default parameters of our program, namely, 6 match posi-
tions and 40 don’t care positions, i.e., a total pattern length of
46 –, a threshold of T = 0 to discard background spaced-word
matches, and sets of m = 5 patterns. We compared our pro-
gram to the following four other alignment-free methods that
can be run on protein sequences: Average Common Substring
Approach (ACS) [21], FFP [36, 8], kmacs [22], and CVTree [11].
Here, we used version 3.19 of FFP, the other programs that we
evaluated did not have version numbers at the time of writing.
Since the original implementation of ACS is not publicly avail-
able, we used our own implementation of this approach by run-
ning kmacs with k = 0. The competing tools were used with
their default parameters. In addition to evaluating these tools
on protein sequences, we ran filtered spaced word matches on
the complete genome sequences of the same taxa. All test runs
were done on a 10 x Intel(R) Xeon(R) central processing using E7-
4850 with 2.00 GHz with four cores each, equaling 40 cores and
1,000 GB of random access memory.

Distance estimation on simulated sequences

To evaluate the distances estimated by our program, we sim-
ulated sequences with the tool pyvolve [43]. Pyvolve simulates
sequences along an evolutionary tree using continuous-time
Markov models. It can use various substitution models such as
JTT [44] and other models. Since there are no reliable stochas-
tic models for insertions and deletions (indels) in protein se-
quences, the program produces indel-free sequences. We sim-
ulated pairs of sequences of length 100,000 with distances be-
tween 0 and 2 substitutions per position in steps of 0.05 using the
JTT model. To evaluate the estimated distance values, we gen-
erated 1,000 sequence pairs for each distance value and plotted
the average of the estimated distances against the real Kimura
distance of the respective sequence pairs, calculated with the
program protdist from the PHYLIP package [45]. To study the ro-
bustness of the estimated distances, we added error bars rep-
resenting standard deviations to the plot. In addition to running
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Figure 1: Spaced-word histograms (spamograms) for different datasets. (A) and (B) are based on simulated insertion and deletion (indel)-free protein sequences with

a total length of of 1.6 × 106 amino-acid residues each and with 0.3 (A) and 0.75 (B) substitutions per position, respectively. (C) and (D) are from a whole-proteome
comparisons of plants, (C) comparing Eucalyptus grandis with Capsella rubella and b comparing Gossypium raimondii with Carica papaya.

Prot-SpaM with default parameters, i.e., with sets P of m = 5 pat-
terns , we did a second series of test runs with m = 1, i.e., with
single patterns. Figure 2 shows the results of these test runs.

Phylogenetic tree reconstruction

Next, we applied the above alignment-free methods to calculate
phylogenetic trees from real-world protein sequences. For four
different groups of species, we downloaded all available protein
sequences from GenBank [46], in addition we used two data sets
from Wolbachia [55], see Table 1 for details. Within each group,
we calculated all pairwise distances between the species. We
used the distance matrices obtained in this way as input for
neighbor-joining [37] and compared the resulting trees to ref-

erence trees that we assume reflect the respective correct phy-
logeny for each group. The Robinson-Foulds (RF) distances [47]
between the reconstructed trees and the respective reference
trees are shown in Table 2.

As mentioned above, Prot-SpaM uses a probabilistic algo-
rithm to generate pattern sets, so the results of different pro-
gram runs on a sequence set can differ slightly, even if the same
parameter values are used. We therefore performed 100 program
runs on each dataset. Table 2 lists the average RF distances for
these 100 program runs. An exception was the large prokaryotic
dataset where we only performed a single program run. Since
absolute RF distances are not easy to interpret, Table 2 also re-
ports the relative RF distances, which are obtained from the ab-

Table 1: Datasets used in this study to evaluate alignment-free methods, with number of taxa, total size, and source of the reference tree

