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Abstract

Background Skeletal muscle is a plastic tissue that adapts to changes in exercise, nutrition, and stress by secreting myokines
and myometabolites. These muscle-secreted factors have autocrine, paracrine, and endocrine effects, contributing to whole
body homeostasis. Muscle dysfunction in aging sarcopenia, cancer cachexia, and diabetes is tightly correlated with the disrup-
tion of the physiological homeostasis at the whole body level. The expression levels of the myokine fibroblast growth factor 21
(FGF21) are very low in normal healthy muscles. However, fasting, ER stress, mitochondrial myopathies, and metabolic
disorders induce its release from muscles. Although our understanding of the systemic effects of muscle-derived FGF21 is ex-
ponentially increasing, the direct contribution of FGF21 to muscle function has not been investigated yet.
Methods Muscle-specific FGF21 knockout mice were generated to investigate the consequences of FGF21 deletion
concerning skeletal muscle mass and force. To identify the mechanisms underlying FGF21-dependent adaptations in skeletal
muscle during starvation, the study was performed on muscles collected from both fed and fasted adult mice. In vivo overex-
pression of FGF21 was performed in skeletal muscle to assess whether FGF21 is sufficient per se to induce muscle atrophy.
Results We show that FGF21 does not contribute to muscle homeostasis in basal conditions in terms of fibre type distribu-
tion, fibre size, and muscle force. In contrast, FGF21 is required for fasting-induced muscle atrophy and weakness. The mass of
isolated muscles from control-fasted mice was reduced by 15–25% (P < 0.05) compared with fed control mice. FGF21-null
muscles, however, were significantly protected from muscle loss and weakness during fasting. Such important protection is
due to the maintenance of protein synthesis rate in knockout muscles during fasting compared with a 70% reduction in
control-fasted muscles (P < 0.01), together with a significant reduction of the mitophagy flux via the regulation of the mito-
chondrial protein Bnip3. The contribution of FGF21 to the atrophy programme was supported by in vivo FGF21 overexpression
in muscles, which was sufficient to induce autophagy and muscle loss by 15% (P < 0.05). Bnip3 inhibition protected against
FGF21-dependent muscle wasting in adult animals (P < 0.05).
Conclusions FGF21 is a novel player in the regulation of muscle mass that requires the mitophagy protein Bnip3.
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Introduction

Loss of muscle function has major implications for human
health because it can lead to reduced quality of life, increased
morbidity, and mortality. In humans, muscle strength decline
is the best predictor of the risk of developing several chronic

diseases and of mortality.1 In fact, muscle atrophy and weak-
ness occur in several systemic conditions such as starvation,
aging sarcopenia, mitochondrial myopathies, and cancer
cachexia.2 Moreover, alterations in muscle homeostasis can
be reflected at the whole body level. Exercise, nutritional
changes, organelle dysfunction, and stress induce the
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systemic release of muscle-derived factors: cytokines
(myokines) and metabolites (myometabolites) that exert au-
tocrine, paracrine, or endocrine effects.3–5 Indeed, exercise
preserves and ameliorates mitochondrial function and muscle
metabolism, thereby affecting the release of myokines and
metabolites, which might systemically counteract organ dete-
rioration. In contrast, dysfunctional muscles can influence dis-
ease progression in other tissues.3,4 The fibroblast growth
factor 21 (FGF21) is a secreting myokine6 that can also be re-
leased in the bloodstream by other organs such as liver,7,8

heart,9 white adipose tissue10 (WAT), and brown adipose
tissue (BAT).11 It is a starvation-like hormone with several
metabolic functions aimed at overcoming nutrient depriva-
tion by providing tissues with fuel. In skeletal muscle, FGF21
expression, in healthy conditions, is almost undetectable,
and therefore, the circulating FGF21 is predominantly pro-
duced and released by the liver.6,12 In contrast, muscle-
dependent systemic release of FGF21 increases with starva-
tion, endoplasmic reticulum stress, mitochondrial dysfunc-
tion, obesity, mitochondrial myopathies, and aging.6,13–19

Moreover, FGF21 is a stress-induced myokine that has been
proposed as a specific serum biomarker of muscle-specific mi-
tochondrial disorders.17,20 Moreover, we and others recently
demonstrated that in a muscle-specific OPA1 knockout ani-
mal model, characterized by mitochondrial dysfunction and
by extensive muscle loss, the contribution of skeletal muscle
to circulating FGF21 was predominant.15,16,18 In this model,
FGF21 secreted from muscles mediates an integrated stress
response that caused several systemic cell non-autonomous
effects such as inflammation, metabolic alterations, and
precocious senescence.18 In agreement, a positive correlation
of serum FGF21 levels and aging-sarcopenia has been
found.18,21 Importantly, FGF21 deletion in OPA1 knockout
muscles improved almost all systemic effects, while there
was only a partial sparing of muscle mass.18 Injecting mice
daily with exogenous FGF19, a closely related endocrine FGF
member produced in the gut, increased skeletal muscle mass
and strength. Remarkably, the skeletal muscle hypertrophy
effects were not elicited by administrating FGF21.22 Thus,
whether FGF21 is beneficial or detrimental for human health
is still not clear, in part because the contribution of
autocrine/paracrine-derived FGF21 signalling to muscle ho-
meostasis has not been investigated yet. Here, we aim to
study, in vivo, the functional role of FGF21 in skeletal muscle.

