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ABSTRACT Animals and amoebae assemble actin/spectrin-based plasma membrane
skeletons, forming what is often called the cell cortex, whereas euglenids and alveolates
(ciliates, dinoflagellates, and apicomplexans) have been shown to assemble a thin, vis-
coelastic, actin/spectrin-free membrane skeleton, here called the epiplast. Epiplasts in-
clude a class of proteins, here called the epiplastins, with a head/medial/tail domain or-
ganization, whose medial domains have been characterized in previous studies by their
low-complexity amino acid composition. We have identified two additional features of
the medial domains: a strong enrichment of acid/base amino acid dyads and a pre-
dicted �-strand/random coil secondary structure. These features have served to identify
members in two additional unicellular eukaryotic radiations—the glaucophytes and cryp-
tophytes—as well as additional members in the alveolates and euglenids. We have ana-
lyzed the amino acid composition and domain structure of 219 epiplastin sequences
and have used quick-freeze deep-etch electron microscopy to visualize the epiplasts of
glaucophytes and cryptophytes. We define epiplastins as proteins encoded in organisms
that assemble epiplasts, but epiplastin-like proteins, of unknown function, are also en-
coded in Insecta, Basidiomycetes, and Caulobacter genomes. We discuss the diverse cel-
lular traits that are supported by epiplasts and propose evolutionary scenarios that are
consonant with their distribution in extant eukaryotes.

IMPORTANCE Membrane skeletons associate with the inner surface of the plasma
membrane to provide support for the fragile lipid bilayer and an elastic framework for
the cell itself. Several radiations, including animals, organize such skeletons using actin/
spectrin proteins, but four major radiations of eukaryotic unicellular organisms, including
disease-causing parasites such as Plasmodium, have been known to construct an alterna-
tive and essential skeleton (the epiplast) using a class of proteins that we term epiplas-
tins. We have identified epiplastins in two additional radiations and present images of
their epiplasts using electron microscopy. We analyze the sequences and secondary
structure of 219 epiplastins and present an in-depth overview and analysis of their
known and posited roles in cellular organization and parasite infection. An understand-
ing of epiplast assembly may suggest therapeutic approaches to combat infectious
agents such as Plasmodium as well as approaches to the engineering of useful viscoelas-
tic biofilms.

KEYWORDS electron microscopy, eukaryotic microalgae, evolution, membrane
skeleton, protists

Two general strategies have evolved for stabilizing the surfaces of cells. The most
widespread is the secretion and self-assembly of a cell wall exterior to the plasma

membrane. The second, and our focus here, is the assembly of a membrane skeleton
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beneath the plasma membrane, giving the plasma membrane direct access to the
external environment via intrinsic and extrinsic glycoproteins (often designated the
“glycocalyx”).

In animals and Amoebozoa, the membrane skeleton, commonly called the cell
cortex, consists of actin filaments that associate with the membrane and one another
via actin-binding proteins (1), often accompanied by a spectrin network (2, 3), an
association that is malleable during endocytosis/exocytosis and amoeboid movement.

Several lineages of eukaryotic microbes, however, assemble a thin membrane
skeleton that lacks an actin/spectrin component and maintains its integrity when cells
are treated with nonionic detergent (4–9). In euglenids and cryptophytes, the skeleton
makes direct contact with the plasma membrane (Fig. 1A), while in members of the
Alveolata superphylum (ciliates, dinoflagellates, and apicomplexans) and in glauco-
phytes, a layer of membranous cisternae, called alveoli, lies beneath the plasma
membrane, and the membrane skeleton then makes direct contact with the inner
alveolar membrane (Fig. 1B).

In euglenids, this skeleton has been called the dense fibrillary layer (10), the
submembranous layer (11), or the membrane (cyto)skeleton (12, 13), and identified
protein components are called articulins (14). The layer is called the inner periplast
component in cryptophytes (15), and candidate protein components are reported in
this study. In ciliates, the skeleton is called the epiplasm or epiplasmic layer (16–19), and
associated proteins include articulins (20, 21), alveolins (22–24), and epiplasmins (25–
29). It is called the pellicular layer in dinoflagellates (30), and alveolin-class components
have been identified (22). In apicomplexans, it is called the subpellicular network (8, 31),
and components include alveolins/IMC proteins (22, 23, 32–36). Here we report that
such a membrane skeleton also localizes beneath the alveoli of Cyanophora, a glauco-
phyte alga, and we identify its candidate protein components.

We present data indicating that these non-actin-based membrane skeletons are
structurally related to one another and that the proteins listed above are members of
a single class. This leads us to propose a single name for the membrane skeleton and
a single name for the protein class. We designate the submembranous domains
“epiplasts” (Gr. plastós: formed, molded), honoring the epiplasm terminology of protist
pioneer E. Fauré-Fremiet (16, 37), and designate the protein class the “epiplastins,”
where, as detailed in this report, epiplastins exhibit three features: a distinctive low-
complexity medial domain (center of the polypeptide sequence); a predicted predom-
inance of �-strand secondary structure; and inclusion in the genomes of organisms that
construct epiplasts. We do not expect these terms to replace the current lineage-
specific names, as those are well embedded in the literature; rather, the collective terms
are intended to facilitate their general consideration.

As detailed in Results, epiplasts adopt two configurations; they usually form fila-

FIG 1 Epiplast configurations. (A) Direct association with plasma membrane, found in euglenids and
cryptophytes. (B) Direct association with alveolar membranes, which in turn directly associate with the
plasma membrane, found in alveolates and glaucophytes.

Goodenough et al. ®

September/October 2018 Volume 9 Issue 5 e02020-18 mbio.asm.org 2

https://mbio.asm.org


mentous meshworks, but in some lineages the proteins pack so tightly together that
they form homogeneous plates, commonly linked to one another like armor, with
filamentous edges. The filaments often make patterned contacts with their overlying
membranes, in some cases participating in the generation of sculpted surface features,
and zones of membrane contact are often marked by patterned arrays of intramem-
branous particles (IMPs) or by zones devoid of IMPs. We review published ultrastruc-
tural features of epiplasts and present new observations utilizing quick-freeze deep-
etch electron microscopy (QFDEEM).

While epiplastins may not be the sole components of a given epiplast (38–41), many
have been localized to epiplasts using antibodies or fluorescent tags in euglenids (42),
in ciliates (24, 25, 28, 43–46), and in apicomplexans (8, 32, 33, 36, 47–51) (see reference
52 for a review of apicomplexan studies). In several of those reports, the proteins were
localized to particular cellular regions and/or shown to be expressed in particular life
cycle stages. Moreover, mutation of individual epiplastin genes results in often-severe
morphological defects and inviability in ciliates (24, 29, 53) and in apicomplexans (47,
50, 51, 54–56). Since each genome encodes multiple epiplastins, the fact that defects
in a single gene can have strong morphogenetic consequences indicates that the
proteins are not, in general, functionally redundant.

Previous studies, detailed in Results, have established that each epiplastin carries a
medial domain, of varying length, that is enriched in a small subset of amino acids (the
most frequently noted being V, E, I, K, Q, and P) and flanked by N-terminal (N-term)
(head) and C-terminal (C-term) (tail) domains with full amino acid representation. The
medial low-complexity domain in the widespread articulin subclass is enriched in the
motif VPV, but in general, the sequences do not display constrained “repeat motifs” in
the fashion of the GPX units of collagens (57) or the SPPPP units of plant cell wall
proteins (58).

We did, however, notice a pattern. The medial domains of the epiplastins include
numerous acid-base dyads (ABDs) (e.g., EK, KE, and DR) separated by intervals (“strings”)
of other amino acids in the low-complexity subset (e.g., . . .EKVVIDRIPVIPQVREPK. . .),
leading us to call them ABD domains. The ABD hallmark has facilitated searches for
epiplastins in genomic/transcriptomic databases. It has also guided the delineation of
the boundaries and organization of the medial domains more consistently than is
possible using general descriptions of amino acid composition such as “charged repeat
motifs” (23).

We also analyzed the predicted secondary structure of epiplastins and found that
while the head and tail domains include �-helices and occasionally coiled-coils, the ABD
domains are, with a few exceptions found largely in the cryptophytes, scored as
adopting �-strand and/or random coil conformations and devoid of �-helices. Hence,
epiplastins do not share structural homology with intermediate-filament proteins,
whose hallmark is a medial �-helical coiled-coil. Moreover, the only intermediate-
filament proteins reported to form a membrane skeleton are the nuclear lamins (59).
Therefore, referring to epiplastins as intermediate filaments or intermediate filament-
like (24, 27, 32, 36, 51, 60–62) can be misleading. Rather, the epiplastins represent a
novel protein class that proves to be restricted, with a few interesting exceptions, to
lineages that assemble epiplasts, a restriction that may be informative in assigning
evolutionary relationships between various taxa.

RESULTS
Epiplastins: database searches, amino acid organization, and predicted sec-

ondary structure. (i) Database searches. This project initiated with a genomic/
ultrastructural study of Cyanophora paradoxa, a unicellular alga in the glaucophyte
lineage that is commonly posited to have branched early in the radiation leading to red
and green algae and land plants. Glaucophytes had previously been shown to assemble
a system of submembranous cisternae that resemble the alveoli of alveolates, an
unexpected trait given that glaucophytes and alveolates are distantly separated in
phylogenomic trees (63, 64) and a finding that led Cavalier-Smith (65, 66) to propose
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a protoalveolate as the host for the primary endosymbiotic event that led to the
cyanobacterium ¡ chloroplast transition.