Taxa # taxa Total size (MB) Source

Escherichia coli/Shigella 29 56.41 Zhou et al. [48]
Wolbachia I, 252 proteins 19 1.15 Gerth et al. [49]
Wolbachia I, whole proteomes 19 7.96 Gerth et al. [49]
Wolbachia II 47 14.78 See Supplementary Material
Plants 11 245.05 Hatje and Kollmar [50]
Prokaryotes 813 784.86 Lang et al. [51]
Metazoa 36 585.0 Borowiec et al. [52]
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Figure 2: Distances calculated by Prot-SpaM and four other alignment-free methods calculated for pairs of simulated protein sequences plotted against their distances
calculated with the Kimura model. Error bars denote standard deviations. Note that Prot-SpaM estimates phylogenetic distances in terms of substitutions that have
happened since two sequences evolved from their last common ancestor. The programs kmacs, CVTree, FFP, and ACS, by contrast, do not estimate distances in a

rigorous way but rather use ad hoc measures of sequence dissimilarity that are not linear functions of the real distances. Also, the absolute values of these distance
measures are rather arbitrary for these four other programs. We therefore normalized the distances calculated by kmacs, CVTree, FFP, and ACS such that they have a
value of one for sequence pairs with a Kimura distance of one.

solute RF distances by dividing by the maximum possible RF dis-
tance for a given dataset. The maximum possible RF distances
for a set of n taxa is 2 · n − 6 [53]. Program run times for the differ-
ent approaches are shown in Table 3. Trees were visualized with
iTOL [54]. Neighbor-joining trees and RF distances were calcu-
lated with the phylip package [45].

Escherichia coli/Shigella
Our first dataset consists of 29 strains of Escherichia coli and
Shigella. For each strain, we were able to download about 4,000-
5,000 protein sequences; the total size of this dataset is around
41 MB. Figure 5 shows the reference tree that we used and the
tree obtained with the algorithm described here. The reference
tree was published by Zhou et al. [48] and is based on a multiple
sequence alignment of 2,034 core genes and a maximum likeli-
hood method. As can be seen in Table 2, our approach produced
a tree with a topology almost identical to that of the reference
tree. All of the 100 program runs that we performed with Prot-
SpaM produced the same tree topology; the RF distance between
these trees and the reference tree was 4. The other protein-based
alignment-free methods led to phylogenies with RF distances to
the reference tree of between 24 and 42, while the genome-based
tree obtained with FSWM had an RF distance of 6 to the reference
tree. These trees are shown in the Supplementary Material.

Wolbachia
As a second test case for benchmarking, we analyzed the phy-
logeny of Wolbachia strains, a group of Alphaproteobacteria
that are intracellular endosymbionts of arthropods and nema-
todes [55]. Within Wolbachia, 16 distinct genetic lineages (“super-
groups”) are currently distinguished (named by letters A-F and
H-Q) that may differ in host specificity and type of symbiosis
[56]. We re-analyzed a phylogenomic dataset by [57], thereby fo-
cusing on relationships of strains within supergroups (Wolbachia
I). A tree generated with Prot-SpaM from this dataset is shown
Fig. 4.

For a second Wolbachia benchmarking dataset, we analyzed
relationships between supergroups based on available (draft)
genomes see below (Wolbachia II). For within supergroup rela-
tionships (Wolbachia I), a program run of Prot-SpaM on the whole
proteome recovered a tree that is largely congruent in topology
and branch lengths in comparison to a phylogenomic superma-
trix analysis of 252 single-copy orthologs that excluded genes
that showed signs of recombination. A comparison based on
RF distances showed that our new method outcompetes other
available alignment-free programs (Table 2). Interestingly, when
analyzing only the 252 ortholog dataset of [57] instead of whole
proteomes, RF distances become bigger and other alignment-
free methods perform better (Table 2).
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Table 2: Robinson-Foulds (RF) distances and relative RF distances between trees generated with alignment-free methods and the respective
reference trees for various sets of taxa.

