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Endogenous and exogenously administered S-nitrosothiols modulate the activities of
central and peripheral systems that control breathing. We have unpublished data
showing that the deleterious effects of morphine on arterial blood-gas chemistry
(i.e., pH, pCO2, pO2, and sO2) and Alveolar-arterial gradient (i.e., index of gas
exchange) were markedly diminished in anesthetized Sprague Dawley rats that
received a continuous intravenous infusion of the endogenous S-nitrosothiol, S-nitroso-
L-cysteine. The present study extends these findings by showing that unanesthetized
adult male Sprague Dawley rats receiving an intravenous infusion of S-nitroso-L-cysteine
(100 or 200 nmol/kg/min) markedly diminished the ability of intravenous injections of the
potent synthetic opioid, fentanyl (10, 25, and 50 μg/kg), to depress the frequency of
breathing, tidal volume, and minute ventilation. Our study also found that the ability of
intravenously injected fentanyl (10, 25, and 50 μg/kg) to disturb eupneic breathing, which
wasmeasured as amarked increase of the non-eupneic breathing index, was substantially
reduced in unanesthetized rats receiving intravenous infusions of S-nitroso-L-cysteine
(100 or 200 nmol/kg/min). In contrast, the deleterious effects of fentanyl (10, 25, and
50 μg/kg) on frequency of breathing, tidal volume, minute ventilation and non-eupneic
breathing index were fully expressed in rats receiving continuous infusions (200 nmol/kg/
min) of the parent amino acid, L-cysteine, or the D-isomer, namely, S-nitroso-D-cysteine.
In addition, the antinociceptive actions of the above doses of fentanyl as monitored by the
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tail-flick latency assay, were enhanced by S-nitroso-L-cysteine, but not L-cysteine or
S-nitroso-D-cysteine. Taken together, these findings add to existing knowledge that
S-nitroso-L-cysteine stereoselectively modulates the detrimental effects of opioids on
breathing, and opens the door for mechanistic studies designed to establish whether the
pharmacological actions of S-nitroso-L-cysteine involve signaling processes that include 1)
the activation of plasma membrane ion channels and receptors, 2) selective intracellular
entry of S-nitroso-L-cysteine, and/or 3) S-nitrosylation events. Whether alterations in the
bioavailability and bioactivity of endogenous S-nitroso-L-cysteine is a key factor in
determining the potency/efficacy of fentanyl on breathing is an intriguing question.

Keywords: S-nitrosothiol, fentanyl, frequency of breathing, tidal volume, minute ventilation, noneupneic breathing
index, Sprague Dawley rats

INTRODUCTION

Endogenous S-nitrosothiols (SNOs) regulate a variety of neural
systems within the central (Lei et al., 1992; Lipton et al., 1993;
Lipton et al., 1994; Takahashi et al., 2007; Tegeder et al., 2011;
Raju et al., 2015; Tarasenko, 2015; Nakamura and Lipton, 2016)
and peripheral nervous systems (Meller et al., 1990; Matsuda
et al., 1995; Savidge, 2011; Lee et al., 2013; Tooker and Vigh, 2015;
Gaston et al., 2020). SNOs exert their effects by mechanisms
involving breakdown to nitric oxide (NO) followed by formation
of dinitrosothiol-iron complexes that activate intracellular soluble
guanylate cyclase and protein kinase G cell signaling (Mellion
et al., 1983; Travis et al., 1996; Severina et al., 2003; Lima et al.,
2010; Martínez-Ruiz et al., 2013; Marozkina and Gaston, 2015;
Vanin, 2019), and by S-nitrosylation (transfer of NO+) of sulfur
atoms within functional proteins (Jaffrey et al., 2001; Joksovik
et al., 2007; Foster et al., 2009; Lima et al., 2010; Rudkouskaya
et al., 2010; Marozkina and Gaston, 2012; Anand et al., 2014; Pires
da Silva et al., 2016; Wynia-Smith and Smith, 2017; Stomberski
et al., 2019; Marozkina and Gaston, 2020). S-nitroso-L-cysteine
(L-CSNO) is an endogenous endothelium-derived SNO (Myers
et al., 1990; Bates et al., 1991; Kukreja et al., 1993) that is
synthesized and stored in vesicles of vascular endothelial cells
(Seckler et al., 2020). L-CSNO may be actively/exocytotically
released from the endothelium of peripheral vascular beds
(Davisson et al., 1996a; Batenburg et al., 2004a; Batenburg
et al., 2004b; Hashmi-Hill et al., 2007; Batenburg et al., 2009),
and from neurogenic vasodilator nerves in peripheral vascular
beds (Davisson et al., 1994; Davisson et al., 1996a; Davisson et al.,
1996b; Davisson et al., 1997a; Possas and Lewis 1997; Possas et al.,
2006).

Many of the pharmacological actions of SNOs such as
L-CSNO and S-nitroso-β,β-dimethyl-L-cysteine, depend
upon their stereoisomeric configuration (Davisson et al.,
1996d; Lewis et al., 1996; Travis et al., 1996; Davisson
et al., 1997b; Ohta et al., 1997; Travis et al., 1997; Hoque
et al., 1999; Hoque et al., 2000; Travis et al., 2000; Lipton et al.,
2001; Lewis et al., 2005a; Lewis et al., 2005b; Lewis et al.,
2006a; Gaston et al., 2020). For instance, microinjections of
L-CSNO into the nucleus tractus solitarius (NTS) lower
arterial blood pressure in anesthetized rats (Ohta et al.,
1997), and injections of L-CSNO into the lateral (Davisson

et al., 1997b) or fourth (Lewis et al., 1996) ventricles of
unanesthetized freely-moving rats elicit pronounced
hemodynamic responses, however, injections of the
D-isomer (D-CSNO) elicit minor responses. Potential
stereoselective L-CSNO binding/recognition sites have not
been fully identified, nevertheless we reported that L-CSNO,
but not D-CSNO, directly activates voltage-gated K+-
channels in a process that does not require the
S-nitrosylation of the functional protein (Gaston et al.,
2020). With respect to control of breathing,
microinjections of L-CSNO into the NTS elevate minute
ventilation (VE) in unanesthetized freely-moving rats
(Lipton et al., 2001) by stereospecific mechanisms that are
not related to L-CSNO decomposition to NO. In addition, it is
evident that arterial injections of L-CSNO increases VE in
unanesthetized rats by activation of stereoselective processes
in the carotid bodies, since 1) the L-CSNO-induced
ventilatory responses were substantially diminished in rats
that previously underwent bilateral transection of the carotid
sinus nerves (CSNs) and 2) the L-CSNO-induced responses
were not produced by D-CSNO (Gaston et al., 2020).

The involvement of nitrosyl factors, such as NO and SNOs, in
the pharmacological actions of opioids has received
considerable attention. For example, there is substantial
evidence for nitrosyl factors playing roles in 1) opioid
receptor (OR) signaling processes (Pol, 2007; Toda et al.,
2009a; Toda et al., 2009b; Rodríguez-Muñoz and Garzón,
2013), and 2) opioid effects on a) vascular function and
reactivity (Sahin et al., 2005; Kaye et al., 2006), b) pain
processing (Pelligrino, et al., 1996; Maegawa and Tonussi,
2003; Cury et al., 2011; Hervera et al., 2011; Mehanna et al.,
2018; Ortiz et al., 2020), c) vision (Someya et al., 2017), and d)
inflammatory-immunoregulatory processes (Bilfinger, et al.,
1998; Jan et al., 2011). Additionally, nitrosyl factors are
involved in opioid-induced catalepsy (Erkent et al., 2006),
tolerance to opioids (Kissin et al., 2000; Ozdemir et al., 2011;
Durmus et al., 2014), and fentanyl pre-conditioning (Lu et al.,
2014). Nonetheless, only a few studies have sought evidence as
to potential roles for nitrosyl factors in the ventilatory
depressant effects of opioids. For instance, the ventilatory
depressant responses elicited by fourth ventricular infusions
of morphine in awake dogs were reduced by prior injection of
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the NO synthase (NOS) inhibitor, L-nitro-arginine (L-NA),
whereas injection of L-NA after the injection of morphine
was ineffective (Pellegrino et al., 1996). Another study found
that the ventilatory depressant effects of morphine in
anesthetized cats are independent of neuronal NOS (nNOS)
(Teppema et al., 2000). In addition, recent studies (Seckler et al.,
2022) demonstrated that the ventilatory depressant effects of
fentanyl were augmented in unanesthetized rats that had
received the NOS inhibitor, NG-nitro-L-arginine methyl ester
(L-NAME), suggesting that the dominant role for nitrosyl
factors is to ameliorate the deleterious effects of opioids on
ventilation. Although the mechanisms by which nitrosyl factors
exert these effects are not clear, it is known that SNOs modulate
G protein-coupled receptor signaling in a receptor-specific and
reversible manner (Whalen et al., 1999; Kokkola et al., 2005;
Nozik-Grayck et al., 2006;Whalen et al., 2007), and importantly,
in the context of the present study, that neither SNO-L-CYS or
S-nitroso-L-glutathione directly interact with μ-ORs (Kokkola
et al., 2005).

