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ABSTRACT Long non-coding RNAs (lncRNAs) represent a diverse class of regulatory loci with roles in
development and stress responses throughout all kingdoms of life. LncRNAs, however, remain under-
studied in plants compared to animal systems. To address this deficiency, we applied a machine learning
prediction tool, Classifying RNA by Ensemble Machine learning Algorithm (CREMA), to analyze RNAseq
data from 11 plant species chosen to represent a wide range of evolutionary histories. Transcript sequences
of all expressed and/or annotated loci from plants grown in unstressed (control) conditions were assembled
and input into CREMA for comparative analyses. On average, 6.4% of the plant transcripts were identified
by CREMA as encoding lncRNAs. Gene annotation associated with the transcripts showed that up to 99% of
all predicted lncRNAs for Solanum tuberosum and Amborella trichopoda were missing from their reference
annotations whereas the reference annotation for the genetic model plant Arabidopsis thaliana contains
96% of all predicted lncRNAs for this species. Thus a reliance on reference annotations for use in lncRNA
research in less well-studied plants can be impeded by the near absence of annotations associated with
these regulatory transcripts. Moreover, our work using phylogenetic signal analyses suggests that molecular
traits of plant lncRNAs display different evolutionary patterns than all other transcripts in plants and have
molecular traits that do not follow a classic evolutionary pattern. Specifically, GC content was the only
tested trait of lncRNAs with consistently significant and high phylogenetic signal, contrary to high signal in
all tested molecular traits for the other transcripts in our tested plant species.
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Long non-protein coding RNAs (lncRNAs), a heterogeneous class of
regulatory transcripts, remain greatly understudied in plant species.
Although these transcripts have been implicated in development and
stress responses of plants, only 13 of these transcripts have been
empirically functionally characterized to date (Wang andCheksnova
2017; Nejat and Mantri 2018; Zhao et al. 2018). While researchers
often focus on computational prediction of these transcripts, par-
ticularly lncRNAs expressed under stressful conditions, biological

insights on the evolution, mechanisms and function of lncRNAs
remain uncertain.

Simopoulos et al. (2018) reported that the genome of Eutrema
salsugineum, an extremophile, contains a lower proportion of putative
lncRNAs in comparison to the genome of model plants Arabidopsis
thaliana and Oryza sativa. A lower number of predicted lncRNAs in
E. salsugineum is surprising due to the naturally high capacity of this
species to tolerate extreme environmental conditions (Champigny et al.
2013; Kazachkova et al. 2018) and the oft-cited association between
expressed lncRNAs and stress responses (Wang et al. 2017; Xu et al.
2017). E. salsugineum’s unexpectedly low number of predicted lncRNAs
compared to its close andmore stress sensitive relativeA. thaliana leads
to questions of potential natural variation in lncRNA number. How-
ever, the differences in predictions of lncRNAs in these species may be
due to data availability as few plant species have had their reference
annotation updated regularly in genomic databases. For example,
novel gene information has yet to be updated for E. salsugineum since
the official reference genome was released in 2013 (Yang et al. 2013)
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although Champigny et al. (2013) presented an additional 665 tran-
scriptional units for which the reference genome had no annotation.
Recently, Yin et al. (2018) have added to the number of novel tran-
scripts in E. salsugineum with evidence of expression of an additional
65 transcripts, none of which are available in the reference annotation
of E. salsugineum.

LncRNAs may be missing from genome annotations because they
are difficult to identify due to their low, tissue- and condition-dependent
expression (Derrien et al. 2012). Further, contrary to protein-coding
genes and other non-coding loci, the evolution of lncRNAs is not well
understood. Limited nucleotide conservation has been identified in
mammalian lncRNAs (Hezroni et al. 2015), and structural conserva-
tion remains controversial (Rivas et al. 2017). Instead of using homol-
ogy, distinguishing traits such as transcript length (Kapranov et al.
2007), open reading frame (ORF) (or lack of) length (Kapranov et al.
2007), GC content (Niazi and Valadkhan 2012), and number of exons
in a transcript (Derrien et al. 2012) are often used in lncRNA prediction
studies. Detected phylogenetic signal in traits of transcripts, rather than
sequence homology, can indicate that trait values follow the expected
evolutionary patterns of tested species. For example, high phylogenetic
signal implies traits are more similar in closely related species, whereas
low phylogenetic signal suggests the opposite: less similarity in tested
traits than expected in closely related species. However, identifying
which evolutionary process may be influencing a significant phyloge-
netic signal is complex andmany different processes are associated with
both high or low signal estimates (Revell et al. 2008).