Taxa Prot-SpaM FSWM CVTree FFP, k = 4 kmacs, k = 10 ACS

RF distances
Escherichia coli/Shigella 4.00 6 24 40 42 38
Wolbachia I, 252 proteins 7.68 8 6 4 8 4
Wolbachia I, whole proteomes 6.00 6 8 16 8 12
Wolbachia II 19.62 20 44 54 26 16
Plants 0.82 0 6 8 2 6
Prokaryotes 1,020 1,348 886 1,452 880 960
Metazoa 27.1 - 40 62 30 36

Relative RF distances
E. coli/Shigella 0.08 0.12 0.46 0.77 0.81 0.73
Wolbachia I, 252 proteins 0.24 0.25 0.19 0.13 0.25 0.13
Wolbachia I, whole proteomes 0.19 0.19 0.25 0.50 0.25 0.38
Wolbachia II 0.23 0.23 0.50 0.61 0.30 0.18
Plants 0.05 0.00 0.37 0.50 0.12 0.37
Prokaryotes 0.63 0.83 0.55 0.90 0.54 0.59
Metazoa 0.41 - 0.61 0.94 0.45 0.55

See the main text for details. Since Prot-SpaM uses a probabilistic algorithm, different program runs may produce slightly different results. Therefore, we performed
100 program runs on each dataset and report the average RF distances, except for the large prokaryote dataset where we did only a single program run. All programs

were run on protein sequences or whole proteomes, respectively, except for FSWM, which was run on whole-genome sequences of the same species (or on the gene
sequences coding for the 252 selected proteins from Wolbachia I). We were unable to run FSWM on the whole genomes of the 31 metazoan species since this dataset
was too large. Since the original implementation of ACS is not publicly available, we ran our own implementation, kmacs, with k = 0 instead.

Table 3: Program run time in seconds for different alignment-free approaches on our benchmark datasets.

Taxa Prot-SpaM FSWM CVTree FFP, k = 4 kmacs, k = 10 ACS

Escherichia coli/Shigella 55 110 125 10 2,518 193
Wolbachia II 19 68 46 9 5,302 135
Wolbachia I, 252 proteins 3 5 2 1 36 3
Wolbachia I, whole
proteomes

11 22 21 2 178 26

Plants 464 1,107,720 365 17 17,693 850
Prokaryotes 5,502 244,139 5,492 1,929 915,635 123,520
Metazoa 1,719 - 1,973 43 151,612 9,512

Prot-SpaM and FSWM were run on 40 threads. The other tools do not support multi-threading; therefore, they were run single threaded.

Figure 3: Distances calculated by Prot-SpaM for pairs of simulated protein sequences with a single binary pattern (m = 1, left) and with the default multiple-pattern
option (m = 5, right). We performed 1,000 program runs for each value of m. The plot shows the average of the calculated distances; standard deviations are shown as
error bars.
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Figure 4: Reference tree for our dataset Wolbachia I (top) and tree calculated with Prot-SpaM using whole-proteome sequences of the same taxa (bottom) (see main
text for details). Topological differences between the two trees are shown in red in the Prot-SpaM tree.

Analyzing relationships between supergroups has been his-
torically regarded as a difficult phylogenetic problem [58, 49]. An-
alyzing all annotated proteins from available genomes with Prot-
SpaM supported the monophyly of all supergroups. Moreover,
this analysis found the same Wolbachia strains basally branching
as recent analyses suggested. Surprisingly, the phylogenomic
supermatrix analysis of 252 single-copy orthologs that excluded
genes that showed signs of recombination of this dataset recov-
ered a topology that differs from the previous study in not sup-
porting the sister group relationship of supergroups A and B. In
contrast, as found in previous analyses, the sister group rela-
tionship of supergroups A and B is supported by the Prot-SpaM
analysis. The Prot-SpaM analysis also recovered some relation-
ships between supergroups that differ from the topologies of
our phylogenomic analysis or expectations from a recently pub-
lished phylogenomic study [59]. However, it is known that super-
groups differ in their base (and amino acid) composition, and
it is currently unknown how this may impact alignment-free

methods. More sophisticated evolutionary models could allevi-
ate these differences in future studies. Nevertheless, in this test
case, Prot-SpaM also outperforms other alignment-free methods
when comparing the resulting phylogenetic tree with a phyloge-
nomic analyses based on a concatenated supermatrix (Table 2).

