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Mosquito control remains a central pillar of efforts to reduce malaria burden in sub-Saharan Africa. However, insecticide

resistance is entrenched inmalaria vector populations, and countries with a highmalaria burden face a daunting challenge to

sustain malaria control with a limited set of surveillance and intervention tools. Here we report on the second phase of a

project to build an open resource of high-quality data on genome variation among natural populations of the major

African malaria vector species Anopheles gambiae and Anopheles coluzzii. We analyzed whole genomes of 1142 individual mos-

quitoes sampled from the wild in 13 African countries, as well as a further 234 individuals comprising parents and progeny

of 11 laboratory crosses. The data resource includes high-confidence single-nucleotide polymorphism (SNP) calls at 57 mil-

lion variable sites, genome-wide copy number variation (CNV) calls, and haplotypes phased at biallelic SNPs. We use these

data to analyze genetic population structure and characterize genetic diversity within and between populations. We illus-

trate the utility of these data by investigating species differences in isolation by distance, genetic variation within proposed

gene drive target sequences, and patterns of resistance to pyrethroid insecticides. This data resource provides a foundation

for developing new operational systems for molecular surveillance and for accelerating research and development of new

vector control tools. It also provides a unique resource for the study of population genomics and evolutionary biology in

eukaryotic species with high levels of genetic diversity under strong anthropogenic evolutionary pressures.

[Supplemental material is available for this article.]

The 10 countries with the highest malaria burden in Africa ac-
count for 65% of all malaria cases globally, and attempts to reduce
that burden further are stalling in the face of significant challenges
(World Health Organization 2019). Not least among these, resis-
tance to pyrethroid insecticides is widespread throughout
African malaria mosquito populations, potentially compromising
the efficacy of mosquito control interventions, which remain a
core tenet of global malaria strategy (Hemingway et al. 2016;
World Health Organization 2018). There is a broad consensus
that further progress cannot be made if interventions are applied
blindly, but must instead be guided by data from epidemiological
and entomological surveillance (World Health Organization
2015). Genome sequencing technologies are considered to be a
key component of future malaria surveillance systems, providing
new insights into evolutionary and demographic events in mos-
quito and parasite populations (Ishengoma et al. 2019).
Genomic surveillance systems cannot work in isolation, however,
and depend on high-quality open genomic data resources, includ-
ing baseline data on genome variation from multiple mosquito
species and geographical locations, against which comparisons
can be made and inferences regarding new events can be drawn.

Better surveillance can increase the impact and longevity of
current mosquito control tools, but sustaining malaria control
will also require the development of new tools (World Health
Organization 2015). This includes repurposing existing insecti-
cides from agriculture (Lees et al. 2019; Oxborough et al. 2019), de-
veloping entirely new insecticide classes, and developing tools

that do not rely on insecticides, such as genetic modification of
mosquito populations (Kyrou et al. 2018). The research and devel-
opment of newmosquito control tools has been greatly facilitated
by the availability of high-quality open genomic data resources, in-
cluding genome assemblies (Holt et al. 2002; Sharakhova et al.
2007), annotations (Giraldo-Calderón et al. 2015), and, more re-
cently, data on genetic variation in natural mosquito populations
(TheAnopheles gambiae 1000Genomes Consortium 2017). Further
expansion of these open data resources to incorporate unsampled
mosquito populations and new types of genetic variation can pro-
vide new insights into a range of biological and ecological process-
es and help to further accelerate scientific discovery and applied
research.

The Anopheles gambiae 1000 Genomes (Ag1000G) Project
(https://www.malariagen.net/projects/ag1000g) was established
in 2013 to build a large-scale open data resource on natural genetic
variation in malaria mosquito populations. The Ag1000G Project
forms part of the Malaria Genomic Epidemiology Network
(MalariaGEN) (https://www.malariagen.net), a data-sharing com-
munity of researchers investigating how genetic variation in hu-
mans, mosquitoes, and malaria parasites can inform the biology,
epidemiology, and control of malaria. The first phase of the
Ag1000G Project released data from whole-genome Illumina
deep sequencing of the major Afrotropical malaria vector species
Anopheles gambiae and Anopheles coluzzii (The Anopheles gambiae
1000 Genomes Consortium 2017), two closely related siblings
within the A. gambiae species complex (Coetzee et al. 2013).
Mosquitoes were sampled in eight African countries from a broad
geographical range, spanning Guinea-Bissau in the west to Kenya
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in the east. Genetic diversity was found to be high in most popu-
lations, and there were marked patterns of population structure,
with some clear differences between populations in themagnitude
and architecture of genetic diversity, indicating complex and var-
ied demographic histories. However, many countries and ecologi-
cal settings are not represented in the Ag1000G phase 1 resource.
Also, only single-nucleotide polymorphisms (SNPs) were studied
in phase 1, but other types of genetic variation are known to be im-
portant. In particular, copy number variation (CNV) has long been
suspected to play a key role in insecticide resistance (Schimke et al.
1978; Devonshire and Field 1991; Weetman et al. 2015), but no
previous attempts to call genome-wide CNVs have been made in
these species. The Ag1000G Project also aims to provide a data re-
source of broad utility for the study of eukaryotic population geno-
mics and evolutionary biology. In the first project phase, we found
that nucleotide diversity among the mosquito populations we
sampled was almost twice that reported for African populations
of Drosophila melanogaster (Lack et al. 2016) and 10 times greater
than modern human populations (Leffler et al. 2012). Among ar-
thropods, the only data resource of comparable scale remains the
Drosophila Genome Nexus, which has compiled and standardized
genomic data from sampling of natural populations across the spe-
cies ancestral range in sub-Saharan Africa, as well as naturalized
populations in Europe and North America (Lack et al. 2016).
AlthoughAnopheles andDrosophila are both dipteran insects, there
are fundamental differences in their biology and life histories,
making a valuable comparison. Among other eukaryotes, compa-
rable data resources exist only for humans (The 1000 Genomes
Project Consortium 2015) and malaria parasites (MalariaGEN
Plasmodium falciparum Community Project 2019), and thus, there
remains an absence of open genomic data for studying demo-
graphic and evolutionary processes in natural populations. Fur-
thermore, although many species have undoubtedly been
exposed to new evolutionary pressures of anthropogenic origin,
few species have been subject to such an intense and directed cam-
paign of attack as malaria-transmitting mosquitoes. This year has
seen the delivery of the 2 billionth insecticide-treated bed net in
Africa, and programs of indoor residual spraying of insecticides

protect more than 20 million people each year (Tangena et al.
2020). Thus whole-genome sequencing of Anopheles mosquitoes
offers the opportunity to observe an evolutionary experiment on
a continental scale.