We proceeded to identify, in newly available glaucophyte genomes and transcrip-
tomes (D. C. Price, U. W. Goodenough, R. Roth, J.-H. Lee, T. Kariyawasam, M. Mutwil, C.
Ferrari, F. Facchinell, S. G. Ball, U. Cenci, C. X. Chan, H. S. Yoon, A. P. M. Weber, and D.
Bhattacharya, submitted for publication), several proteins with epiplastin hallmarks, and
this led to three rounds of genomic/transcriptomic database searches for proteins with
similar characteristics in other radiations. Text S1 to S7 in the supplemental material
display the 219 epiplastins identified in this study, categorized by lineage, showing
their ABD domain organization and examples of secondary structure predictions.
Table S1 in the supplemental material lists the genome resources queried and sum-
marizes the bioinformatics data according to species; Table S2 provides profiles of the
ABD amino acid compositions and any conserved motifs for each protein analyzed. Text
S8 lists proteins, identified in other studies as (putatively) localized to cell surface
domains, that do not meet the criteria for epiplastin designation described below.

We first conducted a Pfam search of numerous eukaryotic genomes and transcrip-
tomes using IMCp (see Materials and Methods) (Table S1) and recovered strong
candidates from glaucophytes, euglenids, cryptophytes, and alveolates, whereas none
were recovered from the other eukaryotic groups queried, including red and green
algae, animals and their sister lineages, fungi, Amoebozoa, Rhizaria, stramenopiles,
haptophytes, and noneuglenid Excavates. We also included for consideration candidate
epiplastins found in the bacterium Caulobacter (36).

Given that the Pfam domain is based on apicomplexan sequences, we next con-
ducted searches for low-complexity regions (LCRs) (see Materials and Methods) with
epiplastin characteristics (described below) that yielded additional epiplastin candi-
dates in other radiations. The following results give a sense of the scope of the two
searches: the Pfam search yielded 20 Eutreptiella (euglenid) epiplastins, while the
LCR-based search recovered 18/20 of these plus an additional 24 proteins, for a total of
42 proteins.

Finally, we conducted a BLAST search (NCBI) using the ABD domain sequence of the
cryptophyte Chroomonas MMETSP0047_c25199_g1_i1_g48336 protein (see Fig. 8 in
Text S4 [cited as Text S4.8; i.e., Text S#.Fig. #]) and recovered two additional groups of
epiplastin-like proteins, one restricted to Basidiomycetes and the other to Insecta (Text
S10.16 to S10.26).

(ii) Identifying ABD domains by amino acid sequence. Fig. 2 displays examples of
epiplastin amino acid sequences from several lineages, “parsed” to display their ABD
domains and the amino acid strings that separate each dyad. A full set of parsed
epiplastin sequences is found in Text S1 to S7.

ABD domains were characterized using the following criteria:

● Acid-base dyads. Dyads utilize E�D and K�R and more commonly initiate with an
acid than with a base. One also encounters triads (e.g., EKE) and, infrequently,
tetrads (e.g., EKER). Acid-base dyads are occasionally found in the head (N-
terminal) and tail (C-terminal) domains of the epiplastins as well (shaded gray in
Fig. 2 and Text S1 to S7) but with greatly reduced frequency compared with the
ABD domains and in a very different amino acid context.

● Short intervals (strings) separating the dyads. Dyads are almost always separated
by at least two amino acids and are usually flanked by V or I residues.

● Quantitation of the amino acid compositions of each ABD domain is provided in
Table S2. Rounded amino acid percentiles are given below, with means �

standard deviations (SD) and medians given in parentheses; the close mean/median
correspondences and small SDs point to the uniformity of this profile. For compari-
son, published amino acid percentiles for vertebrate proteins (http://www.tiem.utk
.edu/~gross/bioed/webmodules/aminoacid.htm) are given in brackets.

X A strong enrichment for hydrophobic amino acids V (25% � 7%; 25%)
[6.8%] and I (9% � 4%; 8%) [3.8%] but a much weaker enrichment for L
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FIG 2 Representative epiplastins with medial ABD domains “parsed” into “strings.” (A) Cyanophora (glaucophyte) (Text S7.6). (B)
Toxoplasma IMC10 (apicomplexan) (Text S1.41). (C) Kryptoperidinium (dinoflagellate) (Text S5.15). (D) Chroomonas (cryptophyte) (Text
S4.12). (E) Goniomonas (cryptophyte) with VYV modules (Text S4.20). (F) Eutreptiella (euglenid) (Text S6.33).
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(2% � 2%; 2%) [7.6%], often occurring in clusters (VV, VVI). The mean level
of V�I content is 33% � 7% (35%) [18.2%].

X An enrichment for charged amino acids (35% � 6%; 36%) [23.1%], with a
preference for E (16% � 5%; 16%) and K (9% � 4%; 8%) over D (3% � 2%; 3%)
and R (7% � 3%; 7%). The mean charged content is 35% � 6%; 36% [23.1%],
and the net charge (Table S2, column E) is almost always either nearly neutral
or negative (�9 � 13; �7).

X A variable endowment of Y (shaded yellow in Fig. 2 and Text S1 to S7; Table S2,
column AB), C (shaded green in Fig. 2 and Text S1 to S7; Table S2, column J),
Q (Table S2, column V), and P (Table S2, column U), ranging from absent to
prominent. Species-specific patterns are noted in subsequent sections.

X A near-exclusion of G residues (0.4% � 0.7%; 000%) [7.4%] (red font in Fig. 2
and Text S1 to S7; Table S2, column N) and A residues (1% � 1%; 2%) [7.4%]
(blue font in Fig. 2 and Text S1 to S7; Table S2, column I), and a low density of
S (1% � 2%; 1%) [8.1%] and T (3% � 2%; 3%) [6.2%] residues (Table S2,
columns X and Y). By contrast, the head and tail domains flanking the ABD
domains have abundant G, A, S, and T endowments (Fig. 2 and Text S1 to S7),
a criterion used to mark ABD domain boundaries. While these boundaries were
determined by subjective evaluation and therefore cannot be considered
precise, the boundaries in our Toxoplasma ABD domain set match closely the
boundaries determined for Toxoplasma low-complexity regions based on in-
dependent criteria (32).

● Predicted coiled-coil (C-C) domains are present within two ABD domains: one in
Chromera (Table S2, row 17) and one in Goniomonas (row 99). In 14 cases, and
notably in Goniomonas, a coiled-coil domain predicted for the head (nt) or tail (ct)
extends into the ABD domain (Table S2, rows 88, 90, 92, 93, 96, 97, 104, 150, 151, 168,
183, 205, 208, and 213).

● No general sequence preferences are evident except the VPV enrichment in articulins
(see below). As expected for any low-complexity protein domain, repeated combi-
nations are encountered, and in some instances (noted in Text S1 to S7) they appear
to represent iterations derived from endoreduplication; such repeats are specifically
noted in Plasmodium (36). That said, what seems to be important is the restricted
amino acid composition itself and not repeats of particular motifs.
(iii) Identifying ABD domains by secondary structure. Secondary structure algo-

rithms (see Materials and Methods) predict that ABD domains are generally (i) domi-
nated by long �-strands, presumably interacting to form �-sheets, interspersed with
regions of random coil, and (ii) devoid of �-helices. Figure 3 displays examples; many
others are found in Text S1 to S7.

While these predictions await biophysical confirmation (e.g., nuclear magnetic
resonance [NMR] and circular dichroism [CD] spectroscopy), they have served as an
important second criterion for epiplastin identification, particularly in ambiguous cases.
As an example, four proteins in cytoskeletal preparations of the parabasalid Trichomo-
nas vaginalis and a family of pox-virus A-like proteins were scored as “charged low
complexity” and proposed as members of the family that includes alveolins (23, 67). The
proteins, while rich in charged amino acids and hence amenable to being parsed into
ABD strings, lack the amino acid profile of epiplastins, and, when queried, all were
predicted to be fully �-helical (Text S8.4 to S8.10). Interestingly, a fifth protein in the
Trichomonas collection is predicted to be fully �-stranded (Text S8.23), although its
amino acid profile is totally different from the epiplastin profile.

(iv) Articulins. Marrs and Bouck (14) first noticed an abundance of VPV motifs in
epiplast-derived proteins from Euglena that they named articulins, and Huttenlauch
et al. (20) found similar proteins in a ciliate and proposed that the VPV motif is unique
to articulins (21). While it might be expected that ABD domains enriched in V and P
would include VPV modules on a regular basis, in fact, the triad is infrequently
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encountered (in Toxoplasma and Plasmodium, the median is one per ABD domain),
except in articulins, where multiple VPV iterations are found (highlighted in pink in
Fig. 2 and Text S1 to S7). Occasional VPVPV units are found but never VPVVPV. We
arbitrarily elected to score proteins with �3 VPV modules in their ABD domains as
indicating membership in the articulin subclass, and articulins were identified in all the
taxa sampled in our study except Tetrahymena.

FIG 3 Secondary structure predictions for epiplastins shown in Fig. 2. Yellow highlight, �-strands; magenta highlight, �-helices.
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(v) Head and tail domains. Most ABD domains are flanked by head (N-term) and tail
(C-term) domains. In a few cases, noted in Text S1 to S7, their sequences are ortholo-
gous to other epiplastin proteins in a given genome, presumably as a consequence of
endoreduplication, but in general they are very different from one another, although
they are sometimes enriched in lineage-specific amino acids (e.g., N-rich in Plasmodium,
Q-rich in Paramecium, and G-rich in euglenids). Columns F and H in Table S2 list
predicted protein motifs and coiled-coil domains in head and tail domains.