For the Wolbachia II dataset, we downloaded (if available)
proteomes for all available Wolbachia draft and fully assembled
genomes (47 in total; see Supplementary Material for details).
Proteins for Wolbachia strains that were lacking this informa-
tion in the National Center for Biotechnology Information Gen-
Bank were derived from translations using GeneMark version 2.5
[60]. We predicted groups of orthologous genes between these
proteomes using Orthofinder version 2.1.2 [61] running under
default parameters. Single-copy genes present in all analyzed
strains (83 in total) were aligned using MAFFT version 7.271
with the ‘L-INS-i’ algorithm [62] and tested for evidence of re-
combination using the pairwise homoplasy index [63] with win-
dow sizes of 10, 20, 30, and 50. Recombining loci were subse-
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Figure 5: Reference tree (A) from [48] and tree calculated with Prot-SpaM with default parameters (B) for a set of 29 Escherichia coli and Shigella strains. Differences in
the topologies between the two trees are marked in red.

quently removed from the dataset and the remaining loci con-
catenated using FasConCat version 1.0 [64]. The resulting super-
matrix (68 loci, 20,787 amino acid positions) was subject to par-
titioned maximum likelihood analysis following best model and
partition scheme selection in IQ-TREE version 1.6.2 [65, 66, 67].

For the whole-proteome sequences of the dataset Wolbachia
I, the RF distance to the reference tree was 6 for each of the 100
program runs. By contrast, for the 100 runs on the selected pro-
tein sequences of the same set of taxa, the average RF distance
was 7.68 and the standard deviation was 0.736. For Wolbachia II,
the average RF distance was 19.62 and the standard deviation
was 0.89.

Large-scale microbial phylogeny reconstruction
In 2013, J. Eisen’s group published a paper on the phylogeny of
the microbial genomes that were available at the time [51]. As a
basis of their study, they selected 24 single-copy marker genes
and a non-redundant subset of taxa. To obtain such a subset,
they used a greedy algorithm by M. Steel [68], making sure that
marker genes from different taxa in the resulting subset had a
distance to each other of at least 2 substitutions per 100 posi-
tions. This way, they obtained a non-redundant subset of 841
bacterial and archeal genomes from the more than 3,000 mi-
crobial genomes that were publicly available. Multiple sequence
alignments of the marker genes were calculated with hmmalign
[69] and were concatenated to a supermatrix that was used as in-
put for the phylogeny programs RAxML [70] and MrBayes [2]. In
addition, the authors used the Bayesian tree-reconciliation pro-
gram BUCKy [71] to the same set of marker genes. The trees they
obtained with these different methods were found to be similar
to trees obtained based on 16S RNA genes.

To evaluate Prot-SpaM, we used the 841 microbial genomes
from Lang et al. [51] and downloaded all protein sequences from
these taxa that were available through GenBank. For 28 of the
841 taxa, we were unable to obtain protein sequences, so we ob-
tained a slightly reduced subset of 813 taxa compared to the taxa
used by Lang et al. First, we applied Prot-SpaM to all available
protein sequences from these 813 taxa. In addition, we ran Prot-
SpaM on the protein sequences encoded by the 24 marker genes
from Lang et al. and, finally, we applied our previous approach
FSWM [33] to the 841 genome sequences. The trees that we ob-

tained with our different alignment-free approaches are shown
in Fig. 6, together with the maximum likelihood tree from [51],
which we considered as a reliable reference. Clades from this
reference tree are color coded in Fig. 6. As can be see from the
color coding, the tree obtained with Prot-SpaM from the avail-
able protein sequences contains essentially the same clades as
the reference tree. There are some differences within the clades
that should be further investigated (J. Eisen, personal commu-
nication). The RF distance between the tree obtained with Prot-
SpaM and the reference tree was 1,020.