Phylogenetic signal can be measured using many different indices,
however three different approaches areprevalent throughout estimation
methods: Brownianmotion, anOrnstein-Uhlenbeck process and spatial
autocorrelation.Highphylogenetic signaldetectedbya signal estimation
method that uses the theory of Brownianmotion, or evolution following
a random walk, can be observed in both natural selection and genetic
drift scenarios (Revell et al. 2008). Conversely, low detected phyloge-
netic signal can be inferred as the lack of similarity in tested traits, as
opposed to divergence of traits, and is common in adaptive radiation
or other fast adaptive processes (Kamilar and Cooper 2013). First de-
scribed with applications to evolution by Hansen (1997), the Ornstein-
Uhlenbeck process allows for a random walk, similar to Brownian
motion, but also for species to evolve toward an adaptive peak or fitness
optimum, thus suggesting data that fit an Ornstein-Uhlenbeck process
as evidence of an adaptive process. Furthermore, local estimates of
Moran’s I, based on the concept of spatial autocorrelation, estimate
phylogenetic signal throughout evolutionary time. Positive autocorre-
lation indicates similarity of trait values at a given phylogenetic dis-
tance, while negative autocorrelation suggests dissimilarity at a given
phylogenetic distance. Diniz-Filho (2001) has shown, however, that it is
the changes in local autocorrelation over phylogenetic distance beyond
a significance threshold that are important for evolutionary process
inference. A trait following an Ornstein-Uhlenbeck adaptive process
would have a reduced phylogenetic distance at which Moran’s I
changes in magnitude and crosses a threshold of no significant auto-
correlation, also called a “phylogenetic patch”. Thus, it is necessary to
test for phylogenetic signal in traits using multiple and diverse estima-
tion methods to infer putative evolutionary processes that may be
driving significant signal.

In this study,we predicted lncRNAs from transcriptomes of 11 plant
species with widely different evolutionary histories. Transcripts were
assembled from RNASeq data without restriction of existing reference
annotation in order to obtain a representation of all expressed loci
in each study. Transcript sequences were then input into CREMA
(Simopoulos et al. 2018) for accurate lncRNA prediction and ranking.

Unlike other lncRNA prediction tools, CREMA is trained only on
experimentally validated lncRNA transcripts and has been tested
for use on transcript sequences of multiple plant species. Following
lncRNA prediction, we observed that up to 99% of predicted lncRNAs
may not be present in their corresponding reference annotation. Thus,
we caution that researchers should not rely only on publicly available
annotation for lncRNA research. Finally, as there has been little evi-
dence for sequence conservation in lncRNAs between species in differ-
ent families (Nelson et al. 2016), a phylogenetic signal was not expected
in the distinguishing molecular traits of lncRNAs, such as transcript
length and GC content. However, our comparative study detected a
consistently high phylogenetic signal in GC content of lncRNAs with
no similarity identified in the other traits tested in these regulatory
transcripts. In particular, GC content differences relative to protein-
coding RNA represent a trait that could help researchers distinguish
putative functional lncRNAs from non-functional and spurious tran-
scription, or fragmented protein-coding RNAs.

MATERIALS AND METHODS

Data collection
RNASeq data from multiple plant species were downloaded from the
SRAdatabase (See Table 1 for accession and SRA IDs). All plants in this
analysis have a publicly available sequenced genome. All RNASeq reads
except for those from E. salsugineum were downloaded from the Se-
quence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra). To be
considered for analysis, plants must have been grown under control
conditions without being subjected to stress. For consistency, prefer-
ence was given to studies that used leaf tissue from mature plants,
although use of older seedlings was accepted. Leaves or leaf-like tissue
represented a sharedmorphological feature of photosynthetically active
cells throughout all tested species and was used throughout the study to
ensure an equal opportunity for capturing lncRNA expression. Addi-
tionally, only RNASeq reads from Illumina technology were consid-
ered, however both paired and single end reads were used.

E. salsugineum reads were sequenced using Illumina technology
from Shandong ecotype rosette leaves grown under control, unstressed
conditions as outlined in MacLeod et al. (2015). Fully-expanded leaves
were used for RNA sequencing, and were collected between 8 and 10 hr
into the day cycle. RNA was extracted from leaves flash-frozen using
liquid nitrogen using a modified hot borate method as described by
Champigny et al. (2013). A quality control analysis was completed on
the RNAusing RNANano 600 chips on a Bioanalyzer 2100 and purified
using three on-column purifications by Genelute mRNA miniprep kit
(Cat. No. MRN10, Sigma). Finally, preparation of cDNA for sequencing
was performed with the NEBNext multiplex cDNA synthesis kit for
Illumina using random hexamers (Cat. No. E7335, New England Biol-
abs, Ipswich, MA). Cleanup of fragmented RNA was performed with
Agencourt AMPure XP Beads (Cat. No. 163987, Beckman Coulter,
Mississauga, ON) following the manufacturer’s protocol. Raw FASTQ
files were deposited to the SRA with submission ID SRR7962298 and
BioProject accession PRJNA494564.

Transcript assembly and lncRNA prediction
Reads from all plant species were trimmed using Trimmomatic v0.36
(Bolger et al. 2014) and aligned to their corresponding genomes using
STAR v2.5.2b (Dobin et al. 2013) with default settings other than–
outFilterIntronMotifs set to RemoveNoncanonical and–alignEndsType
EndtoEnd. Aligned reads were assembled into transcripts by StringTie
v1.3.4d (Pertea et al. 2015). GTF files of assembled transcripts were
mergedwithGTF files of annotated genomes and are stored onGitHub:
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https://github.com/caitsimop/lncRNA-compGenomics. Alignment qual-
ity was tested using gffcompare v0.10.4 (https://github.com/gpertea/
gffcompare) by comparing assembled transcript GFF files with refer-
ence genomeGFF files. Alignment qualitymetrics were used to confirm
alignment quality and transcript assembly quality using accuracy and
precision values (File S2). Gffcompare output was also used to iden-
tify novel transcripts and to quantify transcript exon numbers in each
RNASeq library.