Recently, we determined that the detrimental effects of
morphine on arterial blood-gas chemistry (i.e., pH, pCO2,
pO2, and SO2), Alveolar-arterial gradient (i.e., index of
alveolar gas-exchange), respiratory frequency (fR), tidal volume
(VT), and minute ventilation (VE) were markedly reduced in
anesthetized rats receiving a continuous intravenous infusion of
L-CSNO, but not those receiving D-CSNO infusion. Moreover,
the antinociceptive effects of morphine were not reduced in the
rats receiving either L-CSNO or D-CSNO. While furthering our
knowledge about the roles of nitrosyl factors in ventilatory
control processes (Stamler et al., 1997; Lipton et al., 2001;
Gaston et al., 2006; Haldar and Stamler, 2013; Palmer et al.,
2013a; Gaston et al., 2014; Palmer et al., 2015; Gaston et al., 2020;
Getsy et al., 2021; Seckler et al., 2022) and establishing that
L-CSNO has intriguing properties directly related to
modulation of OR signaling cascades, the presence of
anesthesia could be viewed as problematic, and the choice of
morphine does not directly address the most urgent need to
develop therapies against fentanyl, an analogue driving the
current opioid crisis (Han et al., 2019; Torralva and Janowsky,
2019; Lutfy, 2020). As such, the major objective of the present
study was to determine whether continuous intravenous
infusions of L-CSNO at 100 or 200 nmol/kg/min could
modulate the problematic effects of fentanyl given by
consecutive injections of 10, 25, and 50 μg/kg, IV, on
ventilatory parameters, fR, VT, and VE, and ventilatory
stability, as defined by the non-eupneic breathing index
(NEBI) (Getsy et al., 2014), in unanesthetized and
unrestrained Sprague Dawley rats. A secondary objective was
to determine whether infusion of L-CSNO modulates the
antinociceptive actions of fentanyl in unanesthetized rats as
determined by the radiant-heat tail-flick latency (TFL) assay
(Henderson et al., 2014; Gaston et al., 2021). Finally, we report
surprising, but intriguing, findings related to the ability of the
peripherally restricted OR antagonist, naloxone methiodide
(NLXmi) (Lewanowitsch and Irvine, 2002; Lewanowitsch,
et al., 2006; Henderson et al., 2014), to markedly increase fR in
rats that had received prior injections of fentanyl, but not vehicle.

MATERIALS AND METHODS

Permissions and Rats and Surgeries
All animal studies were carried out in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals (NIH Publication No. 80.23) revised in 1996. The protocols
were approved by the Institutional Animal Care and Use
Committees of the University of Virginia, Case Western Reserve
University, and Galleon Pharmaceuticals, Inc. Adult male Sprague
Dawley rats were obtained from Harlan Laboratories, Inc.
(Indianapolis, IN, United States). These rats were caged in
standard housing conditions in our vivaria with free access to
food and water. Room temperature (22°C), humidity (48%–50%)
and light-dark cycle (12:12 h) were maintained consistently in each
vivarium and laboratory where the studies were performed. All
protocols involved the use of rats that had been implanted with two
intravenous jugular catheters exteriorized to the back of the neck as
detailed previously (Davisson et al., 1996a; Davisson et al., 1996b;
Davisson et al., 1996c; Davisson et al., 1996d; Davisson et al., 1997a).
The jugular vein catheters were implanted under 2.5%–3.5%
isoflurane anesthesia 7 days previously to be sure that the rats
were free from surgical discomfort. On the day of the
experiment, one catheter (PE-50 connected to PE-10, the PE-10
tubing inserted into the right jugular vein) allowed for the
continuous intravenous infusion of vehicle (20 μl/min), L-CSNO
(100 or 200mol/kg/min), L-cysteine (200 nmol/kg/min) or
D-CSNO (200 nmol/kg/min). The second catheter was inserted
into the left jugular vein for the bolus injection of vehicle,
fentanyl or NLXmi. It is important to note the infusions were
maintained throughout the experiment.

Whole Body Plethysmography Protocols
Ventilatory parameters (i.e., fR, VT, VE, and NEBI) were recorded
in freely-moving rats by whole body plethysmography (PLY3223;
Data Sciences International, St. Paul, MN, United States) as
detailed previously (Getsy et al., 2020; Gaston et al., 2021;
Seckler et al., 2022). The rats were given 60 min to acclimate
to the chambers, thus allowing true resting (i.e., baseline)
ventilatory parameters to be established. A description of the
protocols undergone by the six treatment groups of rats and their
average body weights are provided in Table 1. Briefly, treatment
group one (i.e., Vehicle 1) rats received a continuous infusion of
phosphate-buffered saline (PBS) (i.e., vehicle) at pH 7.2. After
45 min these rats received three injections of vehicle, each given
30 min apart. Thirty minutes after the third vehicle injection, the
rats received an injection of NLXmi (2.5 mg/kg, IV). Treatment
group two (i.e., Vehicle 2) rats received a continuous infusion of
vehicle and after 45 min, injections of fentanyl at doses 10, 25, and
50 μg/kg, each given 30 min apart. Thirty minutes after injection
of the 50 μg/kg dose of fentanyl, the rats received an injection of
vehicle (100 μl/kg, IV). Treatment group three (i.e., L-CSNO) rats
received a continuous infusion of L-CSNO (200 nmol/kg/min)
and after 45 min, injections of fentanyl at doses 10, 25, and
50 μg/kg, each given 30 min apart. Thirty minutes after injection
of a 50 μg/kg dose of fentanyl, the rats received an injection of
NLXmi (2.5 mg/kg, IV). Treatment group four (i.e., Vehicle 3)
rats received the same protocol as Vehicle 1 rats and served as the
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controls for treatment group five (i.e., L-Cysteine) and treatment
group six (i.e., D-CSNO). L-Cysteine and D-CSNO rats received
an infusion of L-cysteine (200 nmol/kg/min, IV) or D-CSNO
(200 nmol/kg/min, IV) respectively and after 45 min, injections
of fentanyl (10, 25, and 50 μg/kg) each given 30 min apart. Thirty
minutes after the injection of the 50 μg/kg dose of fentanyl, the
rats received an injection of NLXmi (2.5 mg/kg, IV). It is
important to note that the infusions of the test agents were
continued throughout the entire protocol (i.e., until 15 min
after the injection of NLXmi or vehicle).

Due to the closeness of the body weights of the six treatment
groups of rats, ventilatory data, specifically VT and VE, are
presented without body weight corrections. Provided software
(Fine Pointe, BUXCO) constantly corrected digitized values
for changes in chamber temperature and humidity. Pressure
changes associated with the respiratory waveforms were then
converted to volumes (i.e., VT) using the algorithm of Epstein
and colleagues (Epstein and Epstein, 1978; Epstein et al., 1980).
Factoring in chamber temperature and humidity, the cycle
analyzers filtered acquired signals, and Fine Pointe algorithms
generated an array of box flow data that identified a waveform
segment as an acceptable (eupneic) breath. From that data
vector, the minimum and maximum values were determined.
Flows at this point were considered to be box flow signals.
From this array, minimum and maximum box flow values were
determined and multiplied by a compensation factor provided
by the selected algorithm (Epstein and Epstein, 1978; Epstein
et al., 1980), thus producing VT values that were used to
determine the non-eupneic breathing events expressed as
the non-eupneic breathing index (NEBI), reported as the
percentage of non-eupneic breathing events per epoch
(Getsy et al., 2014). All directly recorded parameters,
including NEBI, were then extracted from the raw
waveforms using Data Sciences International (St. Paul, MN,
United States) proprietary Biosystem XA software (version
2.9.0.2) and proprietary FinePointe software (version v2.8.0),
as described previously (Getsy et al., 2020; Gaston et al., 2021;
Seckler et al., 2022) and as detailed in the Data Sciences
International/Buxco website reference to the list of
parameters provided by proprietary FinePointe Software
using whole body plethysmography (https://www.datasci.
com/products/buxco-respiratory-products/finepointe-whole-
body-plethysmography). The BioSystem XA software extracts
the waveforms that are analyzed by the FinePointe software
that uses National Instruments Measurement Studio to

perform the analyses (http://zone.ni.com/reference/en-XX/
help/37263 6F-01/mstudiowebhelp/html/5d5b3031/).

Antinociception Protocols
Antinociception status in unanesthetized rats was determined
by a radiant heat tail-flick latency (TFL) assay, as detailed
previously (Lewis et al., 1991; Henderson et al., 2014; Gaston
et al., 2021; Jenkins et al., 2021). Prior to administration of
fentanyl, the rats were allowed to crawl inside a canvas garden
glove and lightly restrained within the glove to allow for the
thermal withdrawal latencies to be determined. After injection
of fentanyl, placement of the rat in the glove was aided by an
investigator. Each investigator performing the TFL assay was
unaware of the treatments that the rats were then subjected to.
The TFL testing apparatus consisted of a beam of focused
radiant heat provided by a 50 W projector lamp, which was
focused on the underside of the tail at 1 of 5 sites 8–10 mm apart.
TFL was measured to the nearest 0.1 s as the time from onset of
heating of the tail to withdrawal of the tail from the heat. The
intensity of the light beam was set so that baseline TFL values
were about 2.5 s. A cutoff time of 12 s was set to minimize
potential damage to the tail upon repeated application of the
radiant heat beam. TFL was established before and during the
various stages of the experiment. The data are presented as
actual TFL values (sec), arithmetic changes (sec), and as
maximum possible effect (%MPE) using the formula, %MPE
= [(post-injection TFL − baseline TFL)/(12 − baseline TFL)] ×
100. A description of the protocols undergone by the five
treatment groups of rats used and their body weights are
provided in Supplementary Table S1. Group 1 rats received
a continuous infusion of phosphate-buffered saline (PBS)
(i.e., vehicle) at pH 7.2. After 60 min these rats received three
injections of vehicle, each given 30 min apart. Thirty minutes
after injection of the third injection of vehicle, the rats received
an injection of NLXmi (2.5 mg/kg, IV). Group 2 rats received a
continuous infusion of vehicle and after 60 min, injections of
fentanyl (10, 25, and 50 μg/kg), each given 30 min apart. Thirty
minutes after injection of the 50 μg/kg dose of fentanyl, the rats
received an injection of vehicle (100 μl/kg, IV). Group 3–5 rats
received a continuous infusion of L-CSNO (200 nmol/kg/min,
IV) or L-cysteine (200 nmol/kg/min, IV) or D-CSNO
(200 nmol/kg/min, IV), respectively and after 60 min,
injections of fentanyl (10, 25, and 50 μg/kg) each given
30 min apart. Thirty minutes after injection of the 50 μg/kg
dose of fentanyl, the rats then received an injection of NLXmi

TABLE 1 | Description of the six treatment groups used in the whole body plethysmography experiments.