Plants
Next, we used a set of plant taxa that has been studied by Hatje
and Kollmar [50] and that we had used in previous studies to
evaluate alignment-free approaches to genome sequence com-
parison [17, 22, 33]. The dataset that we used in these previous
studies consisted of 14 Brassicales species. In GenBank, however,
the proteomes could be downloaded for only 11 of the 14 species,
so we had to limit our test runs to these 11 species. To obtain a
reference tree, we used a tree that has been obtained with multi-
ple sequence alignment and maximum likelihood, as published
by Hatje and Kollmar [50; Figure 3 B]. From this tree, we removed
the three species for which we could not obtain the proteome
sequences in GenBank. Figure 7 shows the reference tree of the
14 original species, together with trees of the 11 species with
available proteomes, calculated with the alignment-free meth-
ods that we evaluated here. For the 100 program runs with Prot-
SpaM, the average RF distance between the resulting trees and
the reference tree from [50] was 0.82 and the standard deviation
was 0.9.

Metazoa
Finally, we used a set of 36 proteomes from 34 metazoan and
2 choanoflagellate taxa. These taxa have been previously used
by Borowiec et al. [52] to study the position of the Ctenophora
within the phylogenetic tree of the metazoan kingdom. The
same set of taxa has also been used in a study by Zhou et al. [72]
to evaluate maximum-likelihood programs for phylogeny recon-
struction. As a reference tree, we used the tree published in [52].
The average RF distance of the Prot-SpaM trees to this reference
tree was 27.1, with a standard deviation of 1.51.
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Figure 6: Phylogenetic trees for a large set of microbial taxa studied by Lang et al. [51]. (A) Maximum-likelihood tree constructed by Lang et al. based on a super
alignment of 24 selected genes. (B) Tree constructed with our approach, as described here, for 813 taxa for which the proteomes are available in GenBank. (C) Tree
constructed with our approach based on the proteins corresponding to the 24 genes selected by Lang et al. (D) Tree reconstructed using our program FSWM [33] on the

841 whole-genome sequences.

Parameter values and number of selected spaced-word matches
Prot-SpaM has four major parameters that can be adjusted by
the user: the weight w (=number of match positions) of the bi-
nary patterns and spaced words, their length �, the number m
of different binary patterns used by the program, and the cut-
off value T to separate homologous from background spaced-
word matches. To see how these parameters influence the re-
sults of our software and to find suitable default values, we ran
Prot-SpaM with varying values of these four parameters. Here,
we modified one parameter at a time, using the respective de-
fault values of the remaining three parameters. The results are
summarized in Tables 4 and 5. As can be seen in these tables,
there are no values for w, �, and T that work best for all datasets,
but our default values seem to be a reasonable compromise. Us-
ing sets of m = 5 binary patterns does not improve the qual-
ity of the produced trees in terms of their RF distances to the
reference trees compared to program runs with single patterns.
Table 3 shows, however, that the distance values estimated by
Prot-SpaM become statistically more stable if multiple patterns
are used.

The number of spaced-word matches in a pairwise sequence
comparison depends on how similar the two sequences are to
each other; see [18] for details. Consequently, the number of
spaced-word matches that are selected by our program to esti-
mate phylogenetic distances also depends on the degree of sim-

ilarity between the compared sequences. We found two extreme
cases with our test data, one in the E. coli/Shigella dataset where
most taxa are closely related to each other and another one in
the Metazoan dataset that contains taxa with very large evolu-
tionary distances. In the pairwise comparison of E. coli O157:H7
strain EDL933 with E. coli O157:H7 Sakai (EHEC), Prot-SpaM se-
lected more than 6,000,000 spaced-word matches. These two
proteomes have less than 1,600,000 amino acids each, so in this
case >3.75 spaced-word matches per sequence position were se-
lected. By contrast, less than 13,000 spaced-word matches were
selected in the comparison of Brugia malayi and Homo sapiens.
The latter proteome has a length of more than 75,000,000 amino
acids, so here less than 0.00017 spaced-word matches per se-
quence position were selected.