Materials and methods

Animal handling and generation of muscle-specific
fibroblast growth factor 21 knockout mice

Animals were handled by specialized personnel under the
control of inspectors of the Veterinary Service of the Local

Sanitary Service (ASL 16—Padova), the local officers of the
Ministry of Health. All procedures are specified in the projects
approved by the Italian Ministero della Salute, Ufficio VI (au-
thorization number 1060/2015 PR) and were in compliance
with the National Institutes of Health Guidelines for Use
and Care of Laboratory Animals and with the 1964 Declara-
tion of Helsinki and its later amendments. To generate consti-
tutive muscle-specific FGF21 knockout animals, mice bearing
FGF21 floxed alleles (FGF211f/f) (The Jackson Laboratory)
were crossed with transgenic mice expressing Cre under the
control of a Myosin Light Chain 1 fast promoter.23 Cre-
negative littermates were used as controls. For starvation ex-
periments, fed mice had free access to food and water while
food pellets were removed for starved mice. Adult mice (3 to
5 months old) of the same sex, age, and body weight were
fasted or stayed in fed condition for different time periods:
24 h for gene expression analysis, autophagy flux, and puro-
mycin experiments; 48 h for wet muscle weight, cross-
sectional area (CSA), and muscle force measurements. To
identify the FGF21 deletion in skeletal muscle, genomic DNA
was isolated from gastrocnemius (GNM) muscles of FGF21f/f

and FGF21�/� mice. Two primer sets were used. Set 1 con-
sists of one primer upstream the 50 loxP site and the other
primer inside FGF21 sequence, amplifying a 675 bp sequence
corresponding to not deleted DNA (Fw: 50-GAAGATCCCAACCT
CCTCCAG-30, Rv: 50-TGTCTTGGGTCGTCATCTGTGTA-30). Set 2
detects muscle deletion of FGF21, consists of a couple of
primers upstream 50 loxP and downstream 30 loxP sites de-
tecting the deleted sequence in muscles of 300 bp (Fw: 50-
GAAGATCCCAACCTCCTCCAG-30, Rv: 50ACCGTGAATCCCAGCA
CTA-30). Mice were sacrificed by cervical dislocation, and
the different tissues were weighed and then frozen in liquid
nitrogen and utilized for histological experiments, immuno-
histochemistry, or gene expression studies.

Gene expression analyses

At least four samples of each experimental condition (FGF21f/f

FED, FGF21f/f STARVED, FGF21�/� FED, and FGF21f/f

STARVED) were analysed. Total RNA was prepared from
GNM muscles using TRIzol (Life Technologies) following the
manufacturer’s instructions. Complementary DNA was gener-
ated from 400 ng of RNA reverse-transcribed with SuperScript
IV Reverse Transcriptase (Life Technologies) according to
manufacturer’s instructions. At the end of the reaction, the
volume of each samples was adjusted to 50 μL with RNase
free water. Duplicates of cDNA samples were then amplified
on the 7900HT Fast Real-Time PCR System (Applied
Biosystems) using the PowerUp SYBR Green Master Mix
(Applied Biosystems) following manufacturer’s instructions.
The PCR cycle used for qPCR was—step 1: 50°C 2 min; step
2: 95°C 2 min; step 3: 40 times of 95°C 15 s and 60°C 1 min;
step 4: 95°C 15 s, 60°C 1min and 95°C 15 s. No primer-dimers
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were generated during qPCR amplification cycles. To avoid the
amplification of genomic DNA, primer pair sequences were
designed with Primer-Blast software (https://www.ncbi.nlm.
nih.gov/tools/primer-blast/) on spanning exons, separated
by a long intron, more than 1000 bp when possible. A dilution
series of pooled cDNA was used to construct calibration
curves. The slope of the log-linear portion of calibration curves
for each primer was used to established primer PCR amplifica-
tion efficacy. The oligonucleotide primers used are shown in
Supporting Information, Table S1. The relative expression ra-
tio of target gene was calculated based on PCR efficiency
and quantification cycle deviation (Cq) of unknown sample
vs. control and expressed in comparison with reference gene.
All data were normalized to the reference gene GAPDH ex-
pression, whose abundance did not change under all experi-
mental conditions, and plotted in arbitrary units as
mean ± SEM. For FGF21 amplification, cDNA synthesis was ob-
tained from 1.5 μg of RNA. FGF21 quantification was per-
formed using TaqMan® Universal PCR Master Mix and the
specific. TaqMan primers FGF21 (Mm 00840165_g1, Life Tech-
nologies). Data were normalized to GAPDH expression (Mm
99999915_g1, Life Technologies). Results are expressed as
mean ± SEM.

Immunohistochemistry and stainings

Cryosections of adult GNM cross-sections were stained for
haematoxylin and eosin (H&E), periodic acid–Schiff (PAS),
and succinate dehydrogenase (SDH). CSA and fibre typing
were calculated from entire muscle cross-section based on
assembled mosaic image (×20 magnification). For fibre typ-
ing, slides were incubated using the following monoclonal
antibody combination: BA-D5 (1:100) (Developmental
Studies Hybridoma Bank) that recognizes type 1 MyHC iso-
form, SC-71 (1:100) (Developmental Studies Hybridoma
Bank) for the type 2A MyHC isoform, and anti-dystrophin
(1:100) (ab15277, Abcam, Cambridge, VK) for the sarco-
lemma. The images were captured using a Leica DFC300-FX
digital charge-coupled device camera and the Leica DC
Viewer software. The morphometric analyses were made
using MATLAB Semi-Automatic Muscle Analysis using
Segmentation of Histology software.