Presentation of results. Below, we first consider the epiplast structure and epiplas-
tin endowments of Cyanophora and members of the Alveolata, where the epiplast lies
beneath alveolar cisternae (Fig. 1B). We then consider euglenids and cryptophytes,
where the epiplast is directly contiguous to the plasma membrane (Fig. 1A). Finally, we
consider five cases in which epiplastin-like proteins have been identified in organisms
not known to construct an epiplast. Features specific to each lineage are presented in
Results; more general patterns are considered in Discussion.

The alveoli and epiplast of Cyanophora. Several investigators have described the
overlapping alveolar cisternae in the glaucophyte algae (68–74) and have noted their
similarity to the alveoli found in alveolates (65, 71, 74, 75). Figure 4 shows the
Cyanophora system using QFDEEM. Figure 4A displays the two fracture faces of the
cisternal membranes—alvP (plasma membrane- or cytoplasm contiguous) and alvE
(cisternal lumen contiguous)—with a mucocyst (m) at the cisternal boundaries. The
alveolar sutures that interconnect the cisternal membranes can appear wispy (Fig. 4A
and B) or more robust (Fig. 4C).

Figure 5 and Text S9.2 to S9.4 document that this alveolar system is supported by
a system of interconnected epiplastic plates (ep), The plates have the same dimensions
as the cisternae and also often carry mucocysts at their boundaries (Text S9.2 and S9.3).
They are interconnected by sutures that underlie the alveolar sutures but are broad and

FIG 4 Alveolar cisternae of glaucophyte Cyanophora paradoxa. (A) Overview. alvP, P fracture face of
alvelolar membrane; alvE, E fracture face of alveolar membrane; pmP, P fracture face of plasma
membrane; m, mucocyst. (B and C) Delicate and wispy (B) or more robust (C) sutures interconnecting the
alveoli (arrows). Scale bars: A, 500 nm; B and C, 100 nm.
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gummy-looking: these presumably correspond to the polygonal surface ridges seen
with scanning electron microscopy (SEM) (72, 73). Striations and aligned small particles
endow the plates with a semicrystalline appearance. The cisternae are subtended by a
system of microtubules (69).

The location of the epiplast plates is as yet unresolved. Kugrens et al. (71) noted a
thin layer of material residing within the cisternae in fixed thin-sectioned images and
suggested that it corresponds to the plates seen with freeze fracture, an interpretation
also offered by Heimann et al. (68), whereas we saw no material within the lumen
(Fig. 5A and B, arrows) and therefore interpret the epiplast system to lie beneath the
alveoli.

Inspection of stationary-phase cultures of Cyanophora by phase microscopy re-
vealed the presence of cell-sized refractile profiles, many aggregated in the medium
(Text S9.6). Cyanophora lacks a cell wall; hence, these “shells” represented candidate
discarded epiplasts, much like those visualized when Cyanophora is subjected to
osmotic shock (68) (see Fig. 6 in ref. 68). Since epiplasts have been shown to be stable
in the presence of nonionic detergent exposure in several other lineages (see below),
generating cell “ghosts,” we asked whether this is also the case for Cyanophora
epiplasts. As shown in Text S9.7 and S9.8, cells exposed to even high (5%) concentra-
tions of NP-40 detergent retain phase-refractile boundary material. The chloroplasts,
encased in a layer of peptidoglycan, are themselves impermeable with respect to
detergent and retain their pigments, but other cellular contents are solubilized (Text
S9.9).

The epiplastins of glaucophytes. We identified five epiplastins in the Cyanophora
paradoxa genome and two each in transcriptomes of glaucophytes Cyanoptyche gloeo-

FIG 5 Epiplast of glaucophyte Cyanophora paradoxa. ep, epiplast plates connected by thick sutures (s).
Arrows, views of the cisternal lumens. mu, mucoplast in suture domain. Scales bars: A and B, 500 nm; C,
100 nm.
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cystis and Gloeochaete witrockiana (Text S7). Their ABD domains all carry VPV motifs,
and five carry �3 VPVs and are therefore classified as articulins. All are poor in or devoid
of Y compared with most other lineages. One head domain is predicted to adopt a
coiled-coil configuration (Table S2, row 51).

The alveoli and epiplast of alveolates: parasitic apicomplexans. The alveolar
cisternae of the parasitic apicomplexans, called the inner membrane complex (IMC), are
separated from the plasma membrane by proteins that function in actin/myosin-based
gliding motility (76) (considered more fully in Discussion). The cisternae are intercon-
nected by sutures that resemble those in Cyanophora, where a single suture bridges
two large cisternae in Plasmodium sporozoites (77–79) and multiple sutures bridge
smaller cisternae in Plasmodium gametocytes and in Toxoplasma (41, 80–82) and
Eimeria (83). Several alveolar membrane proteins have been identified in Toxoplasma
(39–41, 84).

The P-fracture faces of the inner (cytoplasm-facing) alveolar membranes display two
sets of aligned intramembranous particles (IMPs) (76, 77, 81–83, 85, 86). The rows
containing paired IMPs lie above the underlying microtubules, while the more numer-
ous single-IMP rows are �30 nm apart (81) (Text S9.10 and S9.11). Morrissette and
Sibley (87) hypothesize that the single-IMP rows are entrained by the underlying
epiplast, a hypothesis supported by our studies (see below).

In thin-section transmission electron microscopy (TEM), the native apicomplexan
epiplast appears as a fluffy density beneath the inner alveolar membrane (see Fig. 5 in
reference 32, Fig. 21 in reference 82, Fig. 1 in reference 83, Fig. 1 in reference 88, and
Fig. 6 in reference 89).

D’Haese et al. (6) first showed that after several parasitic apicomplexans were
subjected to nonionic detergent extraction, the resultant cell ghosts retained their
full-length cellular shape even though in some cases the cortical microtubules ex-
tended for only half the length of the cells, suggesting the presence of an additional
skeletal component (see also references 34 and 90). Mann and Beckers (8) made similar
ghost preparations using Toxoplasma and detected a filamentous meshwork between
the microtubules that they termed the subpellicular network and that we designate
here the epiplast.

Figure 6A shows a freeze-dried Toxoplasma gondii ghost, prepared as described by
Heuser and Kirschner (91); Fig. 6B and C show details of its filamentous meshwork
(stereo images in Text S9.13 and S9.14; see also reference 87). Longitudinal microtu-
bules (mt) are intercalated with longitudinal filaments, �5 nm in diameter and spaced
�30 nm apart; these are cross-bridged at right angles by 5-nm filaments, also spaced
at �30 nm, to form square-shaped units. In some fields (Fig. 6C, arrows), the cross-
bridges are instead angled 30° from the longitudinal, a shift, perhaps generated during
specimen preparation, which indicates a flexibility that may contribute to the elasticity
of the apicomplexan cell surface (81) (see Discussion). The longitudinal filaments are
likely to be components of the “tracks” that undergird actin/myosin-based gliding
motility of the apicomplexans (see Discussion).

The epiplastins of parasitic apicomplexans. The genome of Toxoplasma gondii

encodes 14 epiplastins, denoted IMCs, all previously identified by others (Text S1.31 to
S1.45). Five proteins annotated as IMCs do not display the amino acid profile of
epiplastins (Text S8.2 and S8.15 to S8.17). The 16 epiplastins from Plasmodium falci-
parum were compiled by researchers in the Dessens laboratory (50) (Text S1.14 to
S1.30), and a sampling of 12 sequences from other apicomplexan parasites (e.g.,
Cryptosporidium and Cyclospora) was collected from the NCBI database (Text S1.2 to
S1.13). As noted in the introduction, many of the epiplastins of the apicomplexans have
been localized to the cell periphery; gene disruption generates aberrant cell shape and
organization; and some have been localized to particular cell surface domains and/or
have been found to be expressed in certain life cycle stages.

The ABD domains are, in general, quite similar (Table S2), consonant with their
inclusion in the original alveolin/IMC subclass (22). Most have significant (4% to 6%) Y
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content and a high level of P endowment (9% to 13%). At least one VPV module is
present in one or more of the three domains (head, ABD, and tail) in 77% of the
sequences, but only 4 of the 42 proteins meet the articulin threshold of having �3 VPV
modules per ABD domain (Babesia [Text S1.3]; Cryptosporidium [Text S1.7]; Plasmodium
[Text S1.20]; Toxoplasma [Text S1.38]).

Some of the tail domains in Plasmodium epiplastins are N-rich, with runs of up to 12
contiguous Ns (Text S1.20), reminiscent of the Q-rich tails in Paramecium and the G-rich
tails in euglenids (see below). A coiled-coil configuration is predicted within one
Cyclospora head and two Toxoplasma tails (Table S2).

The alveoli and epiplasts of alveolates: photosynthetic apicomplexans. The
free-living chromerids (92, 93), including Chromera velia and Vitrella brassicaformis, form
a sister group to the parasitic apicomplexans, a key distinction being that they retain
a photosynthetic chloroplast which is reduced to a nonphotosynthetic organelle, the
apicoplast, in the parasites. Since the relationships between these organisms are still
being evaluated, we refer to them here as photosynthetic apicomplexans.

Thin-section TEM shows a vaguely filamentous epiplast layer between the alveolar
undersurface and the subtending microtubules in Chromera (see Fig. 24 and 26 in
reference 94). An en face QFDEEM image of the epiplast in Vitrella (Fig. 7) shows a
meshwork of fine filaments interspersed with microtubules. Chromerid cells are en-
cased in robust walls (94, 95) (Fig. 7), suggesting that their epiplasts may not be as
important for structural support as in the naked parasites and pointing to epiplastic
participation in other facets of cell organization (see Discussion).