Discussion

A number of so-called alignment-free approaches have been
proposed in recent years to rapidly calculate phylogenetic dis-
tances between genomic sequences. Earlier approaches are
based on k-mer frequencies or on the length of common sub-
strings. These approaches have been applied not only to DNA
but also to protein sequences. A drawback of these methods
is that they can only calculate rough measures of sequence
similarity or dissimilarity; they do not estimate phylogenetic
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Figure 7: Phylogenetic trees of plant taxa. (A) Reference tree from [50] and trees constructed with (B) the approach described here and by (C) ACS [21], (D) FFP [8], and
(E) kmacs [22]. The original dataset contained 14 taxa, but only for 11 taxa could the proteomes be downloaded through GenBank. For completeness, we show the

reference for all 14 taxa.

Table 4: Program runtime and RF distances to reference trees for different parameter values with Prot-SpaM for the E. coli/Shigella and Wolbachia
proteomes.

E. coli/Shigella

Weight w 6 8 10
Runtime [s] 55.4 47.4 46.9
RF distance 4 6.02 6.76
Length � 36 46 56 66
Runtime [s] 47.5 55.4 60.3 66.9
RF distance 4 4 4.02 4.84
# patterns m 1 3 5 7
Runtime [s] 13.5 34.4 55.4 75.94
RF distance 4.12 4.02 4 4
Threshold T -50 -25 0 25 50 75 100 125
Runtime [s] 55.2 55.4 55.4 55.1 55.3 55.3 55.1 55.2
RF distance 11.92 12 4 12 12 12 12 12

Wolbachia II
Weight w 4 6 8 10
Runtime [s] 112.4 19.4 18 17.8
RF distance 20.38 19.68 22 22
Length � 36 46 56 66
Runtime [s] 17 19.4 21.5 23.9
RF distance 19.78 19.68 19.7 19.78
# patterns m 1 3 5 7
Runtime [s] 5.4 12.5 19.4 26.5
distance 19.06 19.12 19.68 19.82
Threshold T -50 -25 0 25 50 75 100 125
Runtime [s] 19.6 19.6 19.4 19.4 19.4 19.4 19.4 19.4
RF distance 22.18 18 19.68 19.86 20.16 20.7 21.04 22

We ran our program with different values for the weight w and length � of the spaced words for different numbers of patterns and for different values of the threshold T.

Here, we modified the value of one of these parameters at a time and used the default values for the remaining three parameters. Default values of the modified
parameters and the resulting runtimes and RF distances are shown in bold font. Since Prot-SpaM uses a probabilistic algorithm to generate pattern sets, we performed
100 program runs for each set of parameters; the table shows the average RF distances of these 100 runs.
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Table 5: Program runtime and RF distances to reference trees for different parameter values with Prot-SpaM for the plant and metazoan
proteomes

Plants

Weight w 4 6 8 10
Runtime [s] 57,578 464 320 325
RF distance 2 0 4 6
Length � 36 46 56 66
Runtime [s] 383 464 441 494
RF distance 2 0 0 0
# patterns m 1 3 5 7
Runtime [s] 91 255 464 572
RF distance 0 0 0 2
Threshold T -50 -25 0 25 50 75 100 125
Runtime [s] 383 402 464 409 391 459 439 430
RF distance 2 2 0 0 0 0 2 4

Metazoa
Weight w 6 8 10
Runtime [s] 1,719 1,584 1,518
RF distance 30 26 30
Length � 36 46 56 66
Runtime [s] 1,351 1,719 1,584 2,089
RF distance 26 30 24 26
# patterns 1 3 5 7
Runtime [s] 427 890 1,719 2,078
RF distance 24 28 30 26
Threshold T -50 -25 0 25 50 75 100 125
Runtime [s] 2,539 2,337 1,719 2,269 2,150 1,906 1,783 1,797
RF distance 30 24 30 26 28 28 30 34

Parameter values as in Table 4. Because of the size of these datasets, we performed only one program run per parameter set. We ran our program with different values
for the weight w and length � of the spaced words for different numbers of patterns and for different values of the threshold T. Here, we modified the value of one
of these parameters at a time and used the default values for the remaining three parameters. Default values of the modified parameters and the resulting runtimes
and RF distances are shown in bold font.

distances in a rigorous way. More recently, word-based meth-
ods have been developed that can accurately estimate phyloge-
netic distances between genomic sequences based on stochastic
models of DNA evolution. One of these approaches is FSWM.