Identifying lncRNAs From RNASeq data
Assembled transcript sequences were input into CREMA (https://
github.com/gbgolding/crema) (Simopoulos et al. 2018) for ranked
lncRNA prediction. The number of lncRNAs in each species was
calculated as a percentage of all transcripts (the sum of novel as-
sembled transcripts and transcripts in reference annotation). The
percentage of lncRNAs was used for normalization across all studied
plant species to ensure appropriate comparisons to species with
different sized transcriptomes.

Phylogenetic signal in lncRNA traits
Four continuous molecular traits were chosen for phylogenetic signal
analysis on predicted lncRNAs: 1. Number of exons in transcript, 2. GC
content of transcript, 3. Length of transcript, and 4. Length of maximal
ORF.Featureswere extracted fromtranscript sequences andgffcompare
outputs using a customPython script. The phylosignal R package (Keck
et al. 2016) was used to detect phylogenetic signal in lncRNAs, all other
transcripts, and the differences between lncRNAs and all other tran-
scripts for each trait in all species except for Boea hygrometrica. Sepa-
rate phylogenetic signal tests were completed for each trait. Although
we expect there to be correlation between transcript length and ORF
length, we did not observe a correlation, particularly in lncRNAs. Phy-
logenetic signal of the mean value of the four traits was calculated using
three separate methods: Moran’s I (Moran 1948; Gittleman and Kot
1990), Blomberg’s K (Blomberg et al. 2003) and Pagel’s l (Pagel
1999). Local autocorrelation estimates at 100 phylogenetic distance
points were also computed using Moran’s I and phylosignal to iden-
tify the location and sign of the detected autocorrelation. To iden-
tify significant autocorrelation estimates, 1000 bootstrap replicates
were used for 95% confidence interval calculation. Autocorrelation

estimates were considered significant if 95% confidence intervals did
not overlap the null hypothesis threshold of -0.111. The null hy-
pothesis that there is no detectable phylogenetic signal, or, autocor-
relation, was a threshold of 21=ðn2 1Þ where n ¼ 10, or the
number tested species, as suggested by Keck et al. (2016). Because
branch lengths were required by the phylosignal package, branch
lengths were estimated using the dnaml program in PHYLIP
(Felsenstein 1993) and a MAFFT v.7.205 (Katoh et al. 2002) align-
ment of rps16, atp2, 18s, 26s and SMC1 (File S4). B. hygrometrica
was not included in phylogenetic signal analysis due to the limited
percentage of annotated loci in genome annotation. The tree topol-
ogy of land plants as reported by the Amborella Genome Project
(2013) was used, and branch lengths were estimated from this to-
pology. Branch lengths representing site changes were converted to
relative age of branches using the R package ape (Paradis and
Schliep 2019). A lambda value of 0 was chosen from 0, 0.1 and 1 after
testing for the lowest log likelihood of lambda options.

Trait values with high K values (K .1) were chosen for further
testing for better fit to models that consider an Ornstein-Uhlenbeck
process and may indicate selection on traits. Traits values were fit with
macroevolutionary models using the geiger (Harmon et al. 2008)
R package and the fitContinuous function. Both “BM” (Brownian mo-
tion) and “OU” (Ornstein-Uhlenbeck) models were considered. Log
likelihood estimates were used to test for the goodness of fit for “BM”
and “OU”models while also considering the number of parameters that
each model contains.

Data Availability
Raw FASTQ RNA sequencing data are available in the SRA with
submission ID SRR7962298 and BioProject accession PRJNA494564.
Ranked lncRNAprediction scores andGFFfiles of assembled transcripts
are available on the author’s GitHub https://github.com/caitsimop/
lncRNA-compGenomics. Classifications of lncRNAs made by gffcom-
pare are made available in File S1. Quality of transcriptome assemblies
are available in File S2. The FASTA file containing sequences of the
genes used in the estimation of branch lengths is available in File S3.
The phylogenetic tree with branch lengths adjusted relative to time is
found in Figure S4. Supplemental material available at FigShare: https://
doi.org/10.25387/g3.8250953.

n Table 1 Information on the data sources of RNASeq libraries used in this study

Species
# high quality

reads
# mapped

reads BioProject SRA Source of RNASeq Genome Source

Solanum tuberosum 12,469,853 11,106,056 PRJNA311702 SRR3162008 Sprenger et al. (2016) Sharma et al. (2013)
Solanum

lycopersicum
18,624,814 18,277,415 PRJNA307656 SRR3095793 Cárdenas et al. (2016) Tomato Genome

Consortium (2012)
Eutrema

salsugineum
49,522,792 46,130,371 PRJNA494564 SRR7962298 This manuscript Yang et al. (2013)

Arabidopsis thaliana 23,490,825 23,111,430 PRJNA186843 SRR2079778 Woo et al. (2016) Cheng et al. (2017)
Zea mays 15,141,539 14,481,792 PRJNA269060 SRR1688291 Gonzalez-Munoz et al.