Group Weight (g) Infusion Bolus injections Vehicle/NLXmi

Vehicle 1 317 ± 3 20 μl/min Vehicle Vehicle Vehicle NLXmi, 2.5 mg/kg
Vehicle 2 320 ± 3 20 μl/min F10 F25 F50 Vehicle, 100 μL/kg
L-CSNO 319 ± 3 200 nmol/kg/min F10 F25 F50 NLXmi, 2.5 mg/kg
Vehicle 3 320 ± 2 20 μl/min Vehicle Vehicle Vehicle NLXmi, 2.5 mg/kg
L-Cysteine 322 ± 3 200 nmol/kg/min F10 F25 F50 NLXmi, 2.5 mg/kg
D-CSNO 318 ± 3 200 nmol/kg/min F10 F25 F50 NLXmi, 2.5 mg/kg

L-CSNO, S-nitroso-L-cysteine; D-CSNO, S-nitroso-D-cysteine; NLXmi, naloxonemethiodide. F10, F25, and F50 represent intravenous injections of 10, 25, or 50 μg/kg doses of fentanyl,
respectively. There were 8 rats in each group. The body weights of the six groups of rats (mean ± SEM) were similar to one another (p > 0.05, for all comparisons).
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FIGURE 1 | Frequency of breathing (A), tidal volume (B) and minute ventilation (C) values. The intravenous infusion of vehicle (20 μl/min, IV), L-CSNO 100
(S-nitroso-L-cysteine, 100 nmol/kg/min, IV) or L-CSNO 200 (S-nitroso-L-cysteine, 200 nmol/kg/min, IV) began at time 0. Bolus injections of fentanyl at F10 (10 μg/kg,
IV), F25 (25 μg/kg, IV), and F50 (50 μg/kg, IV) were given at 45, 75, and 105 min, respectively. A bolus intravenous injection of naloxone methiodide (NLXmi, 1.5 mg/kg,
IV) was given at time 135 min. Data are presented as mean ± SEM. There were 8 rats in each group.
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(2.5 mg/kg, IV). It is important to note that the infusions of the
test agents were continued throughout the entire protocol
(i.e., until 15 min after the injection of NLXmi or vehicle).

Data Analyses
All data are presented as mean ± SEM and were evaluated using
one-way and two-way ANOVA followed by Bonferroni
corrections for multiple comparisons between means using the
error mean square terms from each ANOVA analysis (Winer,
1971;Wallenstein et al., 1980; Ludbrook, 1998; McHugh, 2011) as
detailed previously (Getsy et al., 2021; Jenkins et al., 2021). A
value of p < 0.05 was taken as the initial level of statistical
significance (Wallenstein et al., 1980; Ludbrook, 1998;
McHugh, 2011). Statistical analyses were performed using
GraphPad Prism software (GraphPad Software, Inc., La Jolla,
CA, United States). A detailed description of these statistical
procedures is provided in the Supplementary Material under
“Detailed description of Statistical Approaches.”

RESULTS

SNO-L-CYS Infusion Blunts the
Fentanyl-Induced Changes in fR, VT and VE
The actual fR, VT, and VE values during various stages of the
L-CSNO (100 or 200 nmol/kg/min, IV) infusion experiments are
presented in Figure 1. As seen in Figure 1A, the infusions of vehicle
or L-CSNO at 100 (L-CSNO 100) or 200 (L-CSNO 200) nmol/kg/
min did not alter resting levels of fR. In vehicle-infused rats, injection
of the 10 μg/kg dose of fentanyl elicited a transient rise in fR that
quickly subsided before rising again to a plateau level that was
sustained for the final 5 min of the post-injection period. Subsequent
injection of the 25 μg/kg dose of fentanyl caused a transient rise in fR
in the vehicle-infused rats that rapidly fell to below baseline levels,
and then gradually recovered to values above pre-injection between
25 and 30min post-injection. The ensuing injection of the 50 μg/kg
dose of fentanyl caused an immediate fall in fR in the vehicle-infused
rats that was sustained for about 20–25min before returning to
baseline values. As is apparent from of Figure 1A, the ability of the
injections of fentanyl to decrease fR was substantially diminished in
rats receiving the 100 or 200 nmol/kg/min infusions of L-CSNO.
The dramatic effects elicited by the subsequent injection of NLXmi
will be detailed below (see section Profound effects of NLXmi in
fentanyl-injected rats). As seen in Figure 1B, the infusions of vehicle
or L-CSNO 100 did not alter VT, whereas infusion of L-CSNO 200
elicited a relativelyminor, but sustained increase in VT. The injection
of 10 μg/kg of fentanyl elicited a marked decrease in VT for about
5 min in the vehicle-infused and L-CSNO 100 rats, and that was
followed by a sustained increase in VT. The injection of 10 μg/kg of
fentanyl caused VT of the L-CSNO 200 rats to decrease slightly for
about 5 min, and that also was followed by a sustained increase.
Subsequent injections of 25 and 50 μg/kg fentanyl elicited
qualitatively similar responses to the 10 μg/kg dose of fentanyl in
vehicle-infused rats, although the duration of the decrease in VT was
somewhat larger after injection of the 50 μg/kg dose of fentanyl in
vehicle-infused rats. The 25 and 50 μg/kg injections of fentanyl

FIGURE 2 | Arithmetic changes in baseline frequency of breathing
(A), tidal volume (B) and minute ventilation (C) elicited by bolus injections
of fentanyl at F10 (10 μg/kg, IV), F25 (25 μg/kg, IV), and F50 (50 μg/kg,
IV) in rats receiving continuous infusion of vehicle (20 μl/min, IV),
L-CSNO 100 (S-nitroso-L-cysteine, 100 nmol/kg/min, IV) or L-CSNO
200 (S-nitroso-L-cysteine, 200 nmol/kg/min, IV). A bolus injection of
naloxone methiodide (NLXmi (2.5 mg/kg, IV) was given at the 90 min
timepoint. The data are presented as mean ± SEM. There were 8 rats in
each group.
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elicited markedly smaller decreases in VT in rats receiving the 100 or
200 nmol/kg/min infusions of L-CSNO, and VT remained above
baseline levels for most of the recording period in these two groups.

As seen in of Figure 1C, infusions of vehicle or 100 nmol/kg/min of
L-CSNO did not alter VE, whereas infusion of L-CSNO at
200 nmol/kg/min elicited a minor, but sustained increase in VE.
The injection of the 10 μg/kg dose of fentanyl elicited a pronounced
decrease in VE of about 5 min in duration in the vehicle-infused and
L-CSNO 100 rats that was followed by a substantial and sustained
rise in VE above baseline values. VE of L-CSNO 200 rats did not
change after injection of 10 μg/kg fentanyl, but did gradually increase
approximately 20 min post-injection of 10 μg/kg dose of fentanyl
even higher above baseline. Injections of 25 and 50 μg/kg of fentanyl
elicited qualitatively similar responses in vehicle-infused rats,
although the decrease in VE lasted somewhat longer after
injection of 50 μg/kg fentanyl in vehicle-infused rats. The
injections of 25 and 50 μg/kg doses of fentanyl elicited smaller
decreases in VE in rats that were receiving the 100 nmol/kg/min
infusion of L-CSNO compared to vehicle-infused rats, and we saw
no decreases in VE in rats that were receiving the 200 nmol/kg/min
infusion of L-CSNO. Thus, except for the decrease in VE elicited by
10 μg/kg fentanyl in rats receiving 100 nmol/kg/min of L-CSNO, VE

remained above baseline levels for the post-injection periods for the
L-CSNO 100 and L-CSNO 200 groups.

The arithmetic changes in fR, VT, and VE (expressed as
differences from the 45 min infusion timepoint) shown in
Figure 2, confirm that the ability fentanyl to adversely affect
fR, VT, and VE was markedly diminished in rats receiving
infusions of L-CSNO 100 and L-CSNO 200. Figure 3
summarizes the total (cumulative) arithmetic changes in fR
(Figure 3A), VT (Figure 3B) and VE (Figure 3C) from
baseline (Pre) values during the first 5 min following injection
of fentanyl at 10 μg/kg (F10), 25 μg/kg (F25), and 50 μg/kg (F50)
in rats receiving infusion of vehicle (20 μl/min, IV), L-CSNO at
100 nmol/kg/min (L-CSNO 100) or 200 nmol/kg/min (L-CSNO
200). In vehicle-infused rats, injection of the 10 μg/kg dose of
fentanyl caused a cumulative increase in fR, whereas the 25 and
50 μg/kg doses of fentanyl caused cumulative decreases in fR. The
increase in fR elicited by the 10 μg/kg dose of fentanyl, and the
decreases in fR elicited by the 25 and 50 μg/kg doses in vehicle-
infused rats were diminished in rats receiving the 100 nmol/kg/
min infusion of L-CSNO. The increase in fR elicited by the
10 μg/kg dose of fentanyl in vehicle-infused rats was smaller in
rats receiving 200 nmol/kg/min infusion of L-CSNO, and the
decreases in fR elicited by the 25 and 50 μg/kg doses of fentanyl
were reversed to increases in fR in the L-CSNO 200 rats. All doses
of fentanyl elicited substantial total falls in VT and VE in rats
receiving the infusion of vehicle. These decreases in VT and VE

were markedly smaller in the rats receiving the infusion of
L-CSNO 100. In the rats receiving L-CSNO 200, the decreases
in VT were even smaller than L-CSNO 100, and the VE was
slightly increased over the 3 doses of fentanyl in this group due to
the increases in fR.