This paper describes the data resource produced by the second
phase of the Ag1000G Project. In this phase, sampling and se-
quencing were expanded to include wild-caught mosquitoes
from five additional countries. This includes three new locations
with A. coluzzii, providing greater power for genetic comparisons
with A. gambiae, and two island populations, providing a useful
reference point to compare against mainland populations. Seven
new laboratory crosses are also included, providing a substantial re-
source for studying genome variation and recombination within
known pedigrees. In this phase, we studied both SNPs and CNVs
and rebuilt a haplotype reference panel using all wild-caught spec-
imens. Here we describe the data resource and use it to re-evaluate
major population divisions and characterize genetic diversity. We
also illustrate the broad utility of the data by comparing geograph-
ical population structure between the two mosquito species to in-
vestigate evidence for differences in dispersal behavior, by
analyzing genetic diversity within a gene in the sex-determination
pathway currently targeted for gene drive development, and by
providing some preliminary insights into the prevalence of differ-
ent molecular mechanisms of pyrethroid resistance.

Results

Population sampling and sequencing

We performed whole-genome sequencing of 377 individual wild-
caught mosquitoes, including three countries (The Gambia, Côte
d’Ivoire, Ghana) and two oceanic islands (Bioko,Mayotte) not rep-
resented in the previous project phase. These individuals were col-
lected using a variety of methods and at a different life stages (see
Methods). We also sequenced 152 individuals comprising parents
and progeny from seven laboratory crosses. We then combined
these data with sequencing data from phase 1 of the project to cre-
ate a total resource of data from 1142 wild-caught mosquitoes

Figure 1. Ag1000G phase 2 sampling locations. Color of circle denotes species, and area represents sample size. Species assignment is labeled as un-
certain for samples from Guinea-Bissau, The Gambia, and Kenya because all individuals from those locations carry a mixture of A. gambiae and A. coluzzii
ancestry informativemarkers (Supplemental Fig. S1).Map colors represent ecosystem classes; dark green designates forest ecosystems. For a compete color
legend see Figure 9 in the work of Sayre (2013).
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(1058 female, 84 male) from 13 countries (Fig. 1; Supplemental
Table S1) and 234 mosquitoes from 11 laboratory crosses
(Supplemental Table S2). All mosquitoes were sequenced individ-
ually on Illumina technology using 100-bp paired-end reads to a
target depth of 30×. The median genome-wide coverage obtained
across all 1142 wild-caught mosquitoes included in the final re-
source was 31×, with a minimum of 14×. Among these samples,
on average 90% of the reference genome obtained at least 1× cov-
erage, 82% at least 10×, and 68% at least 20×.

Genome variation

Sequence reads were aligned to the AgamP3 reference genome (Holt
et al. 2002; Sharakhova et al. 2007), and SNPswere discovered using
methods described previously (The Anopheles gambiae 1000
Genomes Consortium 2017). In total, we discovered 57,837,885
SNPspassing all variant quality filters, 11%ofwhichwere newly dis-
covered in this project phase. Of these high-quality SNPs, 24%were
multiallelic (three or more alleles). We also analyzed genome acces-
sibility to identify all genomic positions where read alignments
were of sufficient quality and consistency to support accurate SNP
discovery and genotyping. Similar to the previous project phase,
61% (140Mbp) of genome positions were accessible to SNP calling,
including 91% (18 Mbp) of the exome and 58% (121 Mbp) of non-
coding positions. Overall, we discovered an average of one variant
allele every 1.9 bases of the accessible genome. We then used
high-quality biallelic SNPs to construct a new haplotype reference
panel including all 1142wild-caught individuals, via a combination
of read-backedphasing and statistical phasing as described previous-
ly (The Anopheles gambiae 1000 Genomes Consortium 2017).

In this project phase, we also performed a genome-wide CNV
analysis, described in detail elsewhere (Lucas et al. 2019a). In brief,
we called CNVs by analyzing data on depth of sequence read cov-
erage in 300-bp genomic windows. We excluded windows with a
high rate of ambiguous read mapping, leaving 77% (177 Mbp) of
genomic windows accessible to CNV calling. For each individual
mosquito, we fitted a hidden Markov model (HMM) to windowed
depth of coverage values and then filtered the results to remove
CNVs shorter than five contiguous windows (1.5 kbp) or with
poor statistical support. We then compared calls between individ-
uals to identify shared CNVs and compute population allele fre-
quencies. The CNV call-set comprises 31,335 distinct CNVs, of
which 7086 were found in more than one individual, and 1557
were above 5% frequency in one or more populations; 68 Mbp
of the genome was overlapped by one or more CNVs, comprising
39% of genomic positions accessible to CNV calling, and 18 Mbp
(10%) was affected by one or more nonsingleton CNVs. It is diffi-
cult to compare these results with other species owing to the few
number of whole-genome studies and the differingmethodologies
and sample sizes. However, values in the range 1%–12%have been
obtained in various studies ofmammals (for review, see Locke et al.
2015), broadly comparable to the 10% we observed for nonsingle-
ton CNVs. Although we applied a number of quality-filtering
steps, it is likely that some false discoveries remain, particularly
among CNVs only observed in a single individual. For our analysis
of CNVs in insecticide-resistance genes, we therefore used only
CNVs >5% frequency in at least one population. These high-fre-
quencyCNVswere significantly enriched in gene families associat-
ed with metabolic resistance to insecticides, with three loci in
particular (two clusters of cytochrome P450 [CYP] genes Cyp6p/
aa, Cyp9k1 and a cluster of glutathione S-transferase genes Gste)
having a large number of distinct CNV alleles, multiple alleles at

high population frequency, and evidence that CNVs are under
positive selection (Lucas et al. 2019a). CNVs at these loci are
thus likely to be playing an important role in adaptation to mos-
quito control interventions.