The epiplastins of photosynthetic apicomplexans. We recovered 13 epiplastin
sequences in Chromera and 11 in Vitrella (Text S2), comparable to the 14 identified in

FIG 6 Ghosts of Toxoplasma gondi apicomplexans. (A) Overview. (B and C) Epiplast lattice between
microtubules (mt). Asterisk, region of angled cross-bridges. (Stereo images are provided in Text S9.12 and
9.13.) Scale bars: A, 1 �m; B and C, 25 nm.
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Toxoplasma and 16 in Plasmodium. Of these, there are four articulins in Chromera and
seven in Vitrella (four orthologous) compared with approximately one articulin per
genome in the parasitic apicomplexans. The dinoflagellates, representing a sister
lineage of the apicomplexans, have a chromerid-level representation of articulins (see
below). One Chromera protein is predicted to form a coiled-coil in its ABD domain (Text
S2.4; see also Table S2, row 17).

Except for the disparity in the levels of articulin representation, the ABD domains in
the photosynthetic and parasitic apicomplexans have similar amino acid profiles (Ta-
ble S1), as expected given their common phylogeny.

The alveoli and epiplasts of alveolates: dinoflagellates. Dinoflagellates are clas-
sified as thecate (cellulosic walls present) or athecate (absent), where the thecate group
(�50% of known species) is monophyletic (96), and thecal size and organization serve
as important taxonomic markers. Several studies (97–99) have documented the pres-
ence of narrow “thecal plates” in thin-sectioned alveolar cisternae of several dinofla-
gellates, whereas such entities are not evident in freeze fracture replicas (reference 99;
see also Text S9.16). During the complex cell division process called ecdysis, the cell
produces an external bilayered “pellicle” (99, 100); its outer PI layer, posited to contain
sporopolllenin (101), resembles the algaenan/sporopollenin layer of Nannochloropsis
(102), and its inner PII layer consists of cellulose microfibrils (Text S9.17). The relation-
ship among the thecal plates, the pellicle, and the armored morphology of thecate
dinoflagellates is complex (103) and merits further investigation, as does the ultrastruc-
tural basis for the prominent ridges seen in SEM images of athecate dinoflagellates
(104, 105).

A thin epiplast between the alveolar cisternae and the subtending microtubules has
been visualized in thin sections (see Fig. 21 in reference 104) and in cross-fracture (Text

FIG 7 Epiplast of chromerid Vitrella brassicaformis. ep, epiplast; alvP, P fracture face of alveolar
membrane; alvE, E fracture face of alveolar membrane; pmP, P fracture face of plasma membrane; CW,
cell wall. Colored image: yellow, epiplast; orange, microtubules. Scale bars: 100 nm.

Goodenough et al. ®

September/October 2018 Volume 9 Issue 5 e02020-18 mbio.asm.org 12

https://mbio.asm.org


S9.16); it is considerably thicker in the enormous Noctiluca species (30). An en face
QFDEEM view of the epiplast in Glenodinium foliaceum (Fig. 8) displays enmeshed
filaments, similarly to those visualized for the chromerid Vitrella (Fig. 7), lying slightly
above the microtubules.

The epiplastins of dinoflagellates. The transcriptome of Kryptoperidinium folia-
ceum includes 17 epiplastins, two of which are articulins; that of Symbiodinium sp.
contains 21 epiplastins, four of which are articulins (Text S5). We also analyzed three
articulin orthologues from Karlodinium veneficum and two nonarticulin sequences from
the athecate Oxyrrhis marina (22) (Text S5). Two 130 K bands from an Amphidinium
carterae lysate are recognized in Western blots by antisera raised against ciliate
epiplastins (21). The Y content of their ABD domains is low.

The alveoli and epiplasts of alveolates: ciliates. The ciliates have specialized in
elaborating a highly complex cortex, with numerous basal bodies/cilia and intercon-
necting fibers (17, 106), but all retain an epiplast layer, which is continuous in Pseudo-
microthorax dubius and Tetrahymena thermophila and subtends individual alveoli in
Paramecium aurelia (9, 46, 107, 108). The alveoli are connected by sutures in the fashion
of the glaucophytes and apicomplexans (see Fig. 7 in reference 19 and Fig. 5 in
reference 109), and the epiplast itself is fibrillary (5, 18, 19, 106, 107, 110, 111), as in
apicomplexans and dinoflagellates. It resists detergent or glycerol extraction, forming
the outer matrix of cell ghosts in Tetrahymena (4, 5, 43, 44) and Pseudomicrothorax (18,
107, 112). It also appears to participate in sculpting the shape of the oral apparatus in
Tetrahymena (113). Text S9.19 shows thin-section images of the epiplast in Tetrahymena
ghosts.

The epiplastins of ciliates. The four ciliates evaluated were found to carry distinc-
tive epiplastins and are considered separately below.

(i) Pseudomicrothorax dubius. The three epiplastins characterized, first identified
by Huttenlauch et al. (21, 114), are classic articulins, with multiple VPV units present in
the ABD domain and extending into the tail (Text S3.24 to 3.26).

(ii) Pseudocohnilembus persalinus. A parasite of marine fish (115), P. persalinus
contains three classic articulins (Text S3.18 to 3.23), two of which also have numerous
VYP modules found in cryptophytes and Caulobacter as well (see below).

FIG 8 Epiplast of dinoflagellate Glenodinium foliaceum. ep, epiplast; alvP, P fracture face of alveolar
membrane; alvE, E fracture face of alveolar membrane; pm, plasma membrane; mt, microtubules. Colored
image: red, epiplast; yellow, cytoplasm. Scale bars: 200 nm.
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(iii) Paramecium tetraurelia. A group of small epiplastins comprise the epiplasmin

subclass (29), designated EPI, described as unique to Paramecium (46) (but see below).
Extracts enriched in dissociated epiplasmins form abundant 5-nm-diameter filaments
upon dialysis (26) (see Discussion). The 51 annotated epiplasmin genes fall into five
subclasses, each with many variants. We analyzed a subset of those that have been
localized to the epiplast (see Table 1 of reference 46) (Text S3.6 to 3.17). Their short ABD
domains have more Y (mean of 14%) than any other epiplastin, and they are low in P
residues (Table S2); all but one carry a single VPV unit. A distinguishing feature is a
strong endowment of Q in both the head and tail, often repeating in blocks of three or
more residues (see, e.g., Text S3.14). All the epiplasmin ABD domains yield a positive
score for the DUF2816 motif (where “DUF” represents “domain of unknown function”;
http://pfam.xfam.org/family/PF10992) (Table S2), likely because of their high Y content.

The Paramecium genome also encodes three additional epiplastins, all articulins
(Text S3.2 to 3.5). Two orthologues (Text S3.2 to 3.4) share two distinctive features: (i)
P residues, whose presence precludes the adoption of coiled-coils, are absent from the
heads and the first halves of the ABD domains, permitting the adoption of several
predicted coiled-coils (Table S2); (ii) the second halves of the ABD domains contain
multiple VPV modules that characterize the articulins. Coiled-coils are also predicted in
their tail domains and in the head of the third protein (Table S2, rows 150 to 152).

Tetrahymena thermophila. Two epiplastins (Text S3.35 and 3.36) appear to be in

the same subclass as the Paramecium epiplasmins, including showing a positive score
for the DUF2816 motif (Table S2). It is not known whether the group’s representation
has been reduced or whether more such genes will be identified.

Tetrahymena epiplastins ALV1 and ALV2 (Text S3.27 to 3.30) have been previously
identified (24), and two other sequences resulting from our search, representing either
the same genes or orthologues, are included for reference (Text S3.31 to 3.34).
Reminiscent of the two proteins in Paramecium, coiled-coil domains are predicted in
P-absent regions of their heads and the first part of their ABD domains, but the rest of
their long ABD domains is canonical. None of the Tetrahymena epiplastins is an
articulin, representing the one organism in our study where such a protein has not yet
been identified.

Twelve additional proteins (the 12 are listed in Text S8.2 and a subset parsed in Text
S8.10 to 8.13) have been identified in cortical preparations of Tetrahymena (24); some
have been further localized to the cell surface via tagged constructs, and some display
versions of ABD domains. However, none has the amino acid profile of an epiplastin; all
are predicted to be fully �-helical; and several have since been annotated in the NCBI
database as associated with kinetodesmal fibers.

The epiplasts of cryptophytes. Cryptophytes, which do not have alveoli (Fig. 1A),

either are colorless (116, 117) or possess a plastid acquired via the secondary endo-
symbiosis of a red alga (15). Numerous publications (7, 118–127; for reviews, see
references 15 and 128) have documented that the cryptophytes assemble a striking
variety of epiplasts, called inner periplast components, beneath their plasma mem-
branes.

Some Crytophyte epiplasts take the form of a single sheet, but most are organized
as plates, with ejectosomes (secretory organelles) localized to the plate boundaries. The
plates adopt various sizes and shapes (rectangular, hexagonal, or polygonal; summa-
rized in Table 1 of reference 15) and are interconnected by sutures. In Cryptomonas and
Proteomonas sulcata, the epiplast can transition from plate to sheet (7, 125). The plates
can display fine striations (119) (Text S9.29) that are reminiscent of the plates in
Cyanophora (Fig. 5) or can appear homogenous or crystalline (118, 123) or fibrillary
(117). In SEM images, Goniomonas, an early branching colorless cryptophyte, displays
ridges extending anterior to posterior to delineate 7 plates, with ejectosomes located
along the boundaries (117), and TEM thin sections of an unidentified colorless crypto-
phyte show a fuzzy epiplast layer (116).
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Cryptomonas epiplasts have been shown to be stable in the presence of nonionic
detergent exposure, generating cell ghosts (7) (Text S9.30). Since the cryptophyte
epiplast is not subtended by a microtubule cytoskeleton (124), the ghosts are flattened
on themselves rather than three-dimensional like the ghosts of alveolates (K. Hoef-
Emden, personal communication).