Figure 4 summarizes the total arithmetic changes in fR
(Figure 4A), VT (Figure 4B) and VE (Figure 4C) from
baseline (Pre) values during the entire 30 min period after
injection of fentanyl at 10 μg/kg (F10), 25 μg/kg (F25), and
50 μg/kg (F50) in rats receiving infusion of vehicle (20 μl/min,
IV), L-CSNO at 100 nmol/kg/min (L-CSNO 100) or
200 nmol/kg/min (L-CSNO 200). The 10 μg/kg dose of

FIGURE 3 | Total arithmetic changes in baseline frequency of breathing
(A), tidal volume (B), and minute ventilation (C) during the first 5 min following
injection of fentanyl at F10 (10 μg/kg, IV), F25 (25 μg/kg, IV), and F50
(50 μg/kg, IV) in rats receiving infusion of vehicle (20 μl/min, IV), L-CSNO
100 (S-nitroso-L-cysteine, 100 nmol/kg/min, IV) or L-CSNO 200 (S-nitroso-L-
cysteine, 200 nmol/kg/min, IV). The data are presented as mean ± SEM.
There were 8 rats in each group. *p < 0.05, significant change from Pre values.
†p < 0.05, L-CSNO 100 or L-CSNO 200 versus vehicle. ‡p < 0.05, L-CSNO
200 versus L-CSNO 100.
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fentanyl elicited a cumulative increase in fR, whereas the 25
and 50 μg/kg doses of fentanyl caused cumulative decreases in
fR in the vehicle-infused rats. The increase in fR elicited by
10 μg/kg fentanyl in vehicle-infused rats was augmented, and
the decreases in fR elicited by the 25 and 50 μg/kg doses of
fentanyl were diminished in rats receiving the 100 nmol/kg/
min infusion of L-CSNO. The changes in fR elicited by 10, 25,
and 50 μg/kg fentanyl were markedly diminished or slightly
increased in the rats receiving the 200 nmol/kg/min infusion
of L-CSNO, respectively. The changes in VT and VE elicited
by the 10 μg/kg dose of fentanyl in vehicle-infused rats were
minor compared to the pronounced increases in VT and VE in
rats receiving the 100 or 200 nmol/kg/min infusions of
L-CSNO. The decreases in VT elicited by the 25 and
50 μg/kg doses of fentanyl in vehicle-infused rats were
either increased or abolished in rats receiving the 100 or
200 nmol/kg/min infusions of L-CSNO. Additionally, the
decreases in VE elicited by the 25 and 50 μg/kg doses of
fentanyl in vehicle-infused rats were markedly diminished
in rats receiving the 100 nmol/kg/min infusion of L-CSNO,
and increased in rats receiving the 200 nmol/kg/min infusion
of L-CSNO.

Table 2 summarizes the values of ventilatory parameters at
various stages of the L-CSNO infusion experiments. The
baseline values (i.e., those prior to commencing the
infusions) for fR, VT, and VE were similar to one another
(p > 0.05, for all comparisons). The infusion of L-CSNO at
100 nmol/kg/min did not affect fR, VT, and VE compared to
vehicle (Figure 1), thus the fR, VT, and VE values recorded at
45 min post start of infusion (i.e., pre-F10 values—or the
values prior to the injection of the 10 μg/kg dose of fentanyl)
were similar in the L-CSNO 100 group of rats compared to
vehicle (Table 2). In contrast, the infusion of L-CSNO at
200 nmol/kg/min elevated VT and VE, whereas it did not
change fR, for the pre-F10 values (Table 2; Figure 1).
Additionally, both Table 2 and Figure 1 show that the
values of fR, VT, and VE were elevated equally immediately
prior to injection of the 25 and 50 μg/kg doses of fentanyl in
the rats receiving the infusions of vehicle or L-CSNO (100 or
200 nmol/kg/min, IV), with the exception of fR for the
L-CSNO 200 group immediately prior to injection of the
25 μg/kg dose of fentanyl, in which fR was similar to baseline.
Therefore, these elevations in ventilatory parameters were
evidently due to the injections of fentanyl with minimal
differences occurring because of the presence of L-CSNO.

The arithmetic changes in Pre values (i.e., those prior to
any drug administration) from values just before injection of
fentanyl at F10 (10 μg/kg, IV), F25 (25 μg/kg, IV), and F50
(50 μg/kg, IV) in rats receiving infusion of vehicle (20 μl/min,
IV), L-CSNO 100 (S-nitroso-L-cysteine, 100 nmol/kg/min,
IV) or L-CSNO 200 (S-nitroso-L-cysteine, 200 nmol/kg/
min, IV) are provided in Figure 5. We see significant
arithmetic changes for fR, VT, and VE with the vehicle and
L-CSNO 100 infusions for F25 and F50. We see no significant
changes for fR with the L-CSNO 200 infusion for F25 and F50,

FIGURE 4 | Total arithmetic changes in baseline frequency of breathing
(A), tidal volume (B), and minute ventilation (C) during the 30 min period
following injection of fentanyl at F10 (10 μg/kg, IV), F25 (25 μg/kg, IV) and
F50 (50 μg/kg, IV) in rats receiving intravenous infusion of vehicle
(20 μl/min, IV), L-CSNO 100 (S-nitroso-L-cysteine, 100 nmol/kg/min, IV)
or L-CSNO 200 (S-nitroso-L-cysteine, 200 nmol/kg/min, IV). The data
are presented as mean ± SEM. There were 8 rats in each group. *p <
0.05, significant change from Pre values. †p < 0.05, L-CSNO 100 or
L-CSNO 200 versus vehicle. ‡p < 0.05, L-CSNO 200 versus
L-CSNO 100.
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and no significant changes for VE with the L-CSNO 200
infusion for F10. Nevertheless, we do see significant
arithmetic changes for VT with the L-CSNO 200 infusion
for F10, F25, and F50, and significant arithmetic changes for
VE with the L-CSNO 200 infusion for F25 and F50.
Additionally, we see no significant changes for fR, VT and
VE values for F10 across all three continuous infusions, except
VT values with the L-CSNO 200 infusion. The levels of fR
prior to injections of the 25 and 50 μg/kg doses of fentanyl
were higher than baseline infusion values in rats receiving the
100, but not the 200 nmol/kg/min continuous infusions of

L-CSNO. In contrast, the levels of VT and VE prior to the
injections of the 25 and 50 μg/kg doses of fentanyl were
higher than baseline infusion values in the rats receiving
both the 100 or 200 nmol/kg/min infusions of L-CSNO. The
cumulative changes in ventilatory parameters elicited by
continuous intravenous infusion of vehicle or L-CSNO
(L-CSNO 100 and L-CSNO 200) during the 45 min of
infusion are shown in Table 3. The values confirm that the
infusion of L-CSNO at 200 nmol/kg/min, but not the
100 nmol/kg/min, caused significant cumulative increases
in VT and VE, but not fR.

TABLE 2 | Baseline parameters at the beginning of the experiments (Pre) and prior to each injection of fentanyl (F10, F25, and F50) in the L-CSNO infusion experiments.

Parameter Group Baseline Pre-F10 Pre-F25 Pre-F50

Frequency, breaths/min Vehicle 108 ± 3 104 ± 4 128 ± 3* 121 ± 7*
L-CSNO 100 108 ± 2 108 ± 3 132 ± 2* 121 ± 2*
L-CSNO 200 106 ± 2 111 ± 4 110 ± 4 113 ± 2

Tidal Volume, ml Vehicle 2.12 ± 0.03 2.12 ± 0.07 2.68 ± 0.08* 2.69 ± 0.10*
L-CSNO 100 2.13 ± 0.03 2.20 ± 0.05 2.54 ± 0.07* 2.53 ± 0.13*
L-CSNO 200 2.17 ± 0.02 2.37 ± 0.04* 2.29 ± 0.08* 2.88 ± 0.07*

Minute Ventilation, ml/min Vehicle 229 ± 6 220 ± 10 342 ± 14* 320 ± 9*
L-CSNO 100 230 ± 6 237 ± 3 337 ± 9* 309 ± 19*
L-CSNO 200 231 ± 6 263 ± 10* 317 ± 9* 325 ± 10*

NEBI, % of epoch Vehicle 3.3 ± 0.4 2.8 ± 0.4 2.9 ± 1.0 3.3 ± 0.6
L-CSNO 100 3.1 ± 0.2 3.7 ± 0.6 2.9 ± 0.5 3.0 ± 0.4
L-CSNO 200 3.5 ± 0.2 3.2 ± 0.4 3.0 ± 0.2 2.4 ± 0.1*

[(NEBI, %)/Frequency, bpm)] × 100 Vehicle 3.0 ± 0.3 2.6 ± 0.4 2.2 ± 0.8 2.7 ± 0.5
L-CSNO 100 2.9 ± 0.1 3.5 ± 0.6 2.3 ± 0.4 2.6 ± 0.3
L-CSNO 200 3.4 ± 0.2 2.8 ± 0.3 2.8 ± 0.3 2.2 ± 0.1*

Frequency, frequency of breathing; NEBI, non-eupneic breathing index; bpm, breaths per minute; L-CSNO, S-nitroso-L-cysteine; F10, F25, and F50, fentanyl at intravenous doses of 10,
25, and 50 μg/kg, respectively. The data are presented as mean ± SEM. There were 8 rats in each group. *p < 0.05, significant change from Pre values.