Species assignment

A. gambiae and A. coluzzii were originally defined as distinct spe-
cies on the basis of fixed genetic differences (Coetzee et al.
2013). These sister species have overlapping ranges that span
much of Sub-Saharan Africa, although A. coluzzii is absent from
East Africa (Wiebe et al. 2017), and remain genetically distinct
throughout much of this range, despite being often found in sym-
patry (Coetzee et al. 2013). Two molecular assays are widely used
for differentiating these species, each of which reports the geno-
type at a single marker in the centromeric region of the X
Chromosome (Fanello et al. 2002; Santolamazza et al. 2008). A sin-
gle marker provides a restricted view, however, with a limited abil-
ity to detect some forms of hybridization or admixture or other
complex patterns of population ancestry. In the previous project
phase, we compared the results of these conventional assays
with genotypes at 506 ancestry-informative SNPs distributed
across all chromosome arms and found that, in some cases, the
conventional assays were not concordant with species ances-
try at other genome locations (The Anopheles gambiae 1000
Genomes Consortium 2017). In particular, all individuals from
two sampling locations, Kenya and Guinea-Bissau, carried a mix-
ture ofA. gambiae andA. coluzzii alleles throughout their genomes,
creating uncertainty regarding the appropriate species assign-
ment. Among the new samples in phase 2, mosquitoes from The
Gambia also carried a mixture of alleles from both species, in sim-
ilar proportions to mosquitoes from Guinea-Bissau (Supplemental
Fig. S1), confirming that populations with apparent mixed geno-
mic ancestry are present in multiple countries in the far-western
region. Previous studies using conventional assays have found
that mosquitoes with heterozygous A. gambiae/A. coluzzii geno-
types are common in several far-western countries, and have inter-
preted that as evidence for a recent breakdown of reproductive
isolation between the species within that geographical area
(Oliveira et al. 2008; Nwakanma et al. 2013). However, there are
several possible explanations for those observations, including
historical admixture and the presence of cryptic taxa that are an-
cestral to both A. gambiae and A. coluzzii that retain ancestral var-
iation at species-diagnostic loci. Several studies have recently
found evidence for cryptic taxa within the A. gambiae complex
in other African regions (Riehle et al. 2011; Tennessen et al.
2020). Furthermore, our observations of apparent mixed ancestry
in Kenyan mosquitoes, in East Africa where no mosquitoes identi-
fied as A. coluzzii have ever been observed (Wiebe et al. 2017), can-
not be because of recent hybridization. A number of statistical
methods are now available for use with genomic data that can
test different hypotheses regarding the status and history of these
populations, and work is ongoing within the Ag1000G
Consortium to explore these fully. Until these questions are re-
solved, we regard the species assignment for individuals from
Guinea-Bissau, The Gambia, and Kenya as uncertain.

In all other countries, genotypes at ancestry-informative
SNPs were concordant with conventional assays, except on chro-
mosome arm 2L where there has been a known introgression
event carrying an insecticide-resistance allele from A. gambiae
into A. coluzzii (Weill et al. 2000; Diabaté et al. 2004; Clarkson
et al. 2014; Norris et al. 2015). We observed this introgression
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in A. coluzzii from both Burkina Faso and Angola in phase 1, and
it was also present among A. coluzzii from Côte d’Ivoire, Ghana,
and Guinea in the phase 2 cohort, confirming that A. coluzzii
populations across a wide geographical range have been affected.

Population structure

We investigated genetic population structure within the wild-
caught mosquitoes by performing dimensionality reduction anal-
yses on the genome variation data, applying bothUMAP (McInnes
et al. 2018) and PCA (Patterson et al. 2006) to genotypes at biallelic
SNPs from euchromatic regions of Chromosome 3 (Fig. 2;
Supplemental Fig. S2) and applying PCA to CNVs from the whole
genome (Supplemental Fig. S3). PCA has a direct genealogical in-
terpretation (McVean 2009), but UMAP’s nonlinear algorithm is
able to represent a more complex structure in fewer dimensions,
and hence, we compared both approaches. To complement these
analyses, we fitted models of population structure and admixture
to the SNP data (Supplemental Fig. S4; Frichot et al. 2014). We
also used SNPs to compute twomeasures of genetic differentiation,
average FST and rates of rare variant sharing, between pairs of pop-
ulations defined by country of origin and species (Supplemental
Fig. S5). From these analyses, three major groupings of individuals
from multiple countries were evident: A. coluzzii fromWest Africa
(Burkina Faso, Ghana, Côte d’Ivoire, Guinea), A. gambiae from
west, central and near-east Africa (Burkina Faso, Ghana, Guinea,
Cameroon, Uganda), and individuals with uncertain species status
from far-west Africa (Guinea-Bissau, The Gambia). Within each of
these groupings, samples clustered closely in all PCA and UMAP
components and in admixture models for up to K=5 ancestral
populations, and differentiation between countries wasweak, con-
sistent with relatively unrestricted gene flow between countries.
Each of the remaining clusters comprised samples from a single
country and species (Angola A. coluzzii; Gabon A. gambiae,
Mayotte A. gambiae; Bioko A. gambiae; individuals with uncertain

species status from Kenya), and in general, each of these popula-
tions was more strongly differentiated from all other populations,
consistent with a role for geographical factors limiting gene flow.

All population subdivisions supported by the PCA analyses
were also present in the UMAP analysis, although UMAP made
all of these subdivisions apparent within only two components,
providing a simpler visual summary. The SNP and CNV PCA re-
sults agreed in terms of identifying the same population subdivi-
sions, but there were differences in the order in which divisions
appeared. In the SNP PCA, PC1 largely divides populations by spe-
cies, with the Guinea-Bissau and Gambia samples occurring with
A. coluzzii populations and with the Kenya samples occurring
with A. gambiae populations. In the CNV PCA, PC1 also appears
to be largely driven by species, but the Guinea-Bissau, Gambia,
and Kenya samples all group together. PC2 in the CNV PCA
then splits out these three populations together, as distinct from
populations with known A. gambiae and A. coluzzii status. Thus,
the CNV PCA suggests the three populations with uncertain spe-
cies statusmay share some common ancestry, although this would
be surprising given the large geographical distance between them.
These differences emphasize the need for further analyses to deter-
mine the ancestry and species status of these populations. The ad-
mixture analyses forMayotte andKenyamodeled individuals from
both populations as a mixture of multiple ancestral populations.
This could represent some true admixture in these populations’
histories but could also be an artifact owing to strong genetic drift
(Lawson et al. 2018). A comparison of the two A. gambiae island
populations is interesting becauseMayotte was highly differentiat-
ed from all other populations, but Bioko was more closely related
to other West African A. gambiae, suggesting that Bioko may not
be isolated fromcontinental populations despite a physical separa-
tion of >30 km.