We used QFDEEM to analyze two cryptophytes in well-separated lineages (15). The
first, Guillardia theta, was previously reported to produce an inner periplast component
consisting of a single thin sheet (180), as does Cryptomonas cryophila (now Geminigera
cryophila) (121). We confirmed this observation; the Guillardia plasma membrane, which
displays a knobbly surface (Fig. 9C; see also Text S9.21), is underlain by an apparently
continuous layer, very thin in cross-fracture (Fig. 9B, arrows), with a gummy en face
texture studded with small perforations (Fig. 9) that were possibly generated during
deep etching. The P-fracture face of the plasma membrane displays occasional IMP-free
bands (Fig. 9A and C, asterisks) that may represent sites of epiplast association (see
below).

The second cryptophyte, Chroomonas mesostigmatica (Text S9.23), displays a striking
plasma membrane topology noted in previous publications (118, 120, 122, 123): curved
protuberances, which we call lips, align in rows along the anterior-posterior axis
(Fig. 10A). The lips are reminiscent of euglenid pellicle projections (see below) but are
more widely spaced along the anterior-posterior axis and are staggered rather than
aligned along the left-right axis. The spacing distance decreases in the gullet region
(Text S9.27), indicating organism-wide control over this surface patterning. Ejectosomes
localize to the lip boundaries (Fig. 10B; see also Text S9.24 and Fig. 8 in reference 120).

P-faces of the plasma membrane display IMP-free bands that define the longitudinal
and left-right borders of the rows (Fig. 11A and Text S9.25 and 9.26, asterisks); these are
to be contrasted with the infrequent and more randomly placed IMP-free bands in the
plasma membrane of Guillardia (Fig. 9A and C, asterisks), whose epiplast lacks a plate
organization and apparently makes less-frequent membrane contact. The P-face of the

FIG 9 Epiplast of cryptophyte Guillardia theta. ep, epiplast en face; arrow, epiplast cross-fracture; pmP,
P fracture face of plasma membrane; pmE, E fracture face of plasma membrane; pmS, etched surface of
plasma membrane; asterisks, IMP-free bands in plasma membrane fracture faces. Scale bars: A, 500 nm;
B and C, 200 nm.
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concave portion of each lip carries aligned IMPs (Fig. 11), spaced 10 nm apart, that often
appear as striations due to platinum confluence.

In TEM thin sections, the Chroomonas epiplast appears as a thin (25-nm) layer that
is removed with trypsin digestion (118). In QFDEEM cross-fracture, the epiplast makes
direct contact with the plasma membrane (Fig. 12, arrows), where contact is mediated
by thin filaments (Fig. 12B–D). Where it extends underneath the lip modules (Fig. 12B
and C), filaments appear to define the placement of the aligned IMPs (arrowheads).
Panels B and C in Fig. 12 document its ladder-like topology; the ladder in Fig. 12D,
which surrounds an ejectosome, is �15 nm wide and the rungs are spaced �25 nm
apart.

Published images of various Chroomonas species show homogeneous, striated, and
crystalline plates (118, 123), consonant with the variability of this trait. By QFDEEM, en
face views of the plates of Chroomonas mesostigmatica (Fig. 10B) display a gummy
substructure reminiscent of the Guillardia epiplast (Fig. 9) but lacking perforations.

Previous studies (118, 122, 123) showed that the plates are conjoined by anterior-
posterior and left-right sutures that are coincident with the IMP-free domains of the cell
membrane marked with asterisks in Fig. 11A and Text S9.24 and 9.25. In a striking
negative-stained image of a sonicated preparation of Chroomonas sp. (see Fig. 6 in
reference 118; image reproduced as Text S9.31), the plates are seen to taper and
converge toward a “central element” at the basal end of the cell (see also Fig. 13 of
reference 123) and to separate along both the longitudinal and left-right suture
interfaces during specimen preparation.

The epiplastins of cryptophytes. Articulins are the dominant epiplastin subclass in
the cryptophytes: 15/16 in Chroomonas mesostigmatica; 11/18 in Goniomonas pacifica;
4/9 in Guillardia theta; and 8/10 in Rhodomonas salina (Text S4). Two Guillardia articulins

FIG 10 Survey of cryptophyte Chroomonas mesostigmatica. (A) Overview of cell with plasma membrane
lips (L). (B) ep, epiplast; pmP, P fracture face of plasma membrane; E, ejectosome. Scale bars: A, 500 nm;
B, 200 nm.
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(Text S4.43 and S4.44) carry predicted transmembrane domains in their tail sequences,
the sole examples of such motifs in our survey. VYV modules are found in the ABD
domains of an articulin (Text S4.44) and a nonarticulin (Text S4.51) in Guillardia, in an
articulin (Text S4.9) in Chroomonas, and in eight Goniomonas epiplastins (all but one
articulins) (Text S4.20 to S4.30); they are also present in two articulins from the marine
ciliate Pseudocohnilembus persalinus (Text S3.20 to S3.23) and in the epiplastin-related
proteins in Caulobacter (see below). Many of the cryptophyte ABD domains contain
numerous short strings, similarly to the euglenids (see below).

A prominent feature of cryptophyte epiplastins is the inclusion of a PDZ motif that
is present in most of the tails in all lineages and also in most of the heads of
Goniomonas proteins but absent from all other epiplastins in our survey (Table S2). PDZ
domains mediate interactions between membrane proteins and cytoskeletal elements and
fold into globular domains with internal �-sheets (129). They have been identified in
bacteria, plants, and opisthokonts http://www.ebi.ac.uk/interpro/entry/IPR001478?q�PDZ
%20domain but not, to our knowledge, in unicellular microbes other than yeasts.
Several of the heads and tails of the cryptophyte proteins carry predicted coiled-coil
domains (Table S2), and one Goniomonas protein (Table S2, row 99) has a predicted
stand-alone coiled-coil in its ABD domain; in several other Goniomonas and one
Rhodomonas protein, a predicted coiled-coil in a head or tail domain extends into the
ABD domain (Table S2).

The epiplasts of euglenids. The euglenids represent a large radiation of both
colorless bacteriovores and osmotrophs and lineages carrying a green chloroplast
acquired by secondary endosymbiosis (130–132). The plasma membrane is organized
in ridge/groove units, reminiscent of the lips of Chroomonas mesostigmatica, but the
units are closely spaced and are aligned in anterior-posterior rows called strips. Each

FIG 11 Lips of cryptophyte Chroomonas mesostigmatica. Arrowhead, ordered IMPs in lip P fracture faces;
asterisks, IMP-free bands in plasma membrane fracture face. Scale bars, 100 nm.
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strip is subtended by a patterned microtubular cytoskeleton (12, 133–137), and in most
species the strips adopt a helical twist over the length of the organism (11). The
ridge/groove units are also aligned along the left-right axis, with the ridge of one unit
facing the groove of the unit on the adjacent strip. Mucocysts/muciferous bodies dock
and secrete their contents in association with the groove regions (134, 135).

In Euglena gracilis, the epiplast lies directly beneath the plasma membrane (Fig. 1A),
following the contours of the ridges and grooves in the same fashion that the
Chroomonas epiplast follows the contours of the lips. It varies considerably in thickness
(18 nm in E. gracilis and 175 nm in E. ehrenbergii [138]). It appears finely filamentous in
situ (10) and in extracted preparations (13, 138) and differentiates into several striated
subdomains in the groove regions (136). It retains its membrane association after
exposure to chaotropic agents (138), and the ridge/groove topology is unperturbed by
nonionic detergent exposure that removes the plasma membrane (13, 139) and by
sonication that removes the microtubules (11). When the epiplast is extracted with
NaOH, the overlying membrane vesiculates (13, 140). Hence, the epiplast is directly and
perhaps solely involved in sculpting the intricate surface topology of the euglenids.

The epiplastins of euglenids. Bouck and collaborators (13, 14) identified and
characterized two articulins— called 80K and 86K (Text S6.2 to S6.5)—that constitute
60% of the isolated Euglena epiplast and noted their abundant VPV endowment. Using
the Pfam search, we found five additional articulins in Euglena gracilis, while 44
epiplastins were found in Eutreptiella gymnastica (141) using the LCR search; the latter
can be aligned as two related but highly divergent groups (Text S6.42 to S6.44). All but
two (Text S6.25 and S6.40) of the members of the Eutreptiella protein subset that we
analyzed are scored as articulins. VPV units are also found in many of the head domains
in both species; they are also found in three Euglena tail domains but in none of the
Eutreptiella tail domains.

Several of the articulin ABD domains in both species are remarkable for their
number of short strings: one Euglena protein (Text S6.6) has 144 short strings bearing
61 VPV modules, while a Eutreptiella protein (Text S6.28) has 112 strings and 34 VPV
modules. A similar ABD architecture is also found the cryptophytes: a Rhodomonas
protein (Text S4.62), for example, has 77 short strings and 29 VPV modules. Most of the

FIG 12 Epiplast cross-fractures (arrows) of cryptophyte Chroomonas mesostigmatica. Arrowheads,
ordered IMPs in lip P fracture faces. Scale bars, 100 nm.
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euglenid domains have very low levels of Y, whereas the cryptophytes have average
levels (Table S2, column AB).

Epiplastin-like proteins in organisms apparently lacking epiplasts. The diag-
nostic features of epiplastins—medial ABD domains with high percentages of VI, low
levels of AG content, and predicted �-strand/random-coil secondary structure—were
used to identify several protein classes in additional radiations that display the same
profile. Since these organisms have not been shown to assemble epiplasts (one of our
three criteria for epiplastin designation), and since the localizations and functions of
these proteins are unknown, we designate them “epiplastin-like.”