Force measurements

In vivo GNM force measurements were performed as de-
scribed previously.24 Briefly, mice were anaesthetized, and
stainless-steel electrodes wires were placed on either side
of the sciatic nerve. Torque production of the plantar flexors
was measured using a muscle lever system (Model 305c; Au-
rora Scientific, Aurora ON, Canada). The force–frequency
curves were determined by increasing the stimulation

frequency in a stepwise manner, pausing for 30 s between
stimuli to avoid effects due to fatigue. Following force mea-
surements, animals were sacrificed by cervical dislocation,
and muscles were dissected and weighted. Force was normal-
ized to the muscle mass as an estimate of specific force.

Immunoblotting

Muscles were lysed and immunoblotted as previously de-
scribed.25 Blots were stripped using Restore Western Blotting
Stripping Buffer (Pierce) according to the manufacturer’s in-
structions and reprobed if necessary. The membranes were
visualized with the ImageQuant LAS 4000 and quantified
using ImageJ software (https://imagej.nih.gov/ij/). Protein ex-
pression was normalized to actin or GAPDH. List of antibodies
is depicted in Supporting Information, Table S2.

Mitochondrial isolation

Mitochondria from quadriceps muscles of the indicated geno-
types were isolated as described18 and were then probed
with the indicated antibodies by immunoblotting.

Autophagic flux quantification

Autophagic flux was monitored in both fed and 24 h of star-
vation conditions using colchicine (Sigma-Aldrich Chemie,
C9754).26 Briefly, mice were treated with 0.4 mg/kg of colchi-
cine or vehicle by intraperitoneal injection. The treatment
was administered twice, at 24 h and at 12 h, before muscle
dissection. Total muscle and mitochondrial homogenates
were used to measured autophagy and mitophagy flux,
respectively.

Mito-mKeima mitophagy assay

Electroporation experiments were performed on flexor
digitorum brevis (FDB) muscles from wildtype and knockout
animals. The animals were anaesthetized by an intraperito-
neal injection of xylazine (Xilor) (20 mg/kg) and Zoletil
(10 mg/kg); 7 μL of hyaluronidase (2 mg/mL) (Sigma-Aldrich)
were injected in the feet of anaesthetized mice to soften mus-
cle tissue underneath the epidermis. After 50 min, 10 μg of
mitochondria-targeted mKeima plasmid (mt-mKeima) were
injected, and after 10 min, electric pulses were applied by
two stainless needles placed at 1 cm from each other
(100 V/cm) (100 Volts/cm, 20 pulses, 1 s intervals). Muscles
were analysed 12 days later. FDB muscles were collected in
1% P/S DMEM. FDBs were digested in type I collagenase at
37°C for 1.5–2 h. The fibres were dissociated by creating me-
chanical forces using a pipette. The single isolated fibres were
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then plated on glass coverslips coated with 10% Matrigel in
Tyrode’s salt solution (pH 7.4) and incubated overnight at
37°C. mt-mKeima (MBL International) was used to monitor
mitophagy in transfected FDB single fibres. mt-mKeima is a
coral-derived protein that exhibits both pH-dependent excita-
tion and resistance to lysosomal proteases. These properties
allow rapid determinations to whether the protein is in mito-
chondria or in the lysosome.27,28 In fluorescence microscopy,
ionized Keima is detected as a red fluorescent signal at pH 4
(lysosome) and as a green fluorescent signal at pH 7
(autophagosome).29 Fluorescence of mt-mKeima was imaged
in two channels via two sequential excitations (458 nm, green;
561 nm, red) and using a 570–695 nm emission range. The
level of mitophagy was defined as the total number of red
pixels divided by the total number of green pixels.

In vivo protein synthesis measurements

In vivo protein synthesis was measured by using the surface
sensing of translation technique.30,31 Mice were anaesthe-
tized and then given an intraperitoneal injection of
0.040 μmol/g puromycin dissolved in 100 μL of phosphate
buffered saline. At exactly 30 min after injection, muscles
were collected and frozen in liquid N2 for western blot anal-
ysis. A mouse IgG2a monoclonal anti-puromycin antibody
(clone 12D10, 1:5000) was used to detect puromycin
incorporation.

Fibroblast growth factor 21 overexpression

For the cloning mouse Fgf21 gene, muscle cDNA was ampli-
fied by PCR using the primers forward: 30-TCAAGCTTTCA
GGACGCATAGCTG-50 and reverse: 30ATGCTAGGATGGAATG
GATGAGATCTAGA-50. The amplified sequence was cloned
into pBI-CMV1-GFP (PT4440-5, Clontech Laboratories,
US/CA) expression vector and sequenced by GATC Biotech
(Konstanz, Germany).

In vivo transfection experiments

Mice were co-transfected with mCherry-LC3 combined with
either pBI-CMV1-GFP-FGF21 or pBI-CMV1-GFP. In vivo RNAi
experiments were performed using pSuper-Bnip3 plasmid,
which was already validated earlier both in vitro and
in vivo.25 In vivo transfection of tibialis anterior (TA) muscle
was carried out using the NEPA21 Super Electroporator with
settings: 21 voltage, 20 ms pulse length, 200 ms pulse inter-
nal, total five pulses. At least five mice were electroporated.
The right TA muscle was electroporated with mCherry-LC3
and the control vectors pBI-CMV1-GFP or pSuper-mock vec-
tor while the left muscle was electroporated with mCherry-

LC3 and pBI-CMV1-GFP-FGF21 and/or pSuper-Bnip3 plas-
mids. Muscles were collected 12 days after transfection.