The new locations sampled in this project phase allow more
comparisons to be made between A. gambiae and A. coluzzii, and
there are many open questions regarding their behavior, ecology,

and evolutionary history. For example, it
would be valuable to know whether
there are differences in long-range dis-
persal behavior (North et al. 2019) as
have been suggested by recent studies
in Sahelian regions (Dao et al. 2014;
Huestis et al. 2019). Providing a compre-
hensive answer to this question is be-
yond the scope of this study, but we
performed a preliminary analysis by esti-
mating Wright’s neighborhood size for
each species (Wright 1946). This statistic
is an approximation for the effective
number of potential mates for an indi-
vidual and can be viewed as a measure-
ment of how genetic differentiation
between populations correlates with the
geographical distance between them
(isolation by distance).Weused Rousset’s
method for estimating neighborhood
size based on a regression of normalized
FST against the logarithm of geographical
distance (Rousset 1997). To avoid any
confounding effect of major ecological
discontinuities, which may provide a
natural barrier to gene flow (Lehmann
et al. 2003; Pinto et al. 2013; The

Figure 2. Population structure analysis of the wild-caught mosquitoes using UMAP (McInnes et al.
2018). Genotype data at biallelic SNPs from euchromatic regions of Chromosome 3 were projected
onto two components. Each marker represents an individual mosquito. Mosquitoes from each country
and species were randomly down-sampled to at most 50 individuals.
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Anopheles gambiae 1000 Genomes Consortium 2017), we used
only populations from West Africa and Central Africa north of
the equatorial rainforest.We found that average neighborhood siz-
es are significantly lower in A. coluzzii than in A. gambiae (Wil-
coxon, W=1320, P<2.2 ×10−16) (Fig. 3A–C), indicating stronger
isolation by distance amongA. coluzzii populations and suggesting
a lower rate and/or range of dispersal. A recent kinship-analysis
study of local dispersal in Malaysian Aedes aegyptimosquitoes esti-
mated a neighborhood size of 268 (Jasper et al. 2019), between our
estimates for A. gambiae and A. coluzzii, suggesting that our ap-
proach captures similar spatial dynamics as methods based on
much denser spatial sampling. However, we do not have represen-
tation of both species at all sampling locations, and further sam-
pling will be needed to confirm this result.

Genetic diversity

The populations represented in Ag1000G phase 2 can serve as a
reference point for comparisons with populations sampled by
other studies at other times and locations. To facilitate popula-
tion comparisons, we characterized genetic diversity within
each of 16 populations in our cohort defined by country of origin
and species by computing a variety of summary statistics using
SNP data from the whole genome. These included nucleotide
diversity (up), the density of segregating sites (θW), Tajima’s D,
and site frequency spectra (SFS) (Fig. 4A,B; Supplemental Figs.
S6, S7. We also estimated runs of homozygosity (ROH) within
each individual and runs of identity by descent (IBD) between in-
dividuals, both of which provide information about haplotype
sharing within populations (Fig. 4C,D).

The two easternmost populations (Kenya, Mayotte) were out-
liers in all statistics, with lower diversity, a deficit of rare variants
relative to neutral expectation, and a higher degree of haplotype
sharing within and between individuals. We previously described
how the patterns of diversity in the Kenyan population were con-
sistent with a severe and recent bottleneck (The Anopheles gambiae
1000Genomes Consortium2017). The similarities between Kenya

and Mayotte suggest that Mayotte has also experienced a popula-
tion bottleneck, which would be expected given that Mayotte is
an oceanic island 310 km fromMadagascar and 500 km from con-
tinental Africa, and may have been colonized by A. gambiae via
small numbers of individuals. Although ROH and IBDwere elevat-
ed in both populations, Mayotte individuals had a larger number
of shorter tracts than Kenyan individuals, whichmay reflect differ-
ences in the timing and/or strength of a bottleneck.

Design of Cas9 gene drives

Nucleotide variation data from this resource are being used to in-
form the development of gene drives, a novel mosquito control
technology using engineered selfish genetic elements to cause
mosquito population suppression or modification (Burt 2003;
Gantz et al. 2015; Hammond et al. 2016; Eckhoff et al. 2017;
Kyrou et al. 2018). Gene drive target sequences need to be highly
conserved, because any natural variation within the target se-
quence could inhibit association with the Cas9 guide RNA
(Unckless et al. 2017). Data on natural genetic variation in multi-
ple populations are therefore essential for identifying potential tar-
gets with low levels of nucleotide diversity and, hence, a low
probability of encountering resistance. To facilitate the search for
viable gene drive targets throughout the genome, we computed al-
lele frequencies for all SNPs in all populations and included those
data in the resource. We also compiled a table of all potential Cas9
target sites in the genome (23-bp regions with a protospacer-adja-
centmotif) that overlap a gene exon, including data for each target
on the number of SNPs andnucleotide diversity in eachof the pop-
ulations we sampled.

Promising results have been obtained in the laboratory with a
Cas9 gene drive targeting the doublesex gene (dsx), a critical com-
ponent of the sex determination pathway (Kyrou et al. 2018). This
targets a sequence spanning the boundary of dsx exon 5, which is
involved in sex-specific splicing, with exon 5 being included in the
female transcript and excluded in the male transcript (Gempe and
Beye 2011). Disruption of exon 5 causes sex determination to fail,

producing sterile mosquitoes with an in-
tersex phenotype (Kyrou et al. 2018). In
addition to the Cas9 target studied by
Kyrou et al. (2018), we found a further
19 Cas9 targets that overlap dsx exon 5,
where the target sequence contains at
most one SNPwithin the Ag1000Gphase
2 cohort (Fig. 5A,B). Thus, there may be
multiple viable targets for gene drives dis-
rupting the sex determination pathway,
providing opportunities to mitigate the
impact of resistance owing to variation
within any single target. The presence
of multiple highly conserved regions
within dsx also begs some interesting
questions regarding the molecular biol-
ogy of sex determination. The largest re-
gion of high conservation within dsx
spanned the entire coding sequence of
exon 5 and extended into 50 bp of non-
coding sequence on either side (Fig.
5A). Such conservation of both coding
and noncoding sites suggests that purify-
ing selection is acting here on the nucle-
otide sequence. This in turn suggests that

BA Ccoluzzii coluzzii

gambiae
gambiae

gambiaecoluzzii

Figure 3. Comparison of isolation by distance between A. coluzzii and A. gambiae populations from
locations in West and Central Africa north of the equatorial rainforest. (A) Study region and pairwise
FST. (B) Regressions of average genome-wide FST against geographic distance, following the method of
Rousset (1997). Neighborhood size is estimated as the inverse slope of the regression line. Goodness-
of-fit is reported as R2. (C) Difference in neighborhood size estimates by species. Box plots showmedians
and 95% confidence intervals of the distribution of estimates calculated in 200-kbp windows across the
euchromatic regions of Chromosome 3.
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the nucleotide sequence may serve as an important target for fac-
tors that bind to DNA or pre-mRNA molecules and control differ-
ential splicing. However, this region is >1 kbp distant from the
putative homologs of the regulatory factor binding sequences
(dsxREs) that have been identified in D. melanogaster (Cline and
andMeyer 1996; Scali et al. 2005; Gempe and Beye 2011). The up-
stream regulatory factors that control sex-specific splicing are not
known in A. gambiae (Scali et al. 2005; Krzywinska et al. 2016),
and our data add further evidence for fundamental differences in
the sex determination pathway between Anopheles and Drosophila
(Scali et al. 2005; Krzywinska et al. 2016).