FIGURE 5 | Arithmetic changes in Pre values (i.e., those prior to any drug administration) from values just before injection of fentanyl at F10 (10 μg/kg, IV), F25
(25 μg/kg, IV), and F50 (50 μg/kg, IV) in rats that were receiving infusion of vehicle (20 μl/min, IV), L-CSNO 100 (S-nitroso-L-cysteine, 100 nmol/kg/min, IV) or L-CSNO
200 (S-nitroso-L-cysteine, 200 nmol/kg/min, IV). (A) Frequency of breathing. (B) Tidal volume. (C)Minute ventilation. (D) Non-eupneic breathing index (NEBI). (E) NEBI/
Frequency of breathing (NEBI/Freq). The data are presented as mean ± SEM. There were 8 rats in each group. *p < 0.05, significant change from Pre values. †p <
0.05, F25 or F50 versus F10. ‡p < 0.05, L-CSNO 200 versus L-CSNO 100.
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Infusions of L-Cysteine or D-CSNO Do Not
Blunt the Fentanyl-Induced Changes in fR,
VT, and VE
Figure 6 shows the values for fR (Figure 6A), VT (Figure 6B),
and VE (Figure 6C) during studies involving injections of
fentanyl (10, 25, and 50 μg/kg, IV) in rats receiving infusions
of vehicle (20 μl/min, IV), L-cysteine (200 nmol/kg/min, IV)
or D-CSNO (200 nmol/kg/min, IV). The infusions of
L-cysteine or D-CSNO did not alter baseline values. The
injections of fentanyl at 10 μg/kg (F10), 25 μg/kg (F25),
and 50 μg/kg (F50) elicited very similar qualitative and
quantitative responses to those of vehicle-infused rats
described in Figure 1. Thus, the fentanyl responses at 10,
25, and 50 μg/kg are not affected by continuous infusion of
L-cysteine or D-CSNO. The arithmetic changes in fR, VT, and
VE (expressed as changes from the 45 min infusion
timepoint) shown in Figure 7, also confirm that the
continuous infusions of L-cysteine or D-CSNO do not
change the effects of fentanyl on fR, VT, and VE compared
to vehicle-infused rats. Figure 8 summarizes the total
(cumulative) arithmetic changes from Pre values during
the first 5 min and entire 30 min recording periods in fR
(Figures 8A,B, respectively), VT (Figures 8C,D,
respectively), and VE (Figures 8E,F, respectively) after
injection of fentanyl at F10 (10 μg/kg, IV), F25 (25 μg/kg,
IV), and F50 (50 μg/kg, IV) in rats receiving infusion of
vehicle (20 μl/min, IV), or L-cysteine or D-CSNO at
200 nmol/kg/min. The total increases in fR over the first
5 min elicited by the 10 μg/kg dose of fentanyl was similar
in the three groups as were the total decreases in fR elicited by
the 25 and 50 μg/kg doses of fentanyl. The total decreases in
VT and VE over the first 5 min elicited by the 10, 25, and
50 μg/kg doses of fentanyl were similar in all three groups.
Additionally, similar cumulative changes in fR, VT, and VE

were observed over the entire 30 min recording period in the
three groups at the 25 and 50 μg/kg doses of fentanyl. At the
10 μg/kg dose of fentanyl, changes in fR, VT, and VE were
increased or not changed from Pre values for the three
groups. Supplementary Table S2 summarizes the values of
ventilatory parameters during the L-cysteine and D-CSNO
infusion studies. Baseline values (Pre—those before

commencing the infusions) for fR, VT, and VE were similar
to one another (p > 0.05, for all comparisons). The infusion of
L-cysteine or D-CSNO at 200 nmol/kg/min did not affect fR,
VT, and VE at the 45 min infusion timepoint (Pre-F10
values—those prior to injection of the 10 μg/kg dose of
fentanyl). The fR, VT, and VE values prior to the injection
of the 25 and 50 μg/kg doses of fentanyl (Pre-F25 and Pre-
F50) in the rats receiving infusions of vehicle, L-cysteine or

TABLE 3 | Cumulative changes in Pre ventilatory parameters elicited by the
continuous intravenous infusion of vehicle or S-nitroso-L-cysteine (L-CSNO)
during the 45 min of infusion.

Parameter Vehicle L-CSNO 100 L-CSNO 200

Frequency, % −3.1 ± 2.3 −0.3 ± 1.2 +2.2 ± 3.7
Tidal Volume, % −0.6 ± 1.6 +2.7 ± 2.1 +11.6 ± 0.8*,†

Minute Ventilation, % −3.9 ± 1.3* +2.2 ± 1.0 +14.1 ± 4.7*,†

NEBI, % −11.7 ± 2.2* −41.5 ± 4.7*,† −33.5 ± 3.1*,†

(NEBI)/Frequency, % −9.2 ± 1.3* −41.4 ± 4.9*,† −36.0 ± 3.9*,†

Frequency, frequency of breathing; NEBI, non-eupneic breathing index; L-CSNO 100 or
L-CSNO 200, S-nitroso-L-cysteine given intravenously at 100 or 200 nmol/kg/min. The
data are presented as mean ± SEM. There were 8 rats in each group. *p < 0.05,
significant change from Pre values. †p < 0.05, L-CSNO 100 or L-CSNO 200 versus
vehicle.

FIGURE 6 | Frequency of breathing (A), tidal volume (B) and minute
ventilation (C) values. The infusion of vehicle (20 μl/min, IV), L-cysteine
(200 nmol/kg/min, IV) or S-nitroso-D-cysteine (D-CSNO, 200 nmol/kg/min,
IV) began at time 0. Bolus injections of fentanyl at F10 (10 μg/kg, IV), F25
(25 μg/kg, IV), and F50 (50 μg/kg, IV) were given at 45, 75, and 105 min,
respectively. A bolus intravenous injection of naloxone methiodide (NLXmi,
1.5 mg/kg, IV) was given at time 135 min. Data are presented asmean ± SEM.
There were 8 rats in each group.
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D-CSNO were elevated to a similar degree, except the fR
values prior to the injection of the 50 μg/kg dose of fentanyl in
the rats receiving infusions of vehicle, L-cysteine or D-CSNO.
Therefore, these elevations in ventilatory parameters were
evidently due to the injections of fentanyl with minimal
differences occurring because of the presence of L-cysteine
or D-CSNO.

SNO-L-CYS Infusion Blunts the Negative
Effects of Fentanyl on Eupneic Breathing
The actual NEBI and NEBI/fR values during various stages of the
L-CSNO (100 or 200 nmol/kg/min, IV) infusion studies are
presented in Figure 9. Figure 9A shows that the baseline
NEBI values in all rats were very low, suggesting that most
breaths were eupneic in nature. The infusions of vehicle or
L-CSNO at 100 or 200 nmol/kg/min minimally affected resting
NEBI levels. In vehicle-infused rats, the injection of the 10, 25,
and 50 μg/kg doses of fentanyl elicited transient, but substantial,
increases in NEBI of 5–10 min in duration. These detrimental
effects of fentanyl were virtually absent in rats receiving 100 or
200 nmol/kg/min infusions of L-CSNO. Figure 9B shows that
even when corrected for the levels of fR, the pattern of effects
elicited by fentanyl in rats receiving infusions of vehicle or
L-CSNO are qualitatively similar to those shown in
Figure 9A. The arithmetic changes in NEBI and NEBI/fR
(expressed as differences from the 45 min infusion timepoint)
shown in Supplementary Figure S1, confirm that the ability of
fentanyl to deleteriously affect NEBI and NEBI/fR are diminished
in rats receiving infusions of L-CSNO 100 or L-CSNO 200.
Supplementary Figure S2 summarizes the total (cumulative)
arithmetic changes in NEBI and NEBI/fR recorded 5 and 30 min
after injection of fentanyl (10, 25, and 50 μg/kg doses, IV) in rats
receiving continuous infusions of vehicle (20 μl/min, IV), or
L-CSNO (100 or 200 nmol/kg/min, IV). The data clearly
shows that L-CSNO 100 and 200 dramatically reduce the
ability of fentanyl to destabilize breathing. As shown in
Supplementary Figures S3, S4 the ability of fentanyl (10, 25,
and 50 μg/kg doses, IV) to deleteriously affect NEBI and NEBI/fR
was not altered by infusions of L-cysteine (200 nmol/kg/min, IV)
or D-CSNO (200 nmol/kg/min, IV).