(2015)
Schnable et al. (2009)

Oryza sativa 23,501,682 22,145,297 PRJNA301554 SRR2931278 Wilkins et al. (2016) Ouyang et al. (2007)
Amborella

trichopoda
17,913,230 17,355,462 PRJNA212863 SRR5293262 Amborella Genome

Project (2013)
Amborella Genome Project

(2013)
Selaginella

moellendorffi
108,008,790 92,873,912 PRJNA351923 SRR4762345 James et al. (2017) Banks et al. (2011)

Physcomitrella
patens

10,520,395 8,243,406 PRJNA265205 SRR1553300 Frank and Scanlon (2015) Lang et al. (2018)

Chlamydomonas
reinhardtii

22,002,690 21,222,625 PRJNA264777 SRR1622084 Panchy et al. (2014) Merchant et al. (2007)

Boea hygrometrica 16,972,867 15,594,598 PRJNA210992 SRR929426 Xiao et al. (2015) Xiao et al. (2015)
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RESULTS

Multispecies lncRNA prediction
Wechoseplant specieswith diverse anddivergent evolutionaryhistories
for lncRNA prediction comparisons. Specifically, we included Angio-
sperms (both monocots and dicots), a Lycophyte, a Bryophyte and an
algal species for this work (see Table 1 in Materials and Methods).
As novel transcripts were of importance to this work, RNASeq data
from published experiments were used when available to assemble
transcripts or were prepared de novo as in the case of one species
(E. salsugineum). To be chosen for this study, data from the SRA
database had to include samples produced with Illumina sequencing
technology. Species chosen must have publicly available reference ge-
nome sequences and corresponding annotation. For consistency, leaf
tissue from mature plants was preferred but younger leaves, or entire
organisms in the case of Chlamydomonas reinhardtii, were used. To
remove any potential biases toward transcripts induced by stress, only
control, unstressed samples were chosen for analyses. After read map-
ping to appropriate plant genomes, transcripts were assembled using
StringTie allowing for identification of novel transcripts. Sequences of
assembled transcripts were input into CREMA, a lncRNA prediction
tool (Simopoulos et al. 2018) and total lncRNA numbers in each plant
species are described in Figure 1 and Table 2. Ranked prediction scores
of all transcripts in each species are available on GitHub: https://
github.com/caitsimop/lncRNA-compGenomics. The percentage of to-
tal transcripts predicted as lncRNAs range from 3% in E. salsugineum
to 16.6% in Amborella trichopoda with a mean percentage of 6.4%
61:1% for the 11 analyzed plant species (Table 2). On average, 52%
of the predicted lncRNAs were found in intergenic regions leaving
almost half of the predicted lncRNAs overlapping with a protein coding
gene or as putative splicing variants (File S1).

Todeterminehow reference annotationmay affect lncRNA research
in plant systems, all assembled transcripts from each species, including
novel transcripts, were compared to those found in the corresponding
reference annotation. Transcripts that were not found in reference
annotation and also predicted as a putative lncRNA were identified
and are referred to as “novel” lncRNAs throughout thismanuscript. The
proportion of novel lncRNA in all predicted lncRNAs ranged among
species from a low 4.5% predicted in A. thaliana and a high 99.6% in
Solanum tuberosum (Figure 1). Because A. thaliana is a well studied
model plant with an almost fully annotated genome, we expected this
species to have fewer novel transcripts assembled from the RNASeq
data. Additionally, we expected that most lncRNAs predicted from the
A. thaliana transcriptome to already be found in the reference anno-
tation. The high percentage of lncRNAs found in the reference anno-
tation ofA. thaliana indicates that CREMAmakes accurate predictions
and suggests that the lower percentages of known lncRNAs identified in
the other species are due to incomplete annotations (Figure 1).

Phylogenetic signal in molecular traits of plant lncRNAs
Wefirst consideredoverall trends in some typical distinguishing traits of
lncRNAs: ORF length, GC content, number of exons, and transcript
length. All species showed a similar trendwhere putative lncRNAshad a
lowerGC%, fewer exons, and shorterORF length compared to the other
transcripts in their corresponding transcriptomes (Figure 2). Length of
transcripts, however, deviated from this trend where Zea mays, Selag-
inella moellendorffi andA. trichopoda all have putative lncRNAs longer
than other transcripts in their transcriptome (Figure 2). Deviation from
the expected trend of shorter lncRNA transcripts in three of the selected
species suggests that transcript length may not be a useful distinguish-
ing trait in lncRNA prediction.

We tested for phylogenetic signal in mean trait values of the four
molecular traits previously mentioned in both lncRNAs and all tran-
scripts other than lncRNAs. Phylogenetic signal estimates were calcu-
lated using three different methods that employ two differentmodels of
evolution, Moran’s I, Pagel’s l and Blomberg’s K. We estimated phy-
logenetic signal in all species but B. hygrometrica due to the incomplete
status of its genome annotation.