Resistance to pyrethroid insecticides

Malaria control in Africa depends heavily on mass distribution
of long-lasting insecticidal nets (LLINs) impregnated with pyre-
throid insecticides (Bhatt et al. 2015; Churcher et al. 2016;
Ranson and Lissenden 2016). Entomological surveillance pro-
grams regularly test malaria vector populations for pyrethroid re-
sistance using standardized bioassays, and these data have
shown that pyrethroid resistance has become widespread in A.
gambiae (Hemingway et al. 2016; World Health Organization
2018). However, pyrethroid resistance can be conferred by differ-
ent molecular mechanisms, and it is not well understood which
molecular mechanisms are responsible for resistance in which
mosquito populations. The nucleotide variation data in this re-
source include 66 nonsynonymous SNPs within the Vgsc gene
that encodes the binding target for pyrethroid insecticides, of
which two SNPs (L995F, L995S) are known to confer a pyre-
throid-resistance phenotype, and one SNP (N1570Y) has been
shown to substantially increase pyrethroid resistance when pre-
sent in combination with L995F (Jones et al. 2012). These SNPs
can serve as markers of target-site resistance to pyrethroids, but

knowledge of geneticmarkers ofmetabolic resistance inA. gambiae
and A. coluzzii is currently limited (Mitchell et al. 2014; Weetman
et al. 2018).Metabolic resistance to pyrethroids ismediated at least
in part by increased expression of CYP enzymes (Kwiatkowska
et al. 2013; Edi et al. 2014; Ngufor et al. 2015; Vontas et al.
2018), and we found CNV hot-spots at two loci containing Cyp
genes (Lucas et al. 2019a). One of these loci occurs on chromosome
arm2R and overlaps a cluster of 10Cyp genes, includingCyp6p3pre-
viously shown tometabolize pyrethroids (Müller et al. 2008) and re-
cently shown to confer pyrethroid resistance when expression is
experimentally increased in A. gambiae (Adolfi et al. 2019). The sec-
ond locus occurs on the X Chromosome and spans a single Cyp
gene,Cyp9k1, whichhas also been shown tometabolize pyrethroids
(Vontas et al. 2018).We also found CNVs at two otherCyp gene loci
on chromosome arm 3R containing genes previously associated
with pyrethroid resistance, Cyp6z1 (Nikou et al. 2003) and
Cyp6m2 (Stevenson et al. 2011), although there was only a single
CNV allele at each locus. Overexpression of Cyp6m2 has been
shown to confer resistance to pyrethroids but increased susceptibil-
ity to the organophosphate malathion (Adolfi et al. 2019), and so,
the selection pressures at this locus may bemore complex. The pre-
cise phenotype of these CNVs remains to be characterized, but giv-
en themultiple lines of evidence showing that increased expression
of genes at these loci confers pyrethroid resistance, it seems reason-
able to assume that CNVs at these loci can serve as a molecular
marker of CYP-mediated pyrethroid resistance.

We constructed an overview of the prevalence of these two
pyrethroid-resistance mechanisms—target-site resistance and
CYP-mediated metabolic resistance—within the Ag1000G phase
2 cohort by combining the data on nucleotide and copy number
variation (Fig. 6). The sampling of these populations was conduct-
ed at different times in different locations, and the geographical
sampling is relatively sparse, so we cannot draw any general
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Figure 4. Genetic diversity within populations. (A) Nucleotide diversity (up) calculated in nonoverlapping 20-kbp genomic windows using SNPs from
euchromatic regions of Chromosome 3. (B) Tajima’s D calculated in nonoverlapping 20-kbp genomic windows using SNPs from euchromatic regions
of Chromosome 3. (C) Runs of homozygosity (ROH) in individual mosquitoes. Each marker represents an individual mosquito. (D) Runs of identity by
descent (IBD) between individuals. Each marker represents a pair of individuals drawn from the same population.
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conclusions about the current distribution of resistance from our
data. However, some patterns were evident. For example, West
African populations of both species (Burkina Faso, Guinea, Côte
d’Ivoire) all had >84% of individuals carrying both target-site
and metabolic resistance markers. In Ghana, Cameroon, Gabon,
and Angola, target-site resistance was nearly fixed, but metabolic
resistance markers were at lower frequencies. Mosquitoes from
Bioko carried no resistance markers at all but were collected
in 2002, and so, the lack of resistance may be because sampling
predated any major scale-up of vector control interventions
(Vontas et al. 2018). However, the Gabon samples were collected
in 2000 and show that high levels of target-site resistancewere pre-
sent in some populations at that time. In Guinea Bissau and The
Gambia, target-site resistance was absent, but Cyp gene amplifica-
tions were present, and thus, surveillance using onlymolecular as-
says that detect target site resistance at those locations could be
missing an important signal of metabolic resistance. In East
Africa, both Kenya and Uganda had high frequencies of target-
site resistance (88% and 100%, respectively). However, 81% of
Uganda individuals also had Cyp gene amplifications, whereas
only 4% of Kenyans carried these metabolic resistance markers.
Denser spatiotemporal sampling will enable us to build a more
complete picture of the prevalence and spread of these different
resistancemechanisms andwould be highly relevant to the design
of insecticide-resistance management plans.

Discussion

The Ag1000G phase 2 data resource provides a battery of new ge-
netic markers that can be used to expand our capabilities for
molecular surveillance of insecticide resistance. Insecticide-resis-
tancemanagement is a major challenge for malaria vector control,
but the availability of new vector control products is opening up
new possibilities. However, new products may be more expensive
than products currently in use, so procurement decisions have to
be justified and resources targeted to areas where they will have
the greatest impact. For example, next-generation LLINs are now
available that combine a pyrethroid insecticide with a synergist
compound, piperonyl butoxide (PBO), which partially ameliorates
metabolic resistance by inhibiting CYP enzyme activity in the
mosquito. However, CYP-mediated metabolic resistance is only
one of several possible mechanisms of pyrethroid resistance that
may or may not be present in vector populations being targeted.
It would therefore be valuable to survey mosquito populations
and determine the prevalence of different pyrethroid-resistance
mechanisms, both before and after any change in vector control
strategy. Our data resource includes CNVs at four Cyp gene loci
(Cyp6p/aa,Cyp6m,Cyp6z, andCyp9k), which could serve asmolec-
ularmarkers of CYP-mediatedmetabolic resistance. Glutathione S-
transferase enzymes are also associated with metabolic resistance
to pyrethroids (Ochieng’Opondo et al. 2016; Adolfi et al. 2019)
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Figure 5. Nucleotide diversity within the female-specific exon 5 of the doublesex gene (dsx; AGAP004050), a key component of the sex determination
pathway and a gene targeted for Cas9-based homing endonuclease gene drive (Kyrou et al. 2018). In both plots, the location of exon 5 within the female-
specific isoform (AGAP004050-RB; AgamP4.12 gene set) is shown above (black indicates coding sequence; gray, untranslated region), with additional an-
notations above to show the location of Cas9 target sequences containing at most one SNP, and the putative exon splice enhancing sequences (“RE”)
reported by Scali et al. (2005). The main region of the plot shows nucleotide diversity averaged across all Ag1000G phase 2 populations, computed in
23-bp moving windows. Regions shaded pale red indicate regions not accessible to SNP calling. Triangle markers below show the locations of SNPs dis-
covered in Ag1000G phase 2 (green indicates passed variant filters; red, failed variant filters). (A) exon5/intron4 boundary. (B) exon5/intron6 boundary.
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as well as other insecticide classes (Mitchell et al. 2014; Riveron
et al. 2014; Pavlidi et al. 2018; Adolfi et al. 2019), and we found
CNVs at the Gste locus that could serve as molecular markers of
this alternative resistance mechanism, which is not inhibited by
PBO. Gste CNVs were less prevalent in our data set than Cyp
CNVs, and the geographical distribution also differed, suggesting
they may be driven by different selection pressures (Supplemental
Fig. S8).