Profound Effects of NLXmi in
Fentanyl-Injected Rats
Rather remarkably, the injection of NLXmi (1.5 mg/kg, IV)
elicited a prompt and substantial rise in fR in vehicle-infused
rats (Figure 1). This effect of NLXmi was strictly related to
administration of prior injections of fentanyl, since the injection
of NLXmi (1.5 mg/kg, IV) elicited minimal changes in fR, VT, and
VE values in rats receiving the infusions of vehicle, but which
received injections of vehicle instead of fentanyl (Supplementary
Table S3). As can be seen in Figure 1, the increases in fR elicited
by NLXmi in rats receiving the 100 or 200 nmol/kg/min infusions
of L-CSNO were similar to those in vehicle-infused rats

FIGURE 7 | Arithmetic changes in baseline frequency of breathing (A),
tidal volume (B) and minute ventilation (C) elicited by injections of fentanyl at
F10 (10 μg/kg, IV), F25 (25 μg/kg, IV), and F50 (50 μg/kg, IV) in rats receiving
continuous infusion of vehicle (20 μl/min, IV), L-cysteine (200 nmol/kg/
min, IV) or S-nitroso-D-cysteine (D-CSNO, 200 nmol/kg/min, IV). The data are
presented as mean ± SEM. There were 8 rats in each group.
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(Figure 1A). Due to the more dramatic effect of NLXmi on fR
than VT (Figure 1B), the net effect of the administration of
NLXmi was a marked increase in VE of similar magnitude in all
three groups (Figure 1C). The differences in the Pre values
(i.e., those prior to any drug administration) for fR, VT, and
VE compared to those values prior to the administration of

NLXmi in rats receiving vehicle, L-CSNO 100 and L-CSNO
200 are summarized in Supplementary Table S4. As can be
seen, fR values were not changed in rats receiving infusions of
vehicle or 100 nmol/kg/min of L-CSNO, whereas fR was elevated
in rats receiving the 200 nmol/kg/min infusion of L-CSNO. In
addition, VT and VE values were elevated in all three of the

FIGURE 8 | Total (cumulative) arithmetic changes in Pre values during the first 5 min and entire 30 min periods in frequency of breathing (A,B), tidal volume (C,D),
and minute ventilation (E,F) after injection of fentanyl at F10 (10 μg/kg, IV), F25 (25 μg/kg, IV), and F50 (50 μg/kg, IV) in rats receiving infusion of vehicle (20 μl/min, IV),
L-cysteine (200 nmol/kg/min) or D-CSNO (200 nmol/kg/min). The data are presented as mean ± SEM. There were 8 rats in each group. *p < 0.05, significant change
from Pre values.
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groups, but substantially more so in the rats receiving the
200 nmol/kg/min infusion of L-CSNO. The total (cumulative)
changes in fR, VT, and VE elicited by the injection of NLXmi are
summarized in Figure 10. The injection of NLXmi elicited
pronounced increases in VE (Figure 10C) that were entirely
due to the increases in fR (Figure 10A), but not in VT

(Figure 10B). Conclusively, it is readily apparent that the
NLXmi-induced responses were not modified by the infusions
of L-CSNO at either 100 or 200 nmol/kg/min infusions
(Figure 10).

The differences in the Pre values (i.e., those prior to any drug
administration) for fR, VT, and VE compared to those values prior
to the administration of NLXmi in rats receiving vehicle,
L-cysteine or D-CSNO are summarized in Supplementary
Table S5. As can be seen, VT and VE, but not fR were elevated
prior to injection of NLXmi in the three groups (p > 0.05 for all
between group responses). As seen in Figure 6, the responses
were qualitatively similar in all three groups, and the injection of
NLXmi elicited prompt and substantial increases in fR that were
accompanied by smaller increases in VT, which together
produced substantial increases in VE. Supplementary Figure
S5, shows that the total (cumulative) responses recorded
during the 9 min period following injection of NLXmi were
similar in all groups for fR and VE, whereas the total responses
for VT were smaller in rats receiving infusions of L-cysteine or
D-CSNO than those receiving vehicle infusion. As seen in
Supplementary Figure S6, the total changes in NEBI elicited
by the injection of NLXmi in rats receiving the 100 or
200 nmol/kg/min infusions of L-CSNO (Supplementary
Figure S6A) or the 200 nmol/kg/min infusions of L-cysteine
or D-CSNO (Supplementary Figure S6C) were not different
from their respective vehicle-infusion groups. However, upon
correcting the changes in NEBI for the levels of fR, it was evident
that the NLXmi-induced changes in NEBI/fR were somewhat
greater in rats receiving the 200 nmol/kg/min infusions of

FIGURE 9 | Non-eupneic breathing index (NEBI) (A) and NEBI/
Frequency of breathing (NEBI/Freq) (B) values. The infusion of vehicle (20 μl/
min, IV), L-CSNO 100 (S-nitroso-L-cysteine, 100 nmol/kg/min, IV) or L-CSNO
200 (S-nitroso-L-cysteine, 200 nmol/kg/min, IV) commenced at time 0.
Bolus intravenous injections of fentanyl at F10 (10 μg/kg, IV), F25 (25 μg/kg,
IV), and F50 (50 μg/kg, IV) were given at 45, 75, and 105 min, respectively. A
bolus intravenous injection of naloxone methiodide (NLXmi, 1.5 mg/kg, IV)
was given at time 135 min. The data are presented as mean ± SEM. There
were 8 rats in each group.

FIGURE 10 | Total arithmetic changes in frequency of breathing (A), tidal volume (B), and minute ventilation (C) over the 9-min period following the injection of
naloxone methiodide (1.5 mg/kg, IV) in rats receiving infusion of vehicle (20 μl/min, IV), L-CSNO 100 (S-nitroso-L-cysteine, 100 nmol/kg/min, IV), or L-CSNO 200
(S-nitroso-L-cysteine, 200 nmol/kg/min, IV). The data are shown as mean ± SEM. There were 8 rats in each group. *p < 0.05, significant change from Pre values. †p <
0.05, L-CSNO 100 or L-CSNO 200 versus vehicle.
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L-CSNO (Supplementary Figure S6B) or infusion of L-cysteine
(Supplementary Figure S6D).

L-CSNO, but Not L-Cysteine or D-CSNO
Promotes the Antinociceptive Actions of
Fentanyl
The tail-flick latency (TFL) values of the five treatment groups for
the entire experimental protocol are summarized in
Supplementary Table S6. The baseline values of each
treatment group were similar to one another (p > 0.05, for all
comparisons). In addition, none of the infusions altered TFL
values as recorded at 60 min of infusion, which was immediately
preceding injection of the 10 μg/kg dose of fentanyl (p > 0.05, for
all comparisons based on arithmetic changes). Nonetheless, the
arithmetic changes because of all the five treatments are
summarized in Supplementary Table S7. The changes in TFL
expressed as percent of maximum possible effect (%MPE) are
summarized in Figure 11. As seen in Figure 11A, the
antinociceptive effects of the 10, 25, and 50 μg/kg doses of
fentanyl recorded 15 min after injection were similar in all

groups that received fentanyl (i.e., all those except for Vehicle
1, which received injections of vehicle instead). As seen in
Figure 11B, the antinociceptive effects of the 10 and 25 μg/kg
doses of fentanyl recorded 30 min after injection were clearly less
than those recorded at 15 min for all groups except the group of
rats receiving infusion of L-CSNO. The antinociceptive effect of
the 50 μg/kg dose of fentanyl recorded 30 min after injection was
clearly similar to the effect recorded at 15 min for all groups,
except Vehicle 1 (Figure 11B). Therefore, it appears that the
antinociceptive actions of fentanyl were augmented by L-CSNO
at the lower doses of fentanyl, whereas they were not affected by
L-cysteine or D-CSNO at either the low or high doses of fentanyl.
As summarized in Figure 12, the bolus injection of NLXmi did
not affect TFL in rats that received an infusion of vehicle plus
three bolus injections of vehicle (Vehicle 1). In contrast, the
injection of NLXmi elicited a significant reduction in TFL in the
rats that received the injections of fentanyl, namely, the Vehicle 2
rats, L-CSNO rats, L-cysteine rats and D-CSNO rats, as recorded
15 and 30 min post-NLXmi injection. The decrease in TFL at
15 min was less in the L-CSNO rats than in the Vehicle 2,
L-cysteine or D-CSNO rats.

FIGURE 11 | Changes in tail-flick latencies 15 min (A) and 30 min (B) following injection of fentanyl (10, 25, and 50 μg/kg, IV) expressed asmaximal possible effect
(MPE, %). Vehicle 1 rats received an infusion of vehicle, three injections of vehicle and then an injection of NLXmi (2.5 mg/kg, IV) 30 min after the third injection of vehicle.
Vehicle 2 rats received an infusion of vehicle for 60 min before receiving injections of 10, 25, or 50 μg/kg doses of fentanyl given 30 min apart and then injection of vehicle,
30 min after injection of 50 μg/kg dose of fentanyl. The groups denoted as L-CSNO, L-cysteine or D-CSNO received infusions at 200 nmol/kg/min for 60 min
before receiving injections of 10, 25, or 50 μg/kg doses of fentanyl given 30 min apart and an injection of NLXmi (2.5 mg/kg, IV) 30 min after injection of 50 μg/kg dose of
fentanyl. The data are presented as mean ± SEM. There were 6 rats in each group. *p < 0.05, significant change from Pre values. †p < 0.05, L-CSNO versus Vehicle 2,
L-cysteine and D-CSNO.
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DISCUSSION

Pharmacological Effects of Fentanyl in Rats
Receiving an Infusion of Vehicle
This study demonstrates that consecutive injections of 10, 25, and
50 μg/kg doses of the synthetic opioid, fentanyl (Suzuki and El-
Haddad, 2017; Armenian et al., 2018), elicit pronounced biphasic
effects on fR, VT, and VE in unanesthetized male Sprague Dawley
rats receiving an infusion of vehicle. The first injection of fentanyl
(10 μg/kg) elicited a rapid short-lasting increase in fR that, after
return to pre-injection levels (i.e., frequency values before
injection of a 10 μg/kg dose fentanyl), began to rise steadily to
a plateau level that was 15% higher than the pre-injection levels.
This plateau took 15 min to occur. Subsequent injections of 25
and 50 μg/kg doses of fentanyl elicited a transient rise in fR
followed by a sustained decrease in fR below pre-injection
levels. The changes in VT elicited by fentanyl (10, 25, and
50 μg/kg) consisted of a pronounced initial decrease followed
by a period of recovery, with levels being close to pre-injection,
and then a gradual rise in VT of about 25% above pre-injection
levels, after 15 min. Due to similar changes in fR and VT, each
dose of fentanyl produced qualitatively similar changes in VE

consisting of rapid and large decreases followed by a recovery
period and then a rise to about 50% above pre-injection values.
While the ability of opioids, such as morphine, to depress
breathing and the mechanisms by which this occurs have been
extensively studied (Lalley, 2008; Pattinson, 2008; Dahan et al.,