Naegleria and Percolomonas. The Discoba superphylum includes two major radia-
tions, the Jacobida and the Discicristata. The euglenozoans (which include the eu-
glenids) and the heterolobosans are the two major subdivisions of the Discicristata.
Given the rich epiplastin endowment of the euglenids, we queried the genomes of two
heterolobosans, Naegleria gruberii and Percolomonas cosmopolitus. Of the eight Naegle-
ria candidates with medial ABD domains recovered in an LCR search, only two lacked
major predicted �-helical content, and both were predicted to be fully random coil
(Text S10.2 to S10.4); of the five recovered in Percolomonas, one is also predicted to be
random coil in its ABD domain (Text S10.5). All three meet the epiplastin criteria of
being rich in hydrophobic and charged amino acids and poor in A and G residues. It is
not known whether either organism constructs an epiplast during the course of its life
cycle.

Caulobacter. Although prokaryotes almost invariably produce cell walls and are
therefore not expected to assemble epiplasts, Al-Khattaf et al. (36) noted articulin-like
proteins in the genomes of the alphaproteobacterium Caulobacter, and we pursued this
lead. The NCBI database includes 28 proteins, annotated as articulins, from several
species, eight of which (some orthologous) are listed in Table S2 and parsed in Text
S10.6 to S10.14. All exhibit classic ABD strings with numerous VPV modules, and those
queried are predicted to adopt a �-strand/random coil secondary structure. They all
also carry numerous VYV modules, a motif otherwise encountered only in the crypto-
phytes and a marine ciliate (see above). Interestingly, Caulobacter cells have been
shown to form consortia with cryptophytes (143), adhering to their surfaces via their
inducible holdfasts (144); hence, they may have acquired (the prototype of) their
epiplastins via eukaryote ¡ prokaryote horizontal gene transfer (HGT). Conceivably,
since mitochondria derive from an alphaproteobacterium (145), there could have
occurred endosymbiotic epiplastin-like gene transfer to the original protoeukaryotic
host. Although Caulobacter articulins have not yet been localized, one possibility for a
location is a submembranous plaque visualized beneath the tip of the holdfast (see
Fig. 1 in reference 146).

Notably, the protein crescentin, considered an intermediate filament analogue in
Caulobacter (142), can be parsed into long ABD strings. However, it is predicted to be
completely �-helical (Text S10.15) and is therefore not considered to be epiplastin-like.

Epiplastin-like genes, sometimes annotated as encoding a tubulin binding protein
for reasons that we have not been able to ascertain, are found by BLAST analysis (see
Materials and Methods) in three classes of Basidiomycota, most in the order Tremellales,
but in no other sequenced fungal genomes (Text S10.16 and S10.17). Two examples of
this group were previously noted for Cryptococcus and Coprinopsis fungi (22). Each
genome apparently possesses a single copy of such a sequence. Although divergent, all
exhibit classic ABD domains with short strings and numerous VPV modules, and those
queried are predicted to adopt a �-strand/random coil secondary structure (Text S10.18
to S10.23). In unpublished QFDEEM studies of Cryptococcus performed in our labora-
tories, there was no evidence of an epiplast-like layer beneath the plasma membrane.

Insecta. Epiplastin-like sequences, variously annotated as titin, titin-like, or proline-
rich protein 4, were found in the genomes of numerous Insecta radiations using the
same BLAST analysis (Text S10.16 and S10.17). Their sequences are unrelated to the
muscle titin modules which form IgG-like beta-sandwiches (147) (Text S8.19), and they
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are not found in other arthropods or invertebrates. While divergent, all exhibit classic
ABD strings with numerous VPV modules, and those queried are predicted to adopt a
�-strand/random coil secondary structure (Text S10.24 to S10.26). Each genome appar-
ently possesses a single copy of such a sequence.

The presence of epiplastin-like proteins in the genomes of Basidiomycetes and
Insecta is intriguing. Since these proteins are not found in earlier-branching fungi or in
other animals or their direct unicellular forebears, direct evolutionary links to the
original epiplastins seem unlikely. The alternatives are two instances of early HGT in
these two radiations or convergent evolution. Since (cyto)skeletal proteins are usually
encoded by several orthologues/homologues in a given genome, these single-copy
genes may well specify novel functions that future mutation and/or protein-localization
studies will help to identify.

DISCUSSION
Overview. Several investigators have previously pointed out similarities between

what we are calling epiplasts/epiplastins present in the euglenids and in the three
alveolate radiations (21–23, 45, 46, 49, 67, 90, 106, 133, 139, 148), and Santore (124)
notes similarities between the epiplasts of euglenids and cryptophytes. In this study, we
subjected these similarities to comprehensive scrutiny and also analyzed two additional
lineages—the glaucophytes and cryptophytes—that had not been previously recog-
nized as epiplastin producers.

Tagged epiplastins have been repeatedly localized to epiplast domains in euglenids
and alveolates (references are cited in the introduction), whereas such experiments
have not yet been performed with glaucophytes and cryptophytes since the necessary
genetic tools are lacking for those organisms. Therefore, the proposal that all four
systems are related, while based on strong correspondences in ultrastructure and
protein organization, awaits confirmation via localization studies in glaucophytes and
cryptophytes.

In listing the number of epiplastin genes per species, we recognize that some may
have been missed or misclassified, with transcriptomes particularly likely to yield
incomplete data. Moreover, while we single out some examples of likely orthologues or
splice variants, we have not rigorously evaluated these parameters. That said, and with
the exception of the glaucophytes and Tetrahymena (low copy number) and Eutreptiella
(high copy number), most genomes/transcriptomes that were deeply probed encode
�10 to 20 epiplastins (see Table S1 in the supplemental material), almost all of which
differ from one another in head, ABD, and tail domain sequences, both within species
and between species, while sharing common amino acid usage, domain architecture,
predicted secondary structure, and documented or presumed cellular localization.

What are alveoli for? In four of the six radiations, epiplasts associate with alveolar
membranes (Fig. 1B). Plattner (149, 150) has made a strong case that alveoli engage in
Ca sequestration and release to aid in the coordination of ciliary beating in ciliates, but
he also notes (151) that there is little evidence that the alveoli of apicomplexans are
involved with Ca flux. Cellulosic plates have been visualized in the alveolar cisternae of
some but not all dinoflagellate groups (98). Disruption of alveolar integrity disrupts the
gliding motility of parasitic apicomplexans (see below), a form of motility unique to the
parasites. Exocytic/endocytic pores have been visualized in the alveolar membranes of
Plasmodium (79), but their cargo is unknown. Hence, the ubiquitous presence of alveoli
in several key lineages remains largely unexplained.

What are epiplasts for? A great deal more can be said about the possible functions
of epiplasts. We consider below four functional categories that often overlap: roles in
secretion, in flexibility, in gliding motility, and in cellular organization.

(i) Role in secretion. Radiations endowed with epiplasts are also endowed with
large organelles that store soluble or structural material, “dock” at junctions between
the epiplast and the plasma membrane, and rapidly release their contents in response
to agitation and/or the proximity of prey. These organelles are designated ejectosomes
in cryptophytes (117) (see Text S11.1A in the supplemental material); trichocysts in
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ciliates and dinoflagellates (150, 152) (Text S11.1B); and mucocysts in glaucophytes,
ciliates, and euglenids (Text S11.1C). The apical secretory organelles of apicomplexan
parasites, called micronemes, rhoptries, and dense granules, that play crucial roles in
the penetration of host cells are also proposed to belong to this class of organelles
(153). Importantly, in most cases where the process has been carefully studied, the
secretory contents do not directly cross the plasma membrane but rather pass through
a junction created by the epiplast with the alveolar sutures or the plasma membrane
(Fig. 4A, 5A, and 10B; see also Text S9.2, S9.3, and S11.1C). Hausmann (116), who
provides excellent TEM images of this process in a cryptophyte, suggests that the
epiplast may function, in part, to protect the plasma membrane from disruption during
the explosive discharge of these organelles. Notably, however, cryptophytes also
possess large ejectosomes in their gullet domains (15) where the plasma membrane is
subtended by striated bands and not an epiplast (124); hence, this suggestion may be
germane only to the cell body organelles.

(ii) Role in flexibility. The importance of a membrane skeleton in endowing cellular
flexibility has been most intensively studied in erythrocytes, which undergo dramatic
shape changes as they squeeze through capillaries that are narrower than the cells in
their normal disc shape. Biophysical analyses (154, 155) have shown that under these
circumstances the proteins in the spectrin-based membrane skeleton lose their inter-
connectivity, allowing the cells to stretch into a bullet shape.

Such viscoelastic properties have also been documented in epiplast-based unicel-
lular organisms. Euglena undergoes dramatic shape changes, called metaboly (13,
156), when it encounters an obstacle, as illustrated in the movie available at
https://www.youtube.com/watch?v�IWyol3u-OL8. Paramecium engages in similar
twisting (https://www.clipzui.com/video/83o426p3p4q5z4u2h5k413.html), and while
Toxoplasma glides, it also engages in a sinuous twirling motion during host invasion
(81), as illustrated at https://www.youtube.com/watch?v�Y5YxpOrUpdQ.

The structural basis for euglenid metaboly has been analyzed in the colorless
euglenid Astasia longa (9, 157). Its 40 longitudinal pellicular strips are organized such
that each ridge on one strip fits into the groove of its adjacent strip, linking the strips
together along the cell’s longitudinal axis. The strips are also linked together horizon-
tally by a system of filaments that extends from the epiplast underlying one groove to
the epiplast underlying its adjacent groove. When the cell is straight, these filaments
are perpendicular to the long axis, but when the cell assumes a round shape, the
filaments instead adopt an oblique angle as each strip slides incrementally past its
neighbor to generate a global torque. The sliding itself, which is ATP dependent in
detergent models of Euglena (158), is apparently dependent on a microtubule-based
system, in which case the filament/epiplast system would confer flexible constraints on
the extent of sliding. While it is not known whether the filaments themselves are
constructed of epiplastins, they are clearly anchored in the epiplast.