In this study, we introduced Prot-SpaM, a new implemen-
tation of FSWM to compare complete or incomplete proteome
sequences to each other. To our knowledge, Prot-SpaM is the
first tool that can accurately estimate phylogenetic distances
between protein sequences without the need to calculate full
sequence alignments. Our benchmark results show that dis-
tance estimates obtained with our approach are accurate for a
large range of phylogenetic distances. Distances calculated with
CVTree, ACS, FFP, and kmacs, by comparison, are monotonously
increasing with the number of substitutions between the com-
pared sequences. The obtained distance values are far from pro-
portional to the real distances, and they flatten out somewhere
between 0.5 and 1.5 substitutions per position (see Fig. 2). By con-
trast, Prot-SpaM estimates distances with high accuracy for up
to around 2.0 substitutions per position. For higher distance val-
ues, the calculated distances become less stable, as can be seen
from the error bars in Fig. 2. Moreover, for large distances, our
program tends to slightly overestimate distances.

In our program evaluation, we used all competing soft-
ware tools with their respective default parameters, if such de-
fault values were recommended by their developers. It should
be mentioned, however, that some of the evaluated programs
might produce better results with different parameter settings.
The program FFP, e.g., uses a default k-mer length of k = 4, so we
used this value in our study. It has been reported, however, that
FFP may perform better on protein sequences if larger values

of k are used [36]. A comprehensive investigation of the effects
of different parameters on the software programs evaluated in
this study is beyond the scope of this article. Interested readers
are encouraged to run these programs with different parame-
ter values to see if their results on our benchmark data can be
improved.

Prot-SpaM produced high-quality trees and was superior to
other alignment-free methods for the E.coli/Shigella and plant
datasets, as shown in Table 2. On the Wolbachia datasets, it still
performed reasonably well and was again superior to compet-
ing approaches on the whole-proteome sequences, but it was
outperformed by word-frequency methods on the 252 selected
orthologous proteins. A possible explanation of this result is dis-
cussed below. On the large prokaryote dataset and for the meta-
zoan set, by contrast, none of the compared programs could
reproduce the reference trees that we used in our evaluation.
These are difficult datasets since they span very large evolution-
ary distances. Also, it should be mentioned that there are no
absolutely reliable reference trees available for these datasets.
For the metazoan dataset, e.g., the position of the ctenophores
is still a matter of debate [73, 74, 75]. On the metazoans, Prot-
SpaM performed better than other alignment-free approaches,
while on the large prokaryote dataset, CVTree, ACS, and kmacs
were superior.

An interesting result is the performance of Prot-SpaM com-
pared to our previous approach FSWM that takes genomic se-
quences as input. For most groups of taxa in our study, the re-
sults of Prot-SpaM and FSWM were of similar quality in the sense
that the RF distances to the reference trees were comparable for
both approaches. However, for the set of 813 prokaryote taxa,
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our new spaced-words approach performed better on whole
proteomes than our previous approach on whole genomes, as
shown in Fig. 6 and Table 2. This discrepancy is most likely due
to the large phylogenetic distances in this dataset. For such dis-
tantly related sequences, homologies are generally better de-
tectable at the protein level than at the DNA level.