2010; Pattinson and Wise, 2016; Baby et al., 2018; Dahan et al.,
2018; Bateman et al., 2021; Baby et al., 2021a; Baby et al., 2021b;
Ramirez et al., 2021), the sites/mechanisms of action by which
fentanyl exerts its cardiorespiratory and antinociceptive effects
are less well understood (Laubie et al., 1977; Fone and Wilson,
1986; Mayer et al., 1989; Yamakura et al., 1999; Lalley, 2003;
Maegawa and Tonussi, 2003; Griffioen et al., 2004; Mastronicola
et al., 2004; Nikolaishvili et al., 2004; Hajiha et al., 2009;
Tschirhart et al., 2019; Webster and Rauck, 2021; Ramos-
Matos et al., 2022). Mechanisms of action of fentanyl involve
activation of μ-ORs in brainstem nuclei controlling
cardiorespiratory and nociceptive functions (Laubie et al.,
1977; Fone and Wilson, 1986; Lalley, 2003; Griffioen et al.,
2004; Nikolaishvili, et al., 2004; Hajiha, et al., 2009; Webster
and Rauck, 2021; Ramos-Matos et al., 2022), and in peripheral
structures, including the carotid body (Mayer et al., 1989;
Henderson et al., 2014; Tschirhart et al., 2019; Ramos-Matos
et al., 2022).

Consistent with previous reports (Jenkins et al., 2021;
Seckler et al., 2022), each injection of fentanyl in vehicle-
infused rats elicited substantial, relatively short-lived increases
in occurrence of non-eupneic breaths, as demonstrated by the
increases in NEBI and NEBI/fR. Based on the known effects of
opioids on breathing patterns (Zutler and Holty, 2011;
Nagappa et al., 2017), it is likely that most non-eupneic
breathing consists of breath-holds (apneas) although other
events, such as type 1 and type 2 sighs, may have occurred.
There is conflicting data showing that fentanyl has a strong
potential for relief of dyspnea/refractory breathlessness in
humans (Simon et al., 2013; Campbell, 2017; Higgins et al.,
2020). Nonetheless, the ability of fentanyl to produce apneas is
well documented (Willette et al., 1987; Yeadon and Kitchen,
1990; Ren et al., 2009; Zhang et al., 2012a,b; Zhuang et al.,
2012; Haouzi et al., 2020; Saunders and Levitt, 2020) by
mechanisms including activation of μ-OR in 1) ventrolateral
medulla (Willette et al., 1987), 2) the Kölliker-Fuse/
parabrachial nucleus complex (Saunders and Levitt, 2020),
and 3) the NTS (Zhang et al., 2012a; Zhuang et al., 2012).
Additionally, there is evidence for μ-OR-mediated activation
of pulmonary C-fiber afferents (Zhang et al., 2012a; Zhang
et al., 2012b; Zhuang et al., 2012). Moreover, opioids depress
ventilatory responses to hypoxic, hypercapnic, and hypoxic-
hypercapnic challenges (Berkenbosch, et al., 1997; May et al.,
2013a; May et al., 2013b). Accordingly, the ability of fentanyl
to depress breathing, and perhaps to elicit non-eupneic
breathing, may also involve the suppression of ventilatory
adaptations that occur in response to elevations of arterial
blood concentrations of protons, and increases in blood CO2

and decreases in blood O2 (Henderson et al., 2014; Jenkins
et al., 2021). These actions of fentanyl may involve activation
of μ-ORs in the brainstem, since microinjections of μ-OR
agonists into sites in the caudal medullary raphe region
inhibit the ventilatory responses to hypercapnic challenges
(Zhang et al., 2007), whereas direct application of these
agonists in sites in the medullary raphe (Zhang et al., 2009)
or commissural NTS (Zhang et al., 2011) reduce ventilatory
responses to hypoxic challenges. The ability of the 10, 25, and

FIGURE 12 | Changes in tail-flick latencies 15 min (A) and 30 min (B)
following injection of naloxone methiodide (NLXmi, 2.5 mg/kg, IV) given
30 min after the injection of vehicle (Vehicle 1) or fentanyl (50 μg/kg, IV). The
group denoted Vehicle 1 received an infusion of vehicle, three injections
of vehicle and then NLXmi (2.5 mg/kg, IV) 30 min after the third injection of
vehicle. The group denoted Vehicle 2 received an infusion of vehicle for 60 min
before injection with 10, 25, or 50 μg/kg doses of fentanyl given 30 min apart
and then an injection of vehicle 30 min after injection of 50 μg/kg dose of
fentanyl. Infusion groups denoted as L-CSNO (S-nitroso-L-cysteine,
200 nmol/kg/min), L-cysteine (200 nmol/kg/min) or D-CSNO (S-nitroso-D-
cysteine, 200 nmol/kg/min) were infused for 60 min before receiving injections
of 10, 25, or 50 μg/kg doses of fentanyl given 30 min apart and then an
injection of NLXmi (2.5 mg/kg, IV) given 30 min after the injection of 50 μg/kg
dose of fentanyl. The data are presented as mean ± SEM. There were 6 rats in
each group. *p < 0.05, significant change from Pre values. †p < 0.05, L-CSNO
versus Vehicle 2, L-cysteine and D-CSNO.
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50 μg/kg doses of fentanyl in vehicle-infused rats to elicit an
increased TFL in unanesthetized rats is consistent with its
ability to produce antinociception in rats and other species
(Henderson et al., 2014), and to bring pain relief in animals
and humans (Hansen et al., 2012; Henderson et al., 2014;
Wiffen et al., 2017).

L-CSNO Markedly Diminishes the Negative
Effects of Fentanyl on Breathing
L-CSNO is an endogenous SNO (Myers et al., 1990; Bates et al., 1991;
Seckler et al., 2020) with an array of activities (Seth and Stamler, 2011;
Marozkina and Gaston, 2012; Stomberski et al., 2019; Marozkina and
Gaston, 2020), including modulation of ventilatory control systems
(Lipton et al., 2001; Gaston et al., 2006; Gaston et al., 2014; Gaston
et al., 2020). The infusion concentrations of L-CSNO (100 and
200 nmol/kg/min) were designed to minimally affect baseline
ventilatory parameters to see whether cell-signaling events triggered
by L-CSNO prevent fentanyl depression of breathing independently
of direct effects of L-CSNO on ventilatory control processes that
manifest in changes in baseline ventilation. Our preliminary data
found that infusions of SNO-L-CYS at 250 nmol/kg/min elevated VE

to plateau levels of +48 ± 6% of baseline values (n = 6 rats, p < 0.05),
which is consistent with our recent evidence that systemic
administration of SNO-L-CYS increases VE (Gaston et al., 2020)
via mechanisms including activation of carotid body chemoafferents
(Gaston et al., 2020). This increase in baseline VE would have
complicated our interpretation of alterations in the efficacy of
fentanyl, and so we used lower concentrations of L-CSNO in the
hope that despite minimally changes in baseline values, these
concentrations would be efficacious against fentanyl. A key finding
was that the ventilatory depressant effects and increases in non-
eupneic breathing elicited by fentanyl were markedly reduced in rats
receiving L-CSNO at 100 and 200 nmol/kg/min, whereas they were
not reduced by 200 nmol/kg/min infusions of D-CSNO, or the parent
thiol, L-cysteine. The efficacy of the 100 nmol/kg/min infusion of
L-CSNO is noteworthy since this infusion did not alter baseline fR, VT

or VE. It appears that this low concentration of L-CSNO prevented
OR-mediated signaling processes independent of baseline changes in
ventilation that this SNO can exert.

Our finding that the antinociceptive actions of fentanyl were
augmented in rats receiving L-CSNO, taken together with
knowledge that SNOs do not directly interact with μ-ORs
(Kokkola et al., 2005), support the possibility that L-CSNO does
not block ORs, but that it modulates mechanisms and signaling
pathways that mediate the respiratory depressant and antinociceptive
actions of opioids (Imam et al., 2018; Stein, 2018; Birdsong and
Williams, 2020). Processes by which L-CSNOdifferentiallymodulates
respiratory depressant and antinociceptive actions of fentanyl are not
understood, although the inability of L-cysteine or D-CSNO to exert
similar effects suggests that the SNO moiety is essential for activity,
and its activity relies upon its stereoselective configuration. L-CSNO
stereoselectivity in cardiorespiratory systems has been heavily
described (Davisson et al., 1996a; Lewis et al., 1996; Davisson
et al., 1997a; Ohta et al., 1997; Hoque et al., 1999; Hoque et al.,
2000; Lipton et al., 2001; Lewis et al., 2005a; Lewis et al., 2005b, Lewis
et al., 2006a; Gaston et al., 2020) and these activities may involve

interactions with membrane-bound proteins, including T-type Ca2+-
channels (Joksovic et al., 2007), glutamate (N-methyl-D-aspartate)
ion-channel receptors (Travis and Lewis, 2000), and voltage-gated
Kv1.1-channels (Gaston et al., 2020). Although stereoselectivity has not
been established, L-CSNO activity may involve interactions with
Ca2+-activated K+-channels (Bolotina et al., 1994; George and
Shibata, 1995; Forrester et al., 2009; Foster et al., 2009; Lima et al.,
2010) and Kv1.2- and Kv1.3-channels (Garcia et al., 1995).
Stereoselectivity of effects of L-CSNO may involve its ability to
enter cells via L-amino acid transporter (L-AT) systems, which do
not transport D-CSNO (Nemoto et al., 2003; Li andWhorton, 2007).
Intracellular entry of L-CSNO via L-AT would allow it to modulate
the activities/functions of signaling pathways (Matsumoto et al., 2003;
Burwell et al., 2006; Whalen et al., 2007; Forrester et al., 2009;
Broniowska and Hogg, 2010; Iwakiri, 2011; Seth and Stamler,
2011; Piantadosi, 2012; Dejanovic and Schwarz, 2014; Tarasenko,
2015; Lin et al., 2018).