The epiplasts visualized in freeze-dried preparations of Toxoplasma (Fig. 6) illustrate
an analogous arrangement at a much smaller scale. Longitudinally aligned filaments,
spaced 30 nm apart, are regularly cross-bridged by filaments that are ordinarily per-
pendicular to the longitudinal axis but in some fields are instead oriented obliquely,
suggesting that they are capable of exerting flexible constraint. This filament system
appears to align IMPs in the overlying alveolar membrane, much as the filaments in
Chroomonas appear to align IMPs in the overlying plasma membrane in lip domains,
representing interactions that presumably participate in generating the topography of
the cell surface.

These examples of global cellular flexibility are doubtless accompanied by more-
localized instances where epiplasts absorb impacts, such as those from microparticu-
lates, that are buffeted by cell walls in walled organisms. Indeed, the imposition of an
alveolar system between the plasma membrane and the epiplast may serve as an
additional “cushion” to maintain cellular integrity. Epiplast-based lineages are propelled
by flagellar/ciliary motility (restricted to gametes in the parasitic apicomplexans), and
while the mechanical stresses incurred by that activity are presumably largely absorbed
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by its attendant microtubule/fiber systems, an additional epiplast-based flexibility
would likely be adaptive.

(iii) Role in gliding motility. Parasitic apicomplexans engage in actin/myosin-based
gliding motility (reviewed in references 76, 159, and 181), and evidence is accumulating
that the parallel epiplastic filaments visualized in Fig. 6, and their associated microtu-
bules, provide a system of “tracks” that anchor this system. The 30-nm spacing of the
filaments corresponds to the 30-nm spacing of IMPs in the overlying alveolar mem-
branes, and the integral GAP and GAPM proteins of these membranes coimmunopre-
cipitate (co-IP) with both the MyoA motors and several alveolin proteins (84). In
Plasmodium, deletions of IMC1b and IMC1h negatively affect gliding motility and
reduce infectivity (47, 54, 56). In published models of this system, the alveolin compo-
nent is illustrated either as coiled-coils (see Fig. 6 in reference 84) or as a disordered
meshwork (see box 1 in reference 76); our analyses suggest that these models merit
refinement.

(iv) Role in cellular organization. The lineages considered in this study assemble
microtubule-based cytoskeletons which strongly contribute to the maintenance of cell
shape and integrity. In cryptophytes, microtubules are restricted to the basal-body/
rhizostyle cytoskeletal complex (124, 156), whereas in other groups, “cortical” micro-
tubules also subtend the epiplast. The cryptophytes adopt a tapered cell shape without
an epiplast-associated microtubule endowment, and in many parasitic apicomplexans
the microtubule cytoskeleton extends only to the cell’s midline and not to its tapered
tail (Fig. 6). Moreover, microtubule depolymerization does not disrupt the integrity of
the epiplast in apicomplexans (81) or Euglena (140). These observations, coupled with
the examples offered below, support the hypothesis that in epiplast-assembling or-
ganisms, cellular organization is highly influenced by the epiplast layer.

One example of “global” epiplast organization is given by the gullet region of
cryptophytes and the reservoir region of euglenids, where phagocytosis of prey takes
place. The epiplast surrounding most of the cell is absent in these regions (124, 134),
allowing the phagosome membranes to invaginate. Such an arrangement would not,
of course, be possible for cells surrounded by a wall.

A second global example is the patterning of the cell surface into parallel structural
units. As Lefort-Tran et al. (10) note: “The cortical complex of Euglena displays a highly
repetitive structural pattern which is closely comparable to the cortex of ciliates such
as Paramecium and Tetrahymena.” While cortical microtubules are prominent in both of
these cases, studies reviewed in Results indicate a prominent role for the epiplast in
setting up these patterns. The parallel arrays of plates in the cryptophytes, and the
patterned spacing of Chroomonas lips, moreover, are by definition organized by their
epiplasts since they lack an underlying microtubule-based cytoskeleton.

A more local example relates to the placement of extrusomes. In cryptophytes, the
ejectosomes “dock” at the corners of the sutures that interconnect the epiplast plates
(Fig. 10B; see also Text S9.4). Glaucophytes display a similar arrangement except that
docking also involves alignment with the sutures that interconnect the alveolar cister-
nae (Fig. S11.1C). Two ciliate studies demonstrated that these docking sites preexist and
are not created by the docking event. (i) Pseudomicrothorax can be grown under
conditions where trichocysts are assembled but fail to dock; nonetheless, trichocyst
docking sites form in the epiplast at each cell division (18). (ii) Paramecium mutants that
fail to form trichocysts nonetheless continue to form epiplast thickenings and overlying
arrays of IMP particles at the correct docking locales (161, 162).

A fourth example, detailed in Results, is given by the euglenids and by the crypto-
phyte Chroomonas mesostigmatica, where not only their global cell surface patterning
is under apparent epiplast control but also the shape of their plasma membrane
ridge/groove and lip units, where the epiplastins appear to dictate the patterning of
their constituent IMPs. The parasitic apicomplexans similarly appear to entrain the
placement of alveolar membrane IMPs using epiplastin filaments.

The most extensively documented examples come from two sources: (i) the parasitic
apicomplexans, where it has been possible to localize tagged epiplastins to particular
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regions of the cell, follow the timing of their expression, and evaluate their abundance
in the various cell types that differentiate during the life cycle, and (ii) the ciliates, where
such localization studies are facilitated by large cell size and a patterned cortex. These
studies, many summarized by Francia and Striepen (52) and cited in the introduction,
leave little doubt that the epiplast is a highly differentiated structure that plays a key
role in cellular organization. Indeed, Kudryashev et al. (31) suggest that all of the
organelles in Plasmodium—including mitochondria, apicoplast, and microtubules—are
tethered to the epiplast.

This leaves us with a meta-question. In lineages with a microtubule cytoskeleton,
does it organize the epiplastic membrane skeleton or does the membrane skeleton
organize the cytoskeleton or are they independent of one another? To our knowledge,
this question remains unanswered.

How do epiplastins form epiplasts? The epiplastin class is unlike other protein
classes with which we are familiar. Its salient shared feature—a medial ABD domain
with restricted amino acid composition and a predicted �-strand/random coil second-
ary structure— displays no conserved motifs except VPV in the articulin subclass. Its
head and tail domains are dissimilar to one another and contain very few conserved
motifs. The proteins vary greatly in size and in ABD length (Text S1 to S7 and Tables S1
and S2). While the construction of epiplasts from these proteins remains far from being
understood, the studies considered below single out some of the parameters involved.

(i) Targeting studies. Two localization studies performed with alveolates have
addressed whether an ABD domain is involved in targeting its protein to its cellular
location. El-Haddad et al. (24) found the endogenous ALV2 protein of Tetrahymena to
localize diffusely over the entire cell surface, but cloned subdomains generated various
patterns associated with basal bodies. They also constructed a synthetic charged repeat
motif with an amino acid composition resembling an ABD domain and found that it
localized to a broad range of cytoskeletal structures, perhaps because the synthetic
sequence is in fact predicted to be wholly �-helical (our analysis). In similar studies with
Toxoplasma, Anderson-White et al. (32) found that the medial domains of IMC3 and
IMC8 target to the cell surface correctly but noted that the probes might have been
(hetero)dimerizing with endogenous proteins that have the correct addresses. We have
not found studies that examine the targeting capabilities of solo head or tail domains.
Clearly, more analysis is needed.

Targeting studies have also been performed with Euglena (140). When a sonicated
pellicle preparation is treated with 4 M urea and then 10 mM NaOH, the plasma
membrane is stripped of its epiplast, with two articulins (Text S6.2 and S6.4) making up
60% of the extract. When the membranes and extract are mixed and dialyzed, an
epiplast layer is restored to the membrane inner (but not outer) surfaces, having the
same width (17 nm) as the original (20 nm), and 17 nm-long filaments with globular
termini are arranged perpendicularly to the membrane, reminiscent of the arrays
visualized in Chroomonas (Fig. 12). A 17-nm-wide layer is also observed if the ratio of
extract to membrane is increased 6-fold, indicating that the binding sites can be
saturated. In a second study (160), major integral membrane protein p39, which carries
claudin domains (163), was shown to serve as an epiplastin binding site. These
observations suggest that the epiplastin terminal domains possess specific membrane-
targeting information and that the ABD domain participates in filament formation,
where the additional proteins in the extract may well participate in the process.

(ii) Filament formation studies. Studies of the small epiplasmin protein subclass of
Paramecium (25, 26) provide additional insights. The proteins in an 8 M urea extract that
was subjected to SDS/PAGE migrated as three subsets—representing high, medium,
and low molecular weight (HMW, MMW, and LMW, respectively)—and combinations
were subjected to repolymerization assays following dialysis. The HMW fraction formed
abundant 5-nm-wide filaments on its own; the MMW and LMW fractions failed to do so
on their own but did so when combined. When the HMW sample was divided into three
subfractions enriched in particular epiplasmins, each subfraction failed to form fila-
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ments on its own but readily formed filaments when recombined. These results indicate
that the epiplasmin filaments are assembled from protein combinations but do not
indicate whether these filaments, and epiplast filaments in general, are chains of single
globular domains or whether they also associate side to side as protofilaments. The
ultrastructure of Toxoplasma cell ghosts (Fig. 6) and Chroomonas (Fig. 12) indicates that
epiplastins can also align end to end to form long filaments and that these can be
cross-bridged by shorter filaments.