Since each phylogenetic signal estimation method is based on
different concepts, all estimates cannot be interpreted the same. First,
Moran’s I is a measure of autocorrelation (Gittleman and Kot 1990).
Autocorrelation, when referring to phylogenetic signal, indicates how
correlated traits are in terms of phylogenetic distance. Due to the use of
10 species, Moran’s I must be compared to a calculated threshold of
-0.111 (Keck et al. 2016) to determine significant autocorrelation and
phylogenetic signal. A significant estimate greater than -0.111 indicates
positive significant global autocorrelation and that trait values of closely
related species are more similar to each other. Conversely, a significant
estimate less than -0.111 suggests global significant negative autocor-
relation. The Brownian motion model, originally used to describe the
motion of particles suspended in fluid, is another model used to de-
scribe how traits evolve through time. In the case of phylogenetic signal,
a trait following the Brownian motion model exhibits a random walk
where the value of the trait can change in any direction at any time.
Pagel’s l uses this Brownian motion model and can be interpreted as
the transformation the phylogeny requires to explain trait distribution
if the trait followed Brownian motion (Pagel 1999). Thus, a value of
1 would indicate a phylogeny as expected under Brownian motion and
high phylogenetic signal, and a significant value of 0 would mean a trait
distribution that does not follow Brownian motion, consequently, low
phylogenetic signal. Finally, Blomberg’s K, which also uses the Brow-
nian motion model, can be interpreted as the ratio of observed values
over expected values if the trait follows the Brownian motion model
(Blomberg et al. 2003). A value of K = 1 can be interpreted as a trait
distribution following Brownian motion, and as K becomes larger than
1, a stronger signal is detected. Conversely a value of K , 1 indicates
low phylogenetic signal, and less similarity between closely related
tested species.

Table 3 shows phylogenetic signal estimates using all three methods
for each of the four molecular traits. The mean trait values and phylo-
genetic relationships of the tested species are presented in Figure 2. In
predicted lncRNAs, GC content was the only trait that demonstrates
high phylogenetic signal using all phylogenetic signal detection meth-
ods (Table 3). While ORF length was had a significant positive global
autocorrelation (I = 0.040; Table 3), a value of K , 1 indicates less
similarity than expected under Brownian motion, suggesting unclear
phylogenetic signal estimation. Blomberg’s K also suggests less similar-
ity than expected in the number of exons of lncRNAs, however no other
method indicated detectable significant phylogenetic signal. Transcript
lengths of lncRNAs in tested species also demonstrate a moderate
positive global autocorrelation. Conversely, all four traits consistently
had significant phylogenetic signal estimates when all transcripts other
than lncRNAs were evaluated, although l for ORF length, number of
exons and transcript length were slightly less than 1.

Evolutionary processes and phylogenetic signal
We examined traits with an estimated K . 1 with an evolutionary
model that may suggest natural selection, the Ornstein-Uhlenbeck pro-
cess (Hansen 1997), because high phylogenetic signal defined as K. 1
(Kamilar and Cooper 2013) can indicate similarity by both genetic
drift and natural selection. In lncRNAs, GC content is the only trait
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with K. 1, and has significant phylogenetic signal detected using all
three methods (Table 3). We compared the fit of a Brownian motion
model vs. an Ornstein-Uhlenbeck model in our data using log likeli-
hood values and a chi square test for significance estimates. Although
the Ornstein-Uhlenbeck model had the smallest log-likelihood, a chi
square test indicated that there was no significant fit difference when
comparing the Brownian motion and Ornstein-Uhlenbeck model
(P = 0.81). Because the Brownian motion model has the least number
of parameters, this suggests that a Brownianmotionmodel is themost
reasonable fit for the data, and there is a lack of evidence for an
adaptive process.

All four traits of all transcripts other than lncRNAs had significant
high phylogenetic signal when estimated using Blomberg’s K (K .1),
therefore we also tested for a better fit explained by the Ornstein-
Uhlenbeck process. Again, the Ornstein-Uhlenbeck process was not a
significantly better fit than a Brownianmotionmodel when considering
log likelihood values and a chi-square test (ORF length: P = 1, GC
content: P = 1, number of exons: P = 1, transcript length: P = 0.75).

We tested for local autocorrelation at 100 phylogenetic distances
considering themost recent common ancestors of all species as a robust
approach to an analysis on a small phylogeny. Confidence intervalswere
computed using 1000 bootstrapping replicates for a non-parametric
significance estimate using a calculated threshold of -0.111. Figure 3
visualizes the local correlations of traits in both lncRNAs and all other
transcripts and are limited to the phylogenetic distances of the tested

phylogeny (0-1 phylogenetic distance). We detected significant positive
local autocorrelation at short phylogenetic distances in ORF length and
GC content of lncRNAs (Figure 3). This suggests that closely related
species contain lncRNAs with similar ORF lengths and GC content.
There was no consistent significant autocorrelation at any short phy-
logenetic distances in any tested traits in all other transcripts (Figure 3).
Detected phylogenetic patches are shorter in the ORF and transcript
lengths of lncRNAs compared to all other transripts. The opposite is
true in the GC content of lncRNAs, where longer phylogenetic patches
are observed. Shorter phylogenetic patches suggest an adaptive process
as described by an Ornstein-Uhlenbeck model, rather than genetic
drift.