LC3-vesicles quantification

Cryosections of wild type muscles that were transfected
in vivo with mCherry–LC3 together with either CMV1-GFP-
FGF21 GFP-FGF21 or with pBI-CMV1-GFP were examined
using an epifluorescence Leica DM5000B microscope
equipped with a Leica DFC300-FX digital charge-coupled de-
vice camera by using Leica DC Viewer software. The fluores-
cent dots were counted and normalized for cross-sectional
area with ImageJ software.

Statistical analysis

All data are presented as mean ± SEM. Statistical analysis from
two experimental groups (Fgf21f/f compared with Fgf21�/�)
was performed using unpaired one-tailed or two-tailed Stu-
dent’s t-tests. Comparisons of data from more than two
groups were performed using a two-way analysis of variance.
When analysis of variance revealed significant differences, fur-
ther analysis was performed using Bonferroni’s multiple com-
parison test. The statistical significance threshold was set at
P < 0.05. *Significant to Fgf21f/f FED, #Significant to Fgf21�/

� FED, §Fgf21f/f STARVED significant to Fgf21�/� STARVED,
and Fgf21f/f FED significant to Fgf21�/� FED.

Results

Fibroblast growth factor 21 is dispensable for
muscle mass maintenance in basal conditions

The metabolic regulator FGF21 is expressed and released
into the general circulation by several tissues such as the
liver, WAT, BAT, and the heart.7–11 Recent studies reported
that skeletal muscle is not only a producer but also a target
of FGF21 because it expresses the cofactor β-klotho and the
FGFRs.6,13,14,17–19 However, the physiological role of FGF21
in skeletal muscle function has not been investigated yet.
For this reason, we generated muscle-specific FGF21 knock-
out mice. FGF21 floxed mice (FGF21f/f) were crossed with a
transgenic line expressing Cre recombinase under the con-
trol of muscle-specific MLC1f promoter, which starts to be
expressed during embryogenesis.23 The resulting FGF21
muscle-specific knockout mice (hereafter referred to as
FGF21�/�) were born at the expected Mendelian ratio, were
viable, and had a normal growth curve compared with
age-matched control littermates (FGF21f/f) (Supporting
Information, Figure S1). The effective ablation of the floxed
sequence from genomic DNA extracted from skeletal muscle
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was confirmed by PCR analysis (Figure 1A). Quantitative real-
time PCR (q-PCR) also revealed the efficient reduction of
FGF21 transcript levels (Figure 1B). To assess the role of
FGF21 in skeletal muscle homeostasis in resting conditions,
we performed histological analysis of muscles of both con-
trol and FGF21�/� adult mice. H&E staining of transverse
muscle sections detected a normal muscle architecture with
no signs of inflammation, degeneration, or regeneration
(central nucleated fibres) in FGF21 null muscles (Figure 1C).

The distribution of glycogen stores revealed by PAS staining
was unaffected by FGF21 deletion (Figure 1C). The wet
weight of TA, GNM, extensor digitorum longus, and soleus
hindlimb muscles was similar to controls (Supporting Infor-
mation, Figure S2A). Quantitative analysis of myosin heavy
chain distribution (Figure 1D) and of fibre size measure-
ments of GNM muscles (Figure 1E and Figure 1F) did not
show any difference between control and FGF21 knockout
mice. These results indicate that FGF21 does not contribute

Figure 1 Muscle-specific FGF21 deletion does not affect muscle size or histology. (A) Genotyping of FGF21 control and knockout mice. PCR analysis
with genomic DNA from gastrocnemius muscles. Two sets of primers were used. Set 1 consists of one primer upstream of the 50 loxP site and the other
primer inside FGF21 sequence, amplifying a 675 bp sequence corresponding to not deleted DNA; set 2 consists of a couple of primers upstream 50 loxP
and downstream 30 loxP sites that detects the deleted sequence. (B) FGF21 mRNA expression was quantified by q-PCR in tibialis anterior muscle of
FGF21�/� and control mice. (C) Representative H&E and PAS staining showing normal morphology, and glycogen content of FGF21�/� gastrocnemius
muscle. (D) Percentage of fibres expressing myosin heavy chain types I, IIA, IIB, and IIX proteins in gastrocnemius muscles revealed by immunohisto-
chemistry analysis. (E) Quantification of CSA of myofibers indicates no significant differences in FGF21-ablated muscles. (F) Frequency histograms
showing the distribution of cross-sectional areas (μm2) in GNM of FGF21f/f (black dashed line) and FGF21�/� (black line) fibres. Data are shown as
mean ± SEM.

*
P < 0.05. CSA, cross-sectional area; FGF21, fibroblast growth factor 21; H&E, haematoxylin and eosin; PAS, periodic acid–Schiff.
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to muscle homeostasis in basal conditions, in terms neither
of fibre type nor of fibre size.

Muscle-specific fibroblast growth factor 21
deletion protects against starvation-induced
muscle atrophy and weakness