Epiplastins associate as a thin meshwork in alveolates and euglenids and as thin
plates or sheets in cryptophytes and glaucophytes. Images from Chroomonas mesostig-
matica analyses (Fig. 12) document that the plate edges adopt an open-meshwork
topology where they interact with the plasma membrane or ejectosomes and that
some Cryptomonas strains alternate between discrete plates and a continuous sheet at
different life history stages (7). Nothing is known about how filament length and layer
thickness are controlled.

(iii) �-strand/�-sheet studies. The predicted secondary structure of the ABD do-
mains as a mixture of �-strands and random coils awaits confirmation by biophysical
techniques, but support for this prediction comes from studies (164) of the amino acid
composition of �-strand-containing proteins in the Protein Data Bank. V and I, the
dominant amino acids in ABD domains (Tables S1 and S2), were found to be the most
highly represented in the �-strands (17% and 13%, respectively); L, ranking third (12%),
is for some reason uncommon in ABD domains (Table S2, column R). The authors also
note a high score for doublets (VV, VI, IV, and II) and triplets (VVV and VIV), units that
are common in ABD domains. Even without biophysical confirmation, the consistent
prediction of �-strand structure in epiplastin ABD domains from six radiations using
two prediction tools indicates that, at the least, the proteins all adopt a related
conformation that does not include �-helices (which are far easier to predict than
�-strands).

We are aware of three examples in which �-sheets are involved in filament forma-
tion. The members of the �-keratin superfamily (165, 166) (not to be confused with the
�-keratins in the intermediate-filament family) in reptiles and birds assemble into
filaments via �-� interactions. Each monomer carries several short �-sheet domains,
rich in V, I, and P (165) (Text S8.21), and these serve as contact regions for dimerization.
The dimers then polymerize to form long filaments, 3 to 4 nm in diameter, that are both
viscoelastic and detergent insoluble, all features of the epiplastins.

A second example is the protein titin, which is the viscoelastic component of striated
muscle (167) and is also implicated in mitotic-spindle dynamics (168). The enormous
titin polypeptide (25,000 amino acids) adopts a beads-on-a-string topology: modules of
100 amino acids, each containing 7 to 8 �-sheets (147) (Text S8.20) and lacking ABD
domains, fold into hundreds of IgG-like �-sandwiches that collectively generate a single
filament, 43 nm long and 3 to 4 nm wide (169). Given that an average ABD domain
contains �200 amino acids (Table S1), which might fold into 2 to 3 of such modules,
and that epiplastin filaments can be 17 nm long (140), the titin model per se is not
applicable to epiplastins, but possibly individual epiplastin monomers associate end to
end to form filaments in the fashion of titin.

A third example is that of the many filamentous forms adopted by �-sheet-
containing fragments of degraded proteins, such as amyloid-�, which participate in the
etiology of degenerative diseases (170–172). The monomers are rich in V and I and
charged amino acids (170). It would be of considerable interest if epiplastins were to
adopt analogous conformations but with nontoxic consequences.

A striking feature of the predicted epiplastin �-strands is their length. Whereas the
PSIPRED algorithm predicts, consonant with published biophysical data, that the mean
�-strand lengths are �4 amino acids in �-keratins and �6 amino acids in IgG (Text
S8.19) and titin (Text S8.20), it predicts a mean length of 13 amino acids in queried
Toxoplasma epiplastins, with some strands longer than 20 amino acids. The other
epiplastins in our survey also displayed long predicted �-strands (Fig. 3; see also Text
S1 to S7). The one other natural protein with such long �-strands that we have
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encountered is porin (Text S8.22), which lacks ABD/VI-rich domains. It folds into �-barrel
monomers that insert into the outer membranes of bacteria and organelles but that are
not known to form filaments. Long �-strands also characterize the monomers of
pathogenic peptides such as amyloid-�.

(iv) Head and tail motifs. Since the images from Euglena suggest that filaments
bind to membranes via globular domains (140), we examined head and tail domains
for the presence of known membrane-interaction motifs, but we found only a few
predicted coiled-coil domains (30 in 219 proteins, spread across lineages [Table S2,
C-C] and concentrated in Goniomonas) and PDZ domains that are restricted to
cryptophyte proteins (Table S2). Head and tail domains commonly (and ABD
domains occasionally) include C residues (green highlights in Fig. 2 and Text S1 to
S7), and in some cases (e.g., Symbiodinium [Text S5.24], Guillardia [Text S4.43], and
Toxoplasma [Text S1.45]) they are abundant. Mutagenesis of the C residues in the
IMC1c protein of Plasmodium affects sporozoite shape and infectivity (62), and the
residues have been shown to undergo palmitoylation (173), possibly contributing
to membrane associations.

(v) Perspective. Future research deepening our current understanding of epiplast
construction has three possible applications. First, there could emerge novel ap-
proaches to interfere with epiplast assembly and hence the infection cycles of apicom-
plexan parasites. Second, the information might be applicable to the formation of
pathogenic amyloid-�-like filaments, constructed from �-sheet-containing fragments
(170–172), that contribute to several diseases. Third, the principles governing the
assembly of such proteins into nanometer-thick films that are both viscoelastic and
detergent insoluble could have applications in bioengineering.

Evolutionary scenario. When similar traits are encountered in highly divergent
lineages such as those considered here, one alternative is to propose that while some
may share evolutionary continuity, others may have arisen by convergent evolution
(174)—that is, some lineages may have independently come up with/converged upon
the “idea” of protein domains encoding ABD- and VI-replete �-sheets for assembling
membrane skeletons. The apparently independent inclusion of such domains in the
epiplastin-like proteins of Insecta, Basidiomycete, and Caulobacter, whose function(s) is
as yet unknown, supports thinking along these lines.

The alternative, particularly for a lineage-restricted trait such as epiplast con-
struction where the constituent proteins are structurally related, is to propose that
the trait was present in a very deep ancestor and persisted in a subset of subse-
quent radiations. The evolutionary scenario offered in Text S11 is framed using this
second premise. Tests of this and alternative hypotheses will require an approach,
such as intron-retention analysis (175), which is capable of detecting long-
preserved relationships.

MATERIALS AND METHODS
Strains. The following strains were grown in the laboratories noted in Acknowledgments and

shipped live overnight to St. Louis for quick-freezing: Cyanophora paradoxa CCMP329 (Pringsheim strain);
Guillardia theta CCMP2712; Chroomonas mesostigmatica CCMP1168 (note that the genus Chroomonas
has recently been reevaluated [176]); Neospora caninum Nc-1; Toxoplasma gondii RH; Vitrella brassica-
formis gen. et sp. nov.; Chromera velia CCMP2878; Glenodinium foliaceum CCAP 1116/3; Symbiodinium sp.
CS-156.

Bioinformatics. We first used Hmmer to conduct a Pfam search of 58 eukaryotic genomes and 14
transcriptomes for the IMCp motif generated from P. falciparum alveolin homologs (https://pfam.xfam
.org/family/imcp) and recovered strong candidates from glaucophytes, euglenids, cryptophytes, and
alveolates, whereas none were recovered from the other eukaryotic groups queried (see Table S1 in the
supplemental material). The collected sequences were manually inspected for modules enriched in EKDR
amino acids (22), generating the Pfam set. Proteins recovered in this search are designated IMCp in
Table S2, column G.

To search for additional epiplastins that deviate from the alveolin-type motif, we scanned all available
genomes/transcriptomes for low-complexity regions (LCRs) using SEG software (177) with a window size
of 30, an initial low-complexity cutoff value of 3.0, and a low-complexity extension cutoff value of 3.1.
Collected LCRs were analyzed for amino acid composition, and those enriched for EKDR by �20% or 25%
were chosen; the threshold was determined by the inclusion of most high-confidence sequences. Manual
inspection of the chosen LCR domains was then performed, and sequences enriched in acid/base dyads
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and in V and I residues were considered epiplastin candidates. The full amino acid sequences of these
proteins were obtained and subjected to the evaluative criteria described in Results, generating the LCR
set of epiplastins.

The proteins in the combined Pfam and LCR sets (a total of 219; Table S2) were searched for
additional homology domains using INTERPRO scanning. Coiled-coils were predicted using COILS v2.2.

Finally, we conducted a BLAST search using the ABD domain sequence of the Chroomonas
MMETSP0047_c25199_g1_i1_g48336 protein (see Text S4.8 in the supplemental material) and recovered
two additional epiplastin-like classes, one restricted to Basidiomycetes and the other to Insecta (Text
S10.16 and S10 to S26).

Secondary-structure predictions. The predictions reproduced in this report were generated by
PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/). Many of the predictions were confirmed using YASPIN
(http://www.ibi.vu.nl).

Quick-freeze deep-etch electron microscopy. (QFDEEM) was performed as described previously
(178, 179).

Cyanophora ghosts. Cells were suspended in cold HMEK (10 mM HEPES, 5 mM MgSO4, 2 mM EGTA,
25 mM KCl, pH 7.4), to which was added NP-40 (Particle Data Inc., Elmhurst, IL) to reach the final
concentrations given in Text S10.7 and S10.8. After 3 min, half of each sample was fixed by adding drops
of a 4% solution of glutaraldehyde (Electron Microscopy Sciences) in HMEK to reach a final concentration
of 1%; the other half was first brought to 1 M glycerol–5% sucrose and then fixed as described above.
Phase microscopy images of fixed cells were taken using a Zeiss Axioscope microscope and a 40�
objective.

SUPPLEMENTAL MATERIAL
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