”Alignment-free” methods for phylogeny reconstruction can
be directly applied to whole-genome or whole-proteome se-
quences, without the need to select orthologous genes or pro-
teins in a first step. This is generally seen as an advantage over
more traditional, alignment-based approaches since the task of
finding orthologs is time-consuming and often involves manual
intervention. On our dataset Wolbachia I, we actually obtained
better RF distances with Prot-SpaM and FSWM when we ap-
plied these programs to the whole-protein or whole-genome se-
quences, respectively, than when we applied them to the 252
selected orthologous proteins or to the genes coding for those
proteins (see Table 2). These results are in contrast to those with
the more traditional alignment-free methods FFP, CVTree, and
ACS that are based on word frequencies or on the length of com-
mon substrings. The latter programs performed better on the
selected orthologous proteins of the Wolbachia I dataset than on
the corresponding whole-proteome sequences.

A possible explanation of this phenomenon is that Prot-
SpaM and FSWM can reliably distinguish between homologous
and background spaced-word matches and use only homolo-
gous matches for phylogenetic inference. With the one-to-one
spaced-word matching, they can also reduce the number of par-
alogous spaced-word matches. Therefore, they can be applied
to whole proteomes or whole genomes without being too much
confused by paralogs or by non-related parts of the sequences.
Here, the benefits of using larger input sequence sets seem to
outweigh the disadvantage of including possible non-related
sequences, paralogs, or sequences with recombinations. Pre-
viously introduced word-frequency or substring-length meth-
ods, by contrast, do not distinguish between homologous and
non-homologous parts of the sequences. Therefore, these ap-
proaches tend to be confused by input sequences that contain
paralogs or are only locally related to each other.

Table 3 shows that the run time of Prot-SpaM is superior to
that of CVTree and ACS on protein sequences. By far, the fastest
alignment-free method on whole proteomes was FFP, the slow-
est one was kmacs. On the plant proteomes, Prot-SpaM was
three orders of magnitude faster than FSWM on the genome se-
quences of the same species. This is not surprising given the fact
that in eukaryotes only a small part of the genome is protein-
coding sequence. The total size of the 11 plant genomes was
3.8 GB compared to 245 MB for the corresponding proteome
sequences (note that for the genome sequences, both strands
are considered and the number of background spaced-word
matches scales quadratically with the sequence length).

Prot-SpaM has four major parameters that can be adjusted
by the user: the weight w and the length � of the patterns
and spaced words, respectively, the cutoff value T to distin-
guish homologous from random spaced-word matches, and the
number m of different patterns used to generate spaced-word
matches. We provide default values for these parameters, and
Tables 4 and 5 show that reasonable results can be obtained with
a rather broad range of parameter values. These tables also show
that the quality of the produced trees, as measured by the RF
distances to the reference trees, could not be improved by using
m = 5 patterns compared to the single-pattern option, i.e., m =
1. The statistical stability of our distance estimates, however, is
increased if multiple patterns are used; therefore, we are using

m = 5 patterns by default. Since runtime and memory usage of
our program increase with the number m of pattern, it may be
advisable to use the single-pattern option if very large datasets
are to be analyzed.

It should be mentioned that traditional approaches to phy-
logeny reconstruction that are based on multiple sequence
alignment are still more accurate than alignment-free ap-
proaches that have been proposed in recent years. The main ad-
vantage of these novel approaches is their high speed, which
makes it possible to apply them to the large sequence datasets
that are now available. A program run of Prot-SpaM on whole-
proteome sequences of the set Wolbachia II that consists of 47
taxa took only 19 seconds. Another advantage of our approach
is that it can reliably distinguish between local homologies and
random background similarities. It can, thus, be applied to com-
plete or incomplete proteomes, and it is not necessary to se-
lect orthologous genes or proteins in a first step. Therefore, we
think that Prot-SpaM should be a useful addition to existing ap-
proaches to phylogeny reconstruction.

Availability of source code and requirements
� Project name: Prot-SpaM
� Project home page: https://github.com/jschellh/ProtSpaM
� Operating system(s): linux
� Programming language: C++
� Other requirements: none
� License: GNU GPL
� Any restrictions to use by non-academics: none

Availability of supporting data

The sequence datasets and trees used for the program evalua-
tion can be downloaded from http://projects.gobics.de/data/prot
spam/paperData.tgz. Additional supporting data and snapshots
of the code are available in the GigaScience repository, GigaDB [76]
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