Under normal physiological conditions, expression levels of
FGF21 in muscle are very low. In contrast, stress situations
such as ER stress or mitochondrial myopathies induce
FGF21 production in muscles.13,14,17,18 Starvation is one of
the stress conditions known to induce FGF21 expression in
the liver,8,32 WAT,10 and skeletal muscle (Figure 2A).6 The
binding of the fasting-induced protein FGF21 relies on
membrane-bound co-receptor β-Klotho to establish the acti-
vation of the receptor FGFR. FGF21 mainly binds to FGFR1
(FGFR1b and FGFR1c) and to a lower extent to FGFR4.33 Ac-
cordingly, the expression of the FGF21 receptors: FGFR1,
1b, and 1c but not FGFR4 increase in muscles during starva-
tion (Supporting Information, Figure S2B). Of note, in
FGF21-null mice during fasting, FGFR1c is slightly lower while
β-Klotho expression is significantly reduced (Supporting Infor-
mation, Figure S2B). The metabolic adaptation mediated by
FGF21 during fasting in the liver and WAT is known to in-
crease lipolysis and hepatic ketogenesis.34 However, the ex-
act role of muscle-derived FGF21 in skeletal muscle during
fasting is unknown. To determine the effects of FGF21 in
adult skeletal muscles, we analysed the consequences in
muscle function of the muscle-specific deletion of FGF21 af-
ter 48 h of fasting, which is both a model of metabolic stress
and of muscle wasting. Muscle histology analyses by H&E
staining of both controls and FGF21 knockout-fasted mice
showed normal structure (Figure 2B), as seen in fed mice
(Figure 1C). PAS staining showed increased glycogen content
and thereby energy storage in knockout animals vs. control
during starvation (Figure 2C). Remarkably, quantification of
cross-sectional area of GNM muscles after prolonged fasting
resulted in near 20% decrease in control muscles while
FGF21 knockout mice were completely protected from mus-
cle loss in terms of both cross-sectional area mean and fibre
size distribution (Figure 2D and 2E). Fibre size of fasted
knockout muscles was significantly higher in IIX-IIB fibres (Fig-
ure 2F) while fibre type composition, based on myosin heavy
chain distribution, was unaffected (Supporting Information,
Figure S2C). Interestingly, the observed protection against at-
rophy occurs not only in GNM muscles but also in other mus-
cles with different metabolic properties and fibre type
composition such as soleus (slow-oxidative fibres), extensor
digitorum longus, and TA (predominance of type IIB fast-
glycolytic fibres) (Supporting Information, Figure S2A). Con-
sistent with muscle weight protection during fasting, the ep-
ididymal fat pads were also spared in knockout mice during
fasting (Supporting Information, Figure S2D). To investigate

if muscle mass sparing correlates with a functional protec-
tion, we measured the force generated by GNM muscle in
living animals. As expected, control-fasted mice were signifi-
cantly weaker than fed ones (Figure 2G). In contrast, in
FGF21-deficient mice, absolute muscle force in fed and
starved animals was almost superimposable (Figure 2H).
When we analysed the force normalized for muscle mass,
named specific force, no significant differences were de-
tected in any of the conditions studied, indicating that there
is no myopathy in the absence of FGF21 (Supporting Informa-
tion, Figure S2E). Altogether, these results suggest that
increased expression of FGF21 during fasting is required for
muscle atrophy and weakness.

Protein synthesis rate is maintained in fibroblast
growth factor 21-null muscles during fasting

The regulation of muscle size, due to its limited proliferative
capacity, is determined by the co-ordinated balance between
protein synthesis and protein degradation of myofibrillar
components. Therefore, to explain the sparing in muscle
mass and force with fasting, we hypothesized the possibility
that FGF21 controlled either of the two processes. To assess
the rate of new protein synthesis, we used the in vivo surface
sensing of translation technique.30 The antibiotic puromycin
was injected intraperitoneally in control and knockout mice,
and the rate of protein synthesis of nascent peptide chains
that incorporated puromycin was analysed in GNM muscle
by western blotting using an anti-puromycin antibody. In line
with the results in muscle weight and CSA in fed conditions
(Supporting Information, Figure S2A; Figure 1E and 1F), no
significant differences in protein synthesis rate was observed
in FGF21 knockout mice compared with controls (Figure 3A).
Food deprivation, as expected, decreased protein synthesis
rate of almost 70% in control muscles.35 In contrast, in the
absence of nutrients, protein synthesis rate of knockout mice
was similar to that in knockout fed (Figure 3A). Because mus-
cle loss requires the activation of transcription-dependent
programme controlled by the regulation of a subset of genes
named atrophy-related genes or atrogenes,36 we monitored
several atrogenes mRNAs belonging to ubiquitin-proteasome
system (UPS).37 The expression levels of the well-known
muscle-specific E3 ubiquitin ligases Atrogin1 and MuRF1, as
well as the recently discovered SMART, MUSA1, Fbxo31, Itch,
and Trim37,37 were the same in control and knockout mus-
cles in both fed and fasting state (Supporting Information,
Figure S3A). We checked the levels of Lys48 and Lys63
polyubiquitinated proteins, which play a role in the
proteasomal-dependent and autophagy-dependent degrada-
tion, respectively (Figure 3B; Figure 3C; and Supporting Infor-
mation, Figure S3B and S3C). As expected, fasting resulted in
an increase of both Lys48 and Lys63 polyubiquitinated pro-
teins in control mice. In contrast, in fasted FGF21-null
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Figure 2 FGF21 is required for muscle atrophy and weakness during fasting. (A) mRNA expression of FGF21 in GNM of fed and starved FGF21
f/f
mice.

(B) H&E staining of control (FGF21f/f) and KO mice (FGF21�/�) GNM muscle. (C) PAS staining shows more glycogen content in FGF21 null muscles. (D)
Cross-sectional area of fed and 48 h starved GNM muscles. (E) Fibre size distribution from fed (left panel) and starved (right panel) control (black
dashed line) and FGF21 KO (red line) muscles. (F) CSA of myofibers expressing myosin heavy chain types IIA and IIB-IIX of starved control and KO mice.
(G) Force measurements performed in vivo on gastrocnemius showed that FGF21�/� muscles preserve muscle force after fasting. Force/frequency
curve of FGF21

f/f
(left panel) and FGF21

�/�
(right panel). Data are shown as mean ± SEM. Significance P < 0.05

*
vs. control fed,

§
vs. control starved.