DISCUSSION
We used raw RNASeq data frommultiple independent studies tomake
inferences on the numbers of predicted lncRNAs in 11 phylogenetically
divergent plant species, and to identify putative phylogenetic signal in
these regulatory loci. Our data-mining approach enabled us to use the
same protocols for read mapping, transcript assembly, and lncRNA
prediction for each species. In performing the same read-mapping and
lncRNA prediction protocols, we were able to address a concern raised
by Kapusta and Feschotte (2014) that comparisons between lncRNA
numbers in animals can be misleading when prediction numbers are
products of meta-analyses involving different prediction methods and
lncRNA criteria. We found that the percentage of transcripts predicted

Figure 1 Total predicted lncRNAs from 10 plant species. The counts of putative lncRNAs are categorized by transcripts that appear in the
reference annotation of each species (purple) and novel transcripts, or those that did not appear in transcriptome annotation (coral). The
percentages of novel transcripts (coral) predicted as lncRNAs appear above each bar.

n Table 2 Number of predicted lncRNAs in each species ordered by phylogenetic relationship

Species # of assembled transcripts # predicted lncRNAs % lncRNAs

Solanum tuberosum 73,656 3,783 5.1%
Solanum lycopersicum 43,936 2,721 6.2%
Eutrema salsugineum 34,862 1,040 3.0%
Arabidopsis thaliana 61,480 2,918 4.8%
Zea mays 95,713 7,225 7.6%
Oryza sativa 66,562 3,753 5.6%
Amborella trichopoda 42,118 6,972 16.6%
Selaginella moellendorffi 33,266 2,269 6.8%
Physcomitrella patens 88,649 4,648 5.2%
Chlamydomonas reinhardtii 21,467 1,383 6.4%
Boea hygrometricaa 58,531 1,796 3.0%
a
We did not complete phylogenetic analysis on B. hygrometrica due to limited gene annotation availability, and thus it is placed at the end of the table.
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as lncRNAs was, on average, 6.4% with two outliers: A. trichopoda
with 16.6% and E. salsugineum with 3%. These estimates for lncRNA
contributions to plant genomes are lower than comparable predicted
values for humans, where Gencode (Harrow et al. 2012) v29 (https://
www.gencodegenes.org) and NONCODE v5 (Fang et al. 2017) identi-
fied 29,566 and 172,216 putative lncRNA transcripts, respectively.
However, there is a lack of evidence for function in these thousands
of transcripts as they were identified by a transcript filtering method
and the majority remain without experimental validation. In particular,
NONCODE v5 has predicted function in only 1961 of their identified
lncRNAs. Nonetheless, due to the methods used regarding read map-
ping, our results rely on the genome quality of each species. Fragmented
genomes, as seen in A. trichopoda, E. salsugineum and S. moellendorffi,
may have limited our predictive abilities, and low predicted lncRNA
numbers may in part be due to data availability.

The review by Kapusta and Feschotte (2014) also included a meta-
analysis describing variation in predicted lncRNA numbers among
multiple animal species, a comparison similar to our observed predic-
tion numbers in plants. In addition to their concern about transcrip-
tome data arising from different methodologies, Kapusta and Feschotte
(2014) also raised the issue of temporal and location specific lncRNA
expression.We share a comparable concern in that plant lncRNAs have
yet to be predicted in all tissue types for all developmental time points
in all possible environments, so undoubtedly the number of putative
lncRNAs detected in plants will increase over time. For example, in our
study, we identified 2918 putative lncRNAs in A. thaliana plants
that were grown under conditions designed to avoid exposing plants
to sources of stress. In contrast, although using different prediction
methods, Zhao et al. (2018) identified 6150 putative lncRNAs in
A. thaliana plants undergoing cold, ABA and drought treatments. This

difference in predicted lncRNAs is consistent with the expectation that
lncRNAs likely play a role in stress responses and hence one expects to
find increased diversity and abundance of lncRNAs in stressed rela-
tive to unstressed plants. Interestingly, Zhao et al. (2018) found that
lncRNAs in A. thaliana are shorter and have fewer exons than all other
transcripts, observations that agree with our study (Figure 2). Thus our
machine learning-based methodology that was trained on only empir-
ically characterized, functional lncRNAs and the filtering method
employed by Zhao et al. (2018) led to similar conclusions on traits
shared by lncRNAs that distinguish them from other transcripts. This
finding is also consistent with our previous, cross-validation estimates
of CREMA’s accuracy (96%) and specificity (0.994) (Simopoulos et al.
2018) making CREMA a suitable method for lncRNA prediction from
RNASeq data.

The genome of A. trichopoda, the sister taxon to all other extant
angiosperms, represents a species with a unique evolutionary his-
tory. During genome annotation, The Amborella Genome Project
(2013) observed a larger number of the atypical 23 to 24nt plant
miRNAs than expected as they were found in two times greater
frequency than any other land plant. Additionally, eight predicted
miRNA families in A. trichopoda have evidence of loss in more
recent angiosperms (Amborella Genome Project 2013). The excess
of miRNAs in A. trichopoda may reflect the high proportion of
lncRNAs predicted in this study (at 16%; Table 2) as miRNA pro-
genitors are considered to be lncRNAs (Saini et al. 2008).