To illustrate the potential for improved molecular surveil-
lance of pyrethroid resistance, we combined the data on known
SNP markers of target-site resistance and novel putative CNV
markers of CYP-mediated metabolic resistance (Fig. 6). There are
clear heterogeneities, with some populations at high frequency
for both resistance mechanisms, particularly in West Africa. The
presence of CYP-mediated pyrethroid resistance in a population
suggests that PBO LLINsmight provide some benefit over standard
LLINs. However, if other resistance mechanisms are also at high
frequency, the benefit of the PBO synergist might be diminished.
Current WHO guidance states that PBO LLINs are recommended
in regions with “intermediate levels” of pyrethroid resistance but
not where resistance levels are high (World Health Organization
2017). This guidance is based onmodeling of bioassay data and ex-
perimental hut trials, and it is not clear why PBO LLINs are predict-
ed to provide diminishing returns at higher resistance levels,
although high levels of resistance presumably correlate with the
presence of multiple resistance mechanisms, including mecha-
nisms not inhibited by PBO (Churcher et al. 2016). Without
molecular data, however, this guidance is hard to interpret or im-
prove upon.

Ideally, molecular data on insecticide-resistance mechanisms
would be collected as part of routine entomological surveillance, as
well as in field trials of new vector control products, alongside data
from bioassays and other standard entomological variables. There
are several options for scaling upmolecular surveillance, including
bothwhole-genome sequencing and targeted (amplicon) sequenc-
ing, with several choices of sequencing technology platform.
Assays that target specific genetic loci are attractive because of low-
er cost and infrastructure requirements, and data from the

Ag1000G Project have been used success-
fully to design multiplex assays for the
Agena Biosciences iPLEX platform
(Lucas et al. 2019b) and for Illumina
amplicon sequencing (C Jacob, E Lucas,
K Rockett, et al., in prep.). However, tar-
geted assays need to be updated regularly
to cover new forms of resistance as they
emerge. To keep pace with evolving vec-
tor populations, regular whole-genome
sequencing of contemporary popula-
tions from a well-chosen set of sentinel
sites will be needed. None of the samples
sequenced in this study were collected
more recently than 2012, geographical
sampling within each country was limit-
ed, andmany countries are not yet repre-
sented in the resource; therefore, there
remain important gaps to be filled. The
next phase of the Ag1000G Project will
expand the resource to cover 18 coun-
tries and will include another major ma-
laria vector species, Anopheles arabiensis,
and so will address some of these gaps.

Looking beyond the Ag1000G Project, genomic surveillance of in-
secticide resistance will require new sampling frameworks that in-
corporate spatial and ecological modeling of vector distributions
to guide sampling at appropriate spatial scales (Sedda et al.
2019). Fortunately, mosquitoes are easy to transport, and the costs
of sequencing continue to decrease, so it is reasonable to consider a
mixed strategy that includes both whole-genome sequencing and
targeted assays.

These data also cast some new, and in some cases contrasting,
light on the question of gene flow between malaria vector popula-
tions. The question is of practical interest, because gene flow is en-
abling the spread of insecticide resistance between species and
across large geographical distances (The Anopheles gambiae 1000
Genomes Consortium 2017; Clarkson et al. 2018). Gene flow
also needs to be quantified before newvector control interventions
based on gene drive could be considered (North and Godfray
2018). We found evidence that isolation by distance is greater
for A. coluzzii than for A. gambiae, at least within West Africa, sug-
gesting that the effective rate of migration could be lower in A.
coluzzii. A variety of anopheline species have recently been found
to engage in long-distance wind-assisted migration, including A.
coluzzii but not A. gambiae, which would appear to contradict
our results, although the study was limited to a single location
within the Sahelian region (Huestis et al. 2019). If A. coluzzii
does have a lower rate and/or range of dispersal than A. gambiae,
this is clearly not limiting the spread of insecticide-resistance adap-
tations between countries. For example, among the CNV alleles we
discovered at the Cyp6p/aa, Cyp9k1, and Gste loci, 7/13 alleles
found in A. coluzzii had spread to more than one country com-
pared with 8/27 alleles in A. gambiae (Lucas et al. 2019a). There
is also an interesting contrast between the spread of pyrethroid tar-
get-site and metabolic resistance alleles. We previously showed
that target-site resistance has spread to countries spanning the
equatorial rainforest and the Rift valley and has moved between
A. gambiae and A. coluzzii (The Anopheles gambiae 1000 Genomes
Consortium 2017; Clarkson et al. 2018). In the most extreme ex-
ample, one haplotype (F1) has spread to countries as distant as
Guinea and Angola. In contrast, although CNV alleles were

Figure 6. Pyrethroid-resistance genotype frequencies. The geographical distribution of pyrethroid in-
secticide–resistance genotypes are shown by population. Pie chart colors represent resistance genotype
frequencies: purple, these individuals were either homozygous or heterozygous for one of the two kdr
pyrethroid target site resistance alleles Vgsc-L995F/S; yellow, these individuals carried a copy number am-
plification within any of the Cyp6p/aa, Cyp6m, Cyp6z, or Cyp9k gene clusters but no kdr alleles; orange,
these individuals carried at least one kdr allele and one Cyp gene amplification; and gray, these individuals
carried no known pyrethroid-resistance alleles (no kdr alleles or Cyp amplifications). The Guinea A. coluzzii
population is omitted owing to small sample size.
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commonly found in multiple countries, we did not observe any
cases of CNV alleles crossing any of these ecological or biological
boundaries, apart from a single allele found in both Gabon and
Cameroon A. gambiae (GsteDup5). This could be because of differ-
ences in the strength, timing, or spatial distribution of selective
pressures or because of intrinsic factors such as differences in fit-
ness costs in the absence of positive selection. Further work is re-
quired to investigate the selective forces affecting the spread of
these different modes of adaptation to insecticide use.