CSA, cross-sectional area; FGF21, fibroblast growth factor 21; H&E, haematoxylin and eosin; KO, knockout; PAS, periodic acid–Schiff.
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muscles, the accumulation of ubiquitin (Lys63) was lower
comparing knockout with control mice while there were no
significant differences in ubiquitin (Lys48) expression (Figure
3B, Figure 3C, and Supporting Information, Figure S3B and
S3C). Collectively, these results suggest that in the absence
of nutrients, the protection from fasting-induced muscle loss
in FGF21 null muscles depend on the maintenance of protein
synthesis rate together with a reduction of the autophagy-
dependent degradation while the UPS activation is not
altered.

Fibroblast growth factor 21 controls muscle
mitophagy flux

Because the UPS was not involved in muscle mass and force
sparing in fasted FGF21-null mice, we focused in the other
muscle major degradative pathway, the autophagy lysosomal
system, which is essential for muscle homeostasis.38,39 The
decrease of ubiquitin (Lys63) suggests that autophagy might
be affected in Fgf21-null mice under starvation, as ubiquitin
(Lys63) is important in the recognition of autophagy cargo
(Figure 3C and Supporting Information, Figure S3C). However,
no significant differences were observed in the transcript
levels of several autophagy-related genes (Supporting Infor-
mation, Figure S4A). Thus, the next step was to assess

autophagic flux, in vivo, by using the autophagy-inhibiting
drug colchicine, to block autophagosome maturation to
autolysosomes. When blocking autophagic flux, the accumu-
lation of LC3-II reflects autophagosome synthesis in the
absence of degradation. Autophagic flux in total muscle
homogenates remained unchanged in fed, suggesting that
basal-general autophagic flux was not altered (Figure 4A
and 4C left panel and Supporting Information, Figure S4B).
As expected, colchicine treatment in fasted control mice
caused a significant increase of LC3II levels during fasting, in-
dicating that autophagy was ongoing in these muscles. In
contrast, the general autophagy flux was partially reduced
in starved condition in Fgf21-deleted mice (Figure 4A and
4C right panel and Supporting Information, Figure S4B). Be-
cause mitophagy, the selective degradation of dysfunctional
mitochondria, is critical for the maintenance of muscle mass,2

we isolated mitochondria from muscles treated with colchi-
cine to evaluate the autophagy-dependent lysosomal delivery
of mitochondria, named mitophagy. Interestingly, the au-
tophagic flux of the mitochondrial fraction was significantly
decreased in both fed and starved conditions in knockout
mice (Figure 4D, 4E, and 4F and Supporting Information, Fig-
ure S4C). Additional evidence for the reduction of the
mitophagy flux during fasting in FGF21 knockout mice was
supported by time-lapse analyses of transfected adult mus-
cles with the pH-sensitive mitochondrial target protein mt-

Figure 3 Protein synthesis rate is maintained in FGF21-deleted muscles during fasting. (A) In vivo surface sensing of translation technique shows the
maintenance of protein synthesis in FGF21-ablated mice muscles during fasting. A representative immunoblot is shown. Quantification of the puromy-
cin-labelled peptides is expressed as percentage of the values obtained in the control group. Data are normalized to actin. (B–C) Densitometric analysis
of total muscle extracts from FGF21

f/f
and FGF21

�/�
immunoblotted for anti-ubiquitin (Lys48) (B) and for anti-ubiquitin (Lys63) (C) normalized to actin.

Data are shown as mean ± SEM. Protein bands were quantified using ImageJ, normalized to actin, and their expression was plotted relative to control
fed (set to 1.00). Significance:

*
compared with control fed (P < 0.01), and compared with control fed (P < 0.05),

#
compared to FGF21 knockout fed

(P < 0.05) and §vs. control starved (P < 0.05). FGF21, fibroblast growth factor 21.
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Figure 4 Muscle-specific FGF21 deletion controls mitophagy. Immunoblotting analyses of autophagy flux in control and FGF21-null GNM total muscle
homogenates in fed (A) and in fasting (B) conditions. (C) Quantification of LC3 lipidation was normalized to actin and plotted to control fed not treated
with colchicine (set to 1.00). Inhibition of autophagy–lysosome fusion by colchicine treatment induces less accumulation of LC3II band in starved
FGF21-KO but not in starved control muscles. Mitophagy flux is decreased in FGF21 KO muscles. (D–E) Representative immunoblot images of mito-
chondria isolated from GNM muscles after colchicine treatment probed with anti-LC3 antibody in fed (D) and in fasting conditions. (F) Quantification
of protein bands as seen in (D and E) by ImageJ. VDAC served as a loading control. (G) Mitophagy flux was analysed by electroporation of a reporter
plasmid (mt-mKEIMA) into flexor digitorum brevis muscles of adult control and FGF21�/�mice; changes of fluorescent spectra were detected and nor-
malized to fibre area. (H) Succinate dehydrogenase staining indicating more mitochondrial content in FGF21 KO GNM muscles in both fed and fasting.
(I) Mitochondrial content revealed by Tom20 is increased in FGF21-deleted muscles during fasting. Densitometric quantification of Tom20 western
blot, normalized to GAPDH. (J) The mitophagy protein Bnip3 is significantly reduced in KO muscles. Densitometric analysis of Bnip3 protein, normalized
to the mitochondrial protein VDAC and plotted relative to control fed. Data are shown as mean ± SEM. Significance P < 0.05 *compared with control
fed and compared with control fed and §compared with control starved. FGF21, fibroblast growth factor 21; GNM, gastrocnemius; KO, knockout.
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mKeima27 (Figure 4G). Although mt-mKeima was not able to
reveal differences in the basal mitophagy flux between
knockout and control muscles, mitochondrial content, re-
vealed by SDH staining, was higher in both fed and fasting
FGF21-null muscles when compared with controls (Figure
4H). The reduction of mitophagy flux in the absence of
FGF21 was further confirmed by significant increase in mito-
chondrial mass, revealed by Tom20 immunoblot (Figure 4I
and Supporting Information, Figure S4D) and by decreased
levels of the mitophagy protein Bnip3 (Figure 4J and
Supporting Information, Figure S4E). In summary, FGF21 con-
trols more specifically the mitophagic flux rather than the

general autophagy, which was partially reduced in knockout
mice during fasting.