Two plants, namelyE. salsugineum andB. hygrometrica, were found
to have the lowest proportion of lncRNAs in their transcriptomes
(Table 2). E. salsugineum represents a plant with a halophytic life
strategy and a capacity to tolerate a variety of extreme environmen-
tal conditions (Kazachkova et al. 2018). Indeed, E. salsugineum has

Figure 2 Mean trait values of transcripts predicted as lncRNAs (coral, circle) and all other assembled transcripts (purple, triangle). Species are
ordered as per phylogenetic relationships.

n Table 3 Phylogenetic signal estimates in transcript features

Featurea lncRNA All other transcripts

I l K I l K

ORF 0.040� 0.975 0.621� 0.010� 0.974� 1.746�

GC% 0.032� 1.027� 1.614� 0.048� 1.020� 1.038�

Exons 20.053 0.620 0.336� 0.010� 0.922� 1.068�

Length 20.020� 1.007 0.642 0.038� 0.953� 1.436�

� P , 0.05.
I = Moran’s I, K = Blomberg’s K, l = Pagel’s l
a
Where “ORF“ refers to ORF length,“ GC%“ refers to GC content, “Exons“ refers to number of exons and “Length” refers to transcript length.
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been used as a model plant in stress response studies due to its
naturally high tolerance to abiotic stresses such as salt (Taji et al.
2004), cold (Griffith et al. 2007), drought (MacLeod et al. 2015), and
nutritional deficiencies (Velasco et al. 2016). Moreover, E. salsugi-
neum shows constitutive expression of genes reported to be stress-
responsive in many plants (Taji et al. 2004; Gong et al. 2005; Wong
et al. 2006; Velasco et al. 2016). B. hygrometrica, aptly named “the
resurrection plant”, is also considered an extremophile by virtue
of its capacity to survive desiccation (Xiao et al. 2015). However,
B. hygrometrica shows different expression pattern changes when
experiencing stress compared to E. salsugineum. Zhu et al. (2015)
did not observe constitutively high expression of stress tolerance genes
in B. hygrometrica during desiccation. Instead, B. hygrometrica seemed
to require gradual dehydration priming for survival after rehydration
post-desiccation (Zhu et al. 2015). B. hygrometrica plants that have
been subsequently rehydrated after this dehydration “training” have
expression patterns more similar to desiccated plants than those with-
out drought priming (Zhu et al. 2015). In other words, after experi-
encing a first gradual dehydration there are expression differences
between well-watered B. hygrometrica plants and ones that experi-
enced desiccation. The observation that B. hygrometrica plants can
show “preparedness” among expressed genes normally responsive to
a stressful condition is somewhat analogous to the constitutive nature
of expressed genes in E. salsugineum. Specifically, E. salsugineum plants
grown in the absence of high salt display the expression of genes report-
ed to be salt-responsive in other plants (Taji et al. 2004; Wong et al.
2006). Interestingly, both E. salsugineum and B. hygrometrica display a
low proportion of predicted lncRNAs in their unstressed transcrip-
tomes suggesting a possible connection between high natural stress
tolerance and low lncRNA number. Conceivably, with stress-related
genes constantly expressed under a primed condition, a plant adapted
to an extreme environment may not require the precise regulation
conferred by the recruitment of diverse lncRNAs, an important role
proposed for the function of lncRNAs in plant stress responses. This
hypothesis merits further work as little is known of the importance,
or lack thereof, of lncRNAs in extremophile species.

E. salsugineum and A. trichopoda have distinct evolutionary pat-
terns and yet both species have few putative lncRNAs present in their
reference annotations. In total, five of the ten tested plant species had
less than 50% of predicted lncRNAs in their respective genome anno-
tations. As genome annotation often relies on homology of predicted
genes for functional annotation (Bolger et al. 2018), particularly ho-
mology to A. thaliana protein-coding genes, lncRNAs can often be left
out of genome annotation. Researchers studying plant lncRNAs fre-
quently rely on bioinformatic analyses to assemble novel transcripts
for lncRNA prediction (Liu et al. 2018; Shuai et al. 2014), indicating
that missing lncRNA annotation should be taken into consideration in
forthcoming genome annotation projects. Similar to our work, Jackson
et al. (2018) recently described misannotation of lncRNAs in mamma-
lian genomes. Gaps in annotation and the ensuing problem with
lncRNA identification is exacerbated by the fact that lncRNAs do not
follow classic evolutionary conservation. Instead, in both plant and
animal systems, lncRNAs often depict a positional conservation pat-
tern, even with minimal sequence conservation, making functional
predictions also difficult (Hezroni et al. 2015; Mohammadin et al.
2015). A lack of extensive lncRNA conservation between species led
to our investigation into phylogenetic signal detection in molecular
traits of lncRNAs.