The two island populations sampled in this project phase also
provide an interesting contrast. Samples fromMayottewere highly
differentiated from mainland A. gambiae, suggesting strong isola-
tion, whereas Bioko samples were closely related to West African
A. gambiae, suggesting ongoing gene flow. Bioko is part of
Equatorial Guinea administratively, and there are frequent ferries
to the mainland, which could provide opportunities for mosquito
movement. However, there are no pyrethroid-resistance alleles in
our Bioko samples, and these were collected in 2002, at a time
when target-site resistance alleles were present in mainland popu-
lations, so the rate of contemporary migration between Bioko and
mainlandpopulations remains an openquestion. A recent study of
A. gambiae populations on the Lake Victoria islands, separated
from mainland Uganda by 4–50 km, found evidence for isolation
between island and mainland populations, as well as between in-
dividual islands (Bergey et al. 2020). However, some selective
sweeps at insecticide-resistance loci had spread through both
mainland and island populations; thus, isolation is not complete,
and some contemporary gene flowoccurs. Some of these gene flow
questions and apparent contradictions could, in principle, be re-
solved by inferring contemporary migration rates and population
density fromgenomic data, butmethodological improvements are
needed in this area (Al-Asadi et al. 2019). The haplotype data we
have generated provide a valuable resource to support the develop-
ment of new statistical methods for demographic inference, and
encourage application of these methods to nonmodel species.

Malaria has become a stubborn foe, frustrating global efforts
toward elimination in both low and high burden settings. Howev-
er, new vector control tools offer hope, as does the renewed focus
on improving surveillance systems and using data to tailor inter-
ventions. The genomic data resource we have generated provides
a platform from which to accelerate these efforts, showing the po-
tential for data integration on a continental scale. It also provides a
snapshot of populations in rapid evolutionary motion and, thus,
an opportunity to study and understand the adaptive potential
of genetically diverse eukaryotic species when subjected to strong
selective pressures. Nevertheless, work remains to fill gaps in these
data, by expanding geographical coverage, including othermalaria
vector species and integrating genomic data collection with rou-
tine surveillance of contemporary populations using quantitative
sampling design.We hope that theMalariaGENdata-sharing com-
munity and framework for international collaboration can contin-
ue to serve as a model for coordinated action.

Methods

Population sampling

Ag1000G phase 2 mosquitoes were collected from natural popula-
tions at 33 sites in 13 sub-Saharan African countries (Fig. 1;
Supplemental Table S1). Five of these countries and 18 of these col-
lection sites were newly sampled in phase 2, and the remainder
were previously sampled in phase 1. New samples in phase 2 com-
prised the following: A. coluzzii from Tiassalé, Côte d’Ivoire, col-

lected as larvae from irrigated rice fields by dipping between May
and September 2012; A. gambiae from Sacriba, Bioko Island, col-
lected in September 2002 by overnight CDC light traps;A. gambiae
from several sites on Mayotte Island, collected as larvae during
March and April 2011 in temporary pools by dipping; mosquitoes
from hamlets around Njabakunda, North Bank Region, The
Gambia, collected between August and October 2011 by pyre-
thrum spray catch; A. gambiae and A. coluzzii from several sites
in Ghana, collected as larvae from puddles near roads or farms be-
tween August and December 2012; and mosquitoes from Safim,
Guinea-Bissau, collected in October 2010 using indoor CDC light
traps. Further details of samples novel to phase 2 can be found in
the Supplemental Material. Details of samples in phase 1 can be
found in the supplementary information of TheAnopheles gambiae
1000 Genomes Consortium (2017).

Laboratory crosses

Ag1000G phase 2 includes seven additional laboratory colony
crosses: cross 18-5 (Ghana mother×Kisumu/G3 father, 20 off-
spring), 37-3 (Kisumu×Pimperena, 20 offspring), 45-1 (Mali ×Ki-
sumu, 20 offspring), 47-6 (Mali ×Kisumu, 20 offspring), 73-2
(Akron×Ghana, 19 offspring), 78-2 (Mali × Kisumu/Ghana, 19 off-
spring), and 80-2 (Kisumu×Akron, 20 offspring). Colonies with
two names, for example, “Kisumu/G3,” signify that the father is
from one of these two colonies, but which one is unknown. Fur-
ther details of crosses released in phase 1 can be found in the sup-
plementary information of The Anopheles gambiae 1000 Genomes
Consortium (2017), as well as methods for cross creation and pro-
cessing that also apply to phase 2.

Whole-genome sequencing

Sequencingwas performed on the IlluminaHiSeq 2000 platformat
theWellcome Sanger Institute. Paired-endmultiplex libraries were
prepared using the manufacturer’s protocol, with the exception
that genomicDNAwas fragmented usingCovaris adaptive focused
acoustics rather than nebulization. Multiplexes comprised 12
tagged individual mosquitoes, and three lanes of sequencing
were generated for each multiplex to even out variations in yield
between sequencing runs. Cluster generation and sequencing
were undertaken per the manufacturer’s protocol for paired-end
100-bp sequence reads with insert size in the range 100–200 bp.
Target coverage was 30× per individual. New sequencing data
from this project phasewere then analyzed in conjunctionwith se-
quencing data from phase 1 (The Anopheles gambiae 1000
Genomes Consortium 2017; PRJEB18691).

Genome accessibility

We constructed a map of the accessible genome, which identifies
positions in the reference genome where we can confidently call
nucleotide variation. For Ag1000G phase 2, we repeated the phase
1 genome accessibility analyses (The Anopheles gambiae 1000 Ge-
nomesConsortium2017) butwith 1142 samples and the addition-
al Mendelian error information provided by the 11 crosses. We
constructed annotations for each position in the reference genome
based on data from sequence read alignments from all wild-caught
samples, as well as additional data from repeat annotations. Anno-
tations were then analyzed for association with rates of Mendelian
errors in the crosses. Annotations and thresholds were chosen to
remove classes of variants that were enriched forMendelian errors.
Following these analyses, it was apparent that the accessibility clas-
sifications used in phase 1 were also appropriate in application to
phase 2. Reference genome positions were classified as accessible
if the followingwere true: not repeatmasked byDUST; no coverage
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≤0.1% (at most one individual had zero coverage); ambiguous
alignment ≤0.1% (at most one individual had ambiguous align-
ments); high coverage ≤2% (at most 20 individuals had more
than twice their genome-wide average coverage); low coverage
≤10% (at most 114 individuals had less than half their genome-
wide average coverage); and low mapping quality ≤10% (at most
114 individuals had average mapping quality below 30).