Bnip3 is required for fibroblast growth factor
21-mediated muscle loss

To further address the contribution of FGF21 to the atrophy
programme, we co-transfected, in vivo, TA adult muscles
with mcherry-LC3 and with either a bidirectional plasmid
encoding FGF21 and green fluorescent protein (GFP) or only
GFP (mock plasmid) (Figure 5A). Twelve days after

Figure 5 In vivo overexpression of FGF21 in muscles induces autophagy and Bnip3-dependent muscle atrophy. (A–B) FGF21 overexpression induces
autophagy. (A) Representative images of adult tibialis anterior muscles of wild type mice electroporated in vivo with mcherry-LC3 and with either
GFP-FGF21 or with only GFP (control). Muscles were collected 12 days after transfection. (B) A higher number of LC3 dots was observed in muscles
overexpressing FGF21. Quantification of the number of LC3 positive vesicles normalized to fibre area in control or in FGF21 overexpressing muscles.
(C) FGF21 in vivo overexpression is sufficient to induce muscle loss. CSA of transfected fibres, identified by GFP immunofluorescence, was measured
with ImageJ and normalized to control fibres. (D) Frequency histograms showing the distribution of cross-sectional areas (μm2) in tibialis anterior
transfected with either a GFP-plasmid (control) (black dashed line) or with GFP-FGF21 plasmid (red line). (E) Downregulation of Bnip3, by RNAi protects
from FGF21-dependent muscle loss. Adult skeletal muscles were co-transfected with either GFP or with FGF21 in the presence or absence of specific
siRNAs for mouse Bnip3. Twelve days later, muscles were collected and analysed for CSA of transfected fibres. Data are shown as mean ± SEM.
*P < 0.05. CSA, cross-sectional area; FGF21, fibroblast growth factor 21; GFP, green fluorescent protein.
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transfection, autophagosome formation was analysed by
quantifying LC3-positive autophagic vesicles. Interestingly,
autophagosome quantification was significantly higher in
FGF21-expressing fibres than in mock-transfected fibres
(Figure 5B). Because FGF21 is required for atrophy during
prolongued fasting, we then investigated whether FGF21
overexpression was sufficient to induce muscle atrophy.
Transfection of the mock vector does not alter myofiber size
(Figure 5C). In contrast, FGF21 overexpression results in ap-
proximately 15% decrease in cross-sectional area of
transfected fibres compared with the surrounding non-
transfected fibres (Figure 5C). Accordingly, fibre size distri-
bution shifted towards a smaller fibre size (Figure 5D). Be-
cause the levels of the mitophagy protein Bnip3 were
significantly reduced in isolated mitochondria from FGF21-
deleted muscles (Figure 4J and Supporting Information, Fig-
ure S4E) and we already demonstrated that Bnip3 inhibition
reduces autophagosome formation and protects against
muscle loss during atrophy,25,38 we hypothesize an involve-
ment of this factor in FGF21-mediated atrophy. We co-
transfected, in vivo, vectors producing double-stranded
small interfering RNA (siRNA) specific for Bnip3 together
with FGF21-GFP plasmid. Inhibition of Bnip3 resulted in a
significant protection from FGF21-induced muscle loss (Fig-
ure 5E), suggesting that Bnip3 is required for FGF21-
dependent muscle atrophy.

Discussion

Here, we identify FGF21 as a novel player in the regulation
of muscle mass. Moreover, our data provide insights into
the mechanisms regulated by FGF21. Whether FGF21 is
beneficial or detrimental for human health is so far still un-
der debate. On one hand, FGF21 has gained attention for
being a potential therapeutic protein for obesity and type
2 diabetes because it stimulates the oxidation of fatty acids,
the production of ketone bodies, and inhibits lipogene-
sis.33,34 On the other hand, several reports indicate a path-
ophysiological role for FGF21: (i) it promotes bone loss and
reduces bone mineral density40,41; (ii) FGF21 is a stress-
induced myokine, which is released under conditions of
starvation, ER stress, mitochondrial dysfunction, obesity, mi-
tochondrial myopathies, and aging.6,13–18 We have recently
shown that chronic elevation of muscle-derived circulating
FGF21 leads to systemic inflammation, precocious senes-
cence, and premature death.18 Indeed, serum FGF21 levels
positively correlated with aging sarcopenia.18,21 Moreover,
FGF21 is a specific serum biomarker of muscle-manifesting
mitochondrial disorders17,20 and for subclinical atherosclero-
sis,42 and (iii) there is a paradoxically positive correlation
with elevated serum FGF21 levels and metabolic disorders
like obesity, diabetes, and mitochondrial diseases in mice