In plant species, lncRNA homology has been shown to be virtually
non-existent outside of the family classification. Only 1% of predicted
A. thaliana (Brassicaceae) lncRNAs were identified as homologous in
Tarenaya hassleriana (Cleomaceae) (Nelson et al. 2016). Interestingly,
although distantly related, human and plant lncRNAs bear similarities
in number of exons, and transcript and ORF length. For example,
Derrien et al. (2012) describe human lncRNAs as being shorter than
protein coding genes, and by commonly having fewer exons which was
also observed in our plant species analyses (Figure 2). However, human
lncRNAs are typically spliced andmost often have two exons, while our
study suggests plant lncRNAs are more often unspliced and com-
prised of a single exon (Figure 2). Domination of single exon novel
lncRNAs in our work may be indication of genomic contamination in
source data or bioinformatic transcript assembly artifacts. Nevertheless,

Figure 3 Moran’s I local correlogram of mean trait values in lncRNAs and All Other Transcripts. Coral points indicate significant phylogenetic
signal at a particular phylogenetic distance. The horizontal line represents a value of the null hypothesis that no phylogenetic signal is detected.
The null hypothesis value is -0.111, or 21=ðn2 1Þ where n ¼ 10, or the number of tested species. The 95% confidence intervals, computed using
bootstrapping, are also plotted and were used to identify significant values.
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genomic contamination is unlikely seen in all ten independent exper-
iments, and transcript assembly artifacts more likely result from de
novo assembly rather than genome guided mapping. Further, Haerty
and Ponting (2015) also observed a lower GC content in lncRNAs
than the protein coding genes of metazoan lncRNAs, with single-
exon lncRNAs having the lowest GC content of all exon-types, rem-
iniscent of the uni-exonic plant lncRNA majority of our analyses.
However, the extent to which conserved traits typify plant and animal
lncRNAs is difficult to assess at present. CREMA is trained on only
validated lncRNA and may be subject to a prediction bias to animal-
like lncRNA sequences given that non-plant sources currently com-
prise the majority of validated lncRNAs (Simopoulos et al. 2018). As
more plant lncRNA undergo validation, the extent of conservation
among lncRNAs from diverse organisms will be easier to detect and
estimate with greater precision.

Despite these concerns over bias, among the lncRNAs predicted by
CREMAwe found significant phylogenetic signal by at least onemethod
in all four tested traits of lncRNAs:ORF length,GCcontent, the number
of exons and transcript length (Table 3). High phylogenetic signal de-
tection in traits of lncRNAs was not expected given the lack of evidence
for sequence conservation in this class of RNA (Nelson et al. 2016;
Hezroni et al. 2015). Importantly, because the phylogenetic relation-
ships of species are influencing the tested traits as indicated by detect-
able phylogenetic signal, the species can no longer be considered
independent and statistical methods that assume independence cannot
be used. While it is possible to detect phylogenetic signal in our data, it
is difficult to infer evolutionary processes from phylogenetic signal
estimates as many unique processes can invoke a similar signal estima-
tion (Revell et al. 2008). However, high phylogenetic signal and conse-
quent high similarity of GC content in lncRNAs of closely related
species is not unexpected, as Haerty and Ponting (2015) demonstrated
evidence of selection on the GC content of intergenic lncRNAs in
animal species. Additionally, as previously mentioned, the GC content
of animal lncRNAs is lower than that of protein-coding genes, mirror-
ing what our work identified in plant lncRNAs.

A lack of similarity in ORF length, number of exons, and
transcript length of lncRNAs in close relatives may be due to a
variety of processes, including but not limited to: stabilizing selection
with high selective strength, selection with variable strength that is
bounded by phenotypic limits, punctuated divergent selection, or
genetic drift of which rate of drift began low and increased toward
present time (Revell et al. 2008). Because of the variety of possible
complex interpretations of phylogenetic signal and process, Revell
et al. (2008) do not recommend over-interpretting evolutionary
processes from signal data. We have found, however, unique pat-
terns in the phylogenetic signals of molecular traits of lncRNAs
compared to all other transcripts in plant species that imply
lncRNAs are not following similar evolutionary trends as most other
transcripts. Moreover, the lack of similarity in three of the four
tested molecular traits in lncRNAs is of interest and this observation
implies that evolution of lncRNAs could be species specific, and is
not easily defined by an over-arching evolutionary process. On the
other hand, it is possible that there are subclasses of lncRNAs with
conservedmolecular traits yet to be defined due to a lack of validated
transcripts.

Because CREMA (Simopoulos et al. 2018) predicts lncRNAs using a
complex ensemble machine learning model that initially uses ORF
length, GC content and transcript length as features for transcript clas-
sification, it is possible that high detected phylogenetic signal in these
features is a product of the lncRNA prediction tool. However, CRE-
MA’s logistic regression ensemble classifier that is used for the final

lncRNA prediction does not use molecular traits as prediction features,
but instead binary outputs from eight gradient boosting models. Ad-
ditionally, we have identified low phylogenetic signal in two of these
three molecular traits (Table 3) suggesting that CREMA is able to pre-
dict lncRNAs with varying ORF and transcript lengths.

In this work we show that the annotation status of plant species can
affect lncRNAspredictionwith up to99%of predicted lncRNAsmissing
fromreferenceannotation.While researchersmaybe striving to increase
the volume of lncRNA research, the effort to annotate genomes with
lncRNAs is not reflective of the increased interest in this RNA class.
As such, we caution researchers interested in these regulatory loci to
be wary of relying solely upon genome and transcriptome annotations
for lncRNA identification. Additionally, our work shows that plant
lncRNAs have inconsistent detectable phylogenetic signal in sequence
traits, further confirming the complex evolutionary history of lncRNAs.
In particular, the differences in detected phylogenetic signal in lncRNAs
compared to all other transcripts suggests that lncRNAs evolve, on
average, differently than other loci.
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