Sequence analysis and SNP calling

SNP callingmethodswere unchanged fromphase 1 (TheAnopheles
gambiae 1000Genomes Consortium2017). Briefly, sequence reads
were aligned to the AgamP3 reference genome (Holt et al. 2002;
Sharakhova et al. 2007) using BWA version 0.6.2, duplicate reads
marked (Li and Durbin 2009), reads realigned around putative
indels, and SNPs discovered using GATK version 2.7.4 unified gen-
otyper following best-practice recommendations (Van der Auwera
et al. 2013).

Sample quality control

A total of 1285 individual mosquitoes were sequenced as part of
Ag1000Gphase 2 and included in the cohort for variant discovery.
After variant discovery, quality-control (QC) steps using coverage
and contamination filters alongside principal component analysis
and metadata concordance were performed to exclude individuals
with poor quality sequence and/or genotype data as detailed by
The Anopheles gambiae 1000 Genomes Consortium (2017). A total
of 143 individuals were excluded at this stage, retaining 1142 indi-
viduals for downstream analyses.

SNP filtering

Following Ag1000G phase 1 (The Anopheles gambiae 1000 Ge-
nomes Consortium 2017), we filtered any SNP that occurred at a
genome position classified as inaccessible as described in the sec-
tion on genome accessibility above, thus removing SNPs with ev-
idence for excessively high or low coverage or ambiguous
alignment. We then applied additional filters using variant anno-
tations produced by GATK, filtering SNPs that failed any of
the following criteria: QD<5; FS >100; ReadPosRankSum<−8;
BaseQRankSum<−50.

Haplotype estimation

Haplotype estimation, also known as phasing, was performed
on all phase 2 wild-caught individuals using methods from
Ag1000G phase 1 (The Anopheles gambiae 1000 Genomes
Consortium 2017). In short, SHAPEIT2 was used to perform statis-
tical phasing with information from sequence reads (Delaneau
et al. 2013).

CNV calling

Detailed methodology for detection and QC of CNVs was previ-
ously described (Lucas et al. 2019a). In brief, coverage was calcu-
lated for each individual in 300-bp windows and then
normalized to account for bias owing to variation in (G+C) con-
tent. Windows were filtered to remove those with low mapping
quality or extreme (G+C) content. To infer copy-number state
in each window in each individual, we applied a Gaussian
HMM to the individual’s normalized filtered windowed coverage
data. Putative CNVs were identified as sequences of five or
more contiguous windows with a predicted copy number state
greater than two (or greater than one for males on the X
Chromosome). From this raw CNV call set, we created a quality-
filtered call set by first removing samples with very high coverage

variance and then removing CNV calls with poor statistical sup-
port (HMM likelihood ratio of predicted CNV state compared
with the null hypothesis of no CNV<1000). CNV calls were
matched across samples, considering any two CNVs to be identi-
cal if the breakpoints predicted by their copy number state transi-
tions were within one window of each-other. For the analysis of
CNVs in metabolic insecticide-resistance genes, we characterized
CNV alleles at five gene clusters (Cyp6aa1–Cyp6p2, Gstu4–Gste3,
Cyp6m2–Cyp6m4, Cyp6z3–Cyp6z1, Cyp9k1) using unique patterns
of discordant read pairs and split reads crossing the CNV break-
point. Once the diagnostic reads were identified for a CNV allele,
we recorded the presence of that allele in all samples with at least
two supporting diagnostic reads.

Population structure

Ancestry informative marker (AIM), FST, doubleton sharing, and
SNP PCA were conducted following methods previously defined
(The Anopheles gambiae 1000 Genomes Consortium 2017). The
PCA and UMAP analyses were performed on 131,679 SNPs from
euchromatic regions of Chromosome 3 (3R: 1–37 Mbp; 3L: 15–
41 Mbp) obtained from the full data set via random down-sam-
pling to 100,000 nonsingleton SNPs from each chromosome
arm and then performing LD-pruning. To generate the UMAP
projection shown in Figure 2, each country and species was
down-sampled to a maximum of 50 individuals to provide a pro-
jection that was less warped by differences in sample size. The
UMAP analysis was also performed on the full set of individuals,
which gave qualitatively identical results. UMAP was performed
using the umap-learn Python package (McInnes et al. 2018)
with the following parameter settings: n neighbors = 15;
min dist = 2; spread=5; metric= euclidean. Other parameter values
for n neighbors and min dist were also performed, all producing
qualitatively identical results. Guinea A. coluzzii (n =4) was ex-
cluded from FST analysis, and Guinea A. coluzzii (n=4), Bioko A.
gambiae (n= 9), and Ghana A. gambiae (n=12) were excluded
from doubleton sharing analysis owing to small sample size.
Unscaled CNV variation PCAs were built from the CNV pres-
ence/absence calls (Lucas et al. 2019a) using the prcomp function
in R (R Core Team 2019).

Admixture models were fitted using LEA version 2.0 (Frichot
and François 2015) in R version 3.6.1 (R Core Team 2019). Ten in-
dependent sets of SNPs were generated by selecting SNPs from eu-
chromatic regions of Chromosome 3 with minor allele frequency
>1%, randomly selecting 100,000 SNPs from each chromosome
arm, and then applying the same LD pruning methodology as
used for PCA. The resulting data were then analyzed using the
snmf method (sparse nonnegative matrix factorization) (Frichot
et al. 2014) to obtain ancestry estimates for each cluster (K) tested.
We tested all K values from two to 15. Ten replicates of the analysis
with snmf were run for each data set; thus, 100 runs were per-
formed for each K. CLUMPAK (Kopelman et al. 2015) was used
to summarize the results, identify the major and minor clustering
solutions identified at each K (if they occurred), and estimate the
average ancestry proportions for the major solution.

Genetic diversity

Analyses of genetic diversity were conducted following methods
previously defined (The Anopheles gambiae 1000 Genomes
Consortium 2017). In short, scikit-allel version 1.2.0 was used to
calculate windowed averages of nucleotide diversity and Tajima’s
D (https://github.com/cggh/scikit-allel), IBDseq version r1206
(Browning and Browning 2015) was used to calculate IBD, and
an HMM implemented in scikit-allel was used to calculate ROH.
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Data access

The sequencing data and variation data generated in this study
have been submitted to the European Nucleotide Archive (ENA;
https://www.ebi.ac.uk/ena/browser/home) under accession num-
ber PRJEB36277. Variation data from Ag1000G phase 2 can also
be downloaded from the Ag1000G public FTP site via the
MalariaGEN website (https://www.malariagen.net/resource/27).
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