and humans.33 Interestingly, all these conditions have in
common muscle atrophy. In fact, there is a tight correlation
between muscle dysfunction and the disruption of physio-
logical homeostasis at the whole body level. Therefore,
the metabolic adaptations occurring in skeletal muscles
can influence disease progression in distant tissues.3,43 This
regulation is exerted through the release of muscle-derived
factors: myokines and myometabolites that can act system-
ically, in an endocrine fashion, to modulate the intertissue
communication or locally in autocrine/paracrine manner.
However, all the studies regarding FGF21 as a myokine re-
vealed the endocrine signalling of FGF21, while the liver,
WAT, BAT, and heart were shown to be both source and
target of FGF21’s autocrine/paracrine action.34 Therefore,
that muscle-derived FGF21 systemic contribution occur in
stressed muscles is strongly supported.6,13–18 What is not
clear is which is the functional role of FGF21 in the context
of skeletal muscle homeostasis. To clarify this issue, we ex-
plored in both fed and fasting conditions whether specific
deletion of FGF21 in skeletal muscle affects the mainte-
nance of adult skeletal muscle mass and the metabolic
properties. In fed condition, loss of FGF21 in skeletal muscle
does not induce any change in muscle mass, force, and fi-
bre type, which is in agreement with low FGF21 expression
levels under physiological conditions.34 In contrast, FGF21
and FGFRs gene expression levels increase in muscles in re-
sponse to fasting in control muscles. For this reason, we
analysed whether the contribution of FGF21 to muscle func-
tion becomes evident in the absence of nutrients. Our data
indicate that FGF21 is required for fasting-dependent mus-
cle mass and force loss. Muscle mass and force sparing dur-
ing fasting in knockout mice can be explained by the
maintenance of protein synthesis rate. The increased pro-
tein synthesis without acting on protein breakdown may
not be sufficient to prevent muscle atrophy and weakness
during starvation, because the co-ordination of these two
processes determines protein turnover. Our findings indi-
cate that muscle protection in fasted FGF21 knockout mice
does not depend on the regulation of UPS, but it rather de-
pends on the regulation of autophagy and, more specifi-
cally, mitophagy pathways. Mitophagy flux is reduced in
FGF21-null mice during fasting. Indeed, in vivo mt-mKeima
experiment, SDH staining, and western blotting for the mi-
tochondrial marker Tom20 and the mitochondrial degrada-
tion protein Bnip3 suggest that mitophagy is decreased. In
vivo overexpression of FGF21 in skeletal muscle fibres is suf-
ficient to significantly induce autophagosome formation and
muscle loss, resulting in 15% of decrease of cross-sectional
area of transfected TA fibres, supporting a role for FGF21
in skeletal muscle remodelling. Inhibition of the mitophagy
factor Bnip3, in vivo, by RNAi, was sufficient to reduce
FGF21-dependent muscle atrophy. Thus, Bnip3 is a key fac-
tor in muscle loss induced by FGF21. To our knowledge, this
is the first study demonstrating that, in mammalian skeletal
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muscle, FGF21 is involved in the removal of damaged mito-
chondria through mitophagy. In summary, the current study
elucidates by using gain and loss of function approaches, a
novel role for FGF21 in the control of skeletal muscle mass
through the regulation of the anabolic/catabolic balance.
These findings are important for the understanding of the
molecular pathways that control muscle mass. Moreover,
this study also open several new avenues for future investi-
gation to define the mechanisms mediated by FGF21 in the
interplay between muscle and other tissues such as bones,
heart, and WAT in whole body homeostasis.
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Figure S2: A) Wet weight relative to control of Tibialis ante-
rior (TA), Gastrocnemius (GNM), Extensor Digitorum Longus
(EDL) and Soleus muscles of controls and KO mice in fed
and after 48 h of fasting B) RT-PCR for β-klotho (KLB) and

different FGF receptors isoforms in skeletal muscle of fed
and fasted control and FGF21 KO mice C) % of fibers express-
ing myosin heavy chain type I, IIA, IIB and IIX proteins in gas-
trocnemius muscles revealed by immunohistochemistry
analysis in starved control and FGF21-null mice D) Epididymal
fat content normalized to body weight (BW) is preserved in
FGF21 KO mice during fasting E) Absolute muscle force nor-
malized to GNM wet weight indicates the absence of myopa-
thy in the conditions analyzed. Significance p< 0.05. *
compared to control fed, & compared to control fed, #com-
pared to FGF21 KO fed, and § versus control starved.
Figure S3: A) q–PCR of Ubiquitin-Proteasome System-related
transcripts from fed and 24-h starved tibialis anterior of con-
trol and FGF21 -/- muscles. Data are normalized to GAPDH
and expressed as fold increase of control-fed mice B and C)
Representative Western Blots of total muscle extracts
immunoblotted for anti-Ubiquitin (Lys48) (B) and for anti-
Ubiquitin (Lys63) (C) normalized to actin. Data are shown as
mean ± s.e.m. Significance p< 0.05. * compared to control
fed, & compared to control fed, #compared to FGF21 KO
fed and § versus control starved.
Figure S4: A) q-PCR analysis of autophagy-related transcripts
in fed and starved control and KO muscles normalized to
GAPDH B) Fold increase of LC3II western blot of total muscle
homogenates normalized to actin and plotted as a ratio be-
tween colchicine treated samples and paired samples without
colchicine C) Fold increase of LC3II western blot of the mito-
chondrial fraction normalized to VDAC and plotted as a ratio
between colchicine treated samples and paired samples with-
out colchicine D) Representative Western Blots of Tom20 in
muscle homogenates (D) and of Bnip3 in the mitochondrial
fraction (E). Data are shown as mean ± s.e.m. Significance
p< 0.05. * compared to control fed, & compared to control
fed, #compared to FGF21 KO fed and § versus control starved.
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