We have reported that NADPH diaphorase histochemistry
visualizes S-nitrosylated proteins in peripheral and central
structures (Seckler et al., 2020). The finding that morphine
administration results in a marked decrease in NADPH
diaphorase staining in the brain (Dyuizen et al., 2001; Diuĭzen,
et al., 2003; Dyuizen et al., 2004) suggests that opioids may
promote the use and/or denitrosylation of S-nitrosylated
proteins in the brain, and by analogy in peripheral structures
that express NADPH diaphorase staining, such as the carotid
body-carotid sinus nerve terminal complex (Atanasova et al.,
2020). Establishing higher levels of S-nitrosylated proteins may
countermand the ability of opioids to reduce the S-nitrosylation
status of cells and this might be an important factor in how
L-CSNO infusion diminishes the ability of fentanyl to
deleteriously affect breathing. Enhancement of endogenous
S-nitrosylation status, by L-CSNO infusion, may enhance the
antinociceptive effects of the opioid acting at pain
modulation sites.

L-CSNO prevents down regulation/desensitization of
G-protein-coupled β-adrenoceptors (Whalen et al., 2000;
Whalen et al., 2006), pituitary adenylate-cyclase-activating
polypeptide (PACAP) (Whalen et al., 1999), and ligand-
gated 5-HT3 ion-channel receptors (Owen et al., 2005) by
mechanisms that are independent of the NO-cGMP-protein
kinase G signaling pathway. β-adrenoceptors are linked
mainly to Gs proteins and to a lesser degree, Gi proteins
(Frielle et al., 1989; Rubenstein et al., 1991; Rockman et al.,
2002; Mori et al., 2020), whereas PACAP receptors are linked
mainly to Gs, but also to Gq and Gi/Go proteins (Van
Rampelbergh et al., 1997; Martin et al., 2005). μ-, δ-, and κ-
ORs couple to Gi/o-proteins (Roerig et al., 1992; Laugwitz
et al., 1993; Prather et al., 1995; Law et al., 2000) with signaling
effects including, inhibition of adenylate cyclase (Sharma et al.,
1977; Law et al., 2000), inhibition of Ca2+ channels (Hescheler
et al., 1987), activation of 1) G protein-coupled inwardly-
rectifying K+ channels (North et al., 1987; Henry et al., 1995),
and 2) mitogen-activated protein kinase (Fukuda et al., 1996),
and stimulation of phospholipase C (Spencer et al., 1997).
S-nitrosylation signaling events triggered by L-CSNO directly
modulate activities of signaling proteins (George and Shibata,
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1995; Gaston et al., 2003; Gonzalez et al., 2009; Lima et al.,
2010; Kayki-Mutlu and Koch, 2021). We are examining the
literature about S-nitrosylation targets for L-CSNO
(Matsumoto et al., 2003; Burwell et al., 2006; Forrester
et al., 2009; Foster et al., 2009; Lima et al., 2010; Numajiri
et al., 2011; Seth and Stamler, 2011; Haldar and Stamler, 2013;
Shao et al., 2016; Stomberski et al., 2019) to design studies to
better understand molecular mechanisms by which L-CSNO
affects the actions of fentanyl.

L-CSNO Augments Fentanyl-Induced
Antinociception
SNOs modulate G protein-coupled receptor signaling in a
receptor-specific and reversible manner (Whalen et al., 1999;
Whalen et al., 2007; Kokkola et al., 2005; Nozik-Grayck et al.,
2006), whereas neither L-CSNO nor S-nitroso-L-glutathione
directly interact with μ-ORs (Kokkola et al., 2005). As such,
the ability of L-CSNO infusion to augment the duration of
fentanyl-induced analgesia (particularly evident for the 10 and
25 μg/kg doses) may involve modulation of the signaling
pathways controlling pain perception that are activated by
fentanyl (Hansen et al., 2012; Henderson et al., 2014; Wiffen
et al., 2017). The mechanisms by which L-CSNO infusion
promotes fentanyl analgesia may involve the release NO
because of evidence that peripheral antinociceptive actions of
fentanyl are mediated via the NO/cyclic-GMP/protein kinase G
pathway (Maegawa and Tonussi, 2003), and that opioids, such as
morphine, induce pain relief via the NO/cyclic-GMP/protein
kinase G pathway (Ferreira et al., 1991; Leánez et al., 2009;
Cunha et al., 2010; Cury et al., 2011; Gomes et al., 2020).
There is also substantial evidence that NO is a cGMP/protein
kinase G-dependent pronociceptive agent that drives nociceptive
hyper-sensitivity (Tegeder et al., 2011), and that NOS inhibitors
reduce nociceptive behaviors (Hao and Xu, 1996; Aley et al., 1998;
Levy and Zochodne, 1998; Chen and Levine, 1999). The ability of
L-CSNO to augment fentanyl antinociception may involve
L-CSNO activation and/or S-nitrosylation of functional
proteins. S-nitrosylation of nociceptive signaling proteins
include 1) transient receptor potential channels, 2) voltage-
gated channels, 3) G-protein-coupled receptors, 4) glutamate
receptors, 5) redoxins, and 6) pro-inflammatory enzymes
(Tegeder et al., 2011). S-nitrosylation of these proteins requires
a permissive redox state of sulfur atoms, and includes changes of
ion channel gating properties, modulation of membrane fusion
and fission processes that regulate insertion/removal of receptors/
ion-channels into plasma membranes, and alteration of protein
ubiquitination status and protein degradation. The roles of NO
and SNO-dependent signaling events in the ability of L-CSNO to
augment fentanyl-induced antinociception awaits further study.

Novel Effects of NLXmi in Fentanyl-Treated
Rats
The novel finding that NLXmi elicited a pronounced increase in
fR, whereas it decreased VT in vehicle-infused rats that received

injections of fentanyl (10, 25, and 50 μg/kg), but not injections of
vehicle, raises important questions. First, injections of fentanyl
elicited excitatory and inhibitory effects on breathing via
peripheral and/or central pathways that sub-serve the
opposing actions of fentanyl. While the adverse effects of
opioids on breathing have been extensively characterized
(Dahan et al., 2010; Dahan et al., 2018; Gaston et al., 2020),
there is also evidence that lower doses of opioids, including
fentanyl, morphine, methadone, dermorphin, and other μ- and
δ-OR agonists, stimulate ventilation (Metcalfe et al., 1980; Hassen
et al., 1982; Haddad et al., 1984; Hurle et al., 1985; Schaeffer and
Haddad, 1985; Szeto et al., 1988; Paakkari et al., 1990; Szeto et al.,
1991; Paakkari et al., 1993; Henderson et al., 2013; Henderson
et al., 2014). Respiratory stimulation occurred upon many sites/
methods of administration (Metcalfe et al., 1980; Paakkari et al.,
1993; Henderson et al., 2013; Henderson et al., 2014), including
NTS (Hassen et al., 1982), ventral medullary and dorsal pontine
surfaces (Hurle et al., 1985), lateral ventricles (Paakkari et al.,
1990; Paakkari et al., 1993) and fourth ventricle (Haddad et al.,
1984; Schaeffer and Haddad, 1985) of the brain, and fetal inferior
vena cava (Szeto et al., 1988; Szeto et al., 1991).

NLXmi increased fR in fentanyl-injected rats at 30 min post-
fentanyl 50 μg/kg injection when resting fR was back to baseline.
An explanation for the effects of NLXmi in fentanyl-treated rats is
that repeated injections of fentanyl activate opposing pathways,
one that promotes and one that depresses breathing, and that
these opposing drives result in a normal fR. The inhibitory
pathway that controls fR may involve NLXmi-sensitive
peripheral OR signaling processes, and the effects of this
excitatory pathway expressed after injection of NLXmi on fR
may be due to non-OR-driven pathways in the periphery and/or
to central OR and/or non-OR-driven systems. In contrast to fR,
VT was elevated at the time NLXmi was given to fentanyl-injected
rats receiving vehicle infusion. The decrease in VT elicited by
NLXmi suggests that tonically active peripheral OR-driven
systems were involved in the increases in VT after injections of
fentanyl. It is difficult to speculate on peripheral mechanisms
involved in responses to NLXmi, but differential effects occur via
OR signaling cascades in structures without blood-brain barriers,
including the area postrema (Guan et al., 1999), anteroventral
region of the third ventricle (Feuerstein et al., 1985), subfornical
organ (Atwah and Kuhar, 1977), and carotid bodies (McQueen
and Ribeiro, 1980; Zimpfer et al., 1983; Kirby and McQueen,
1986; Mayer et al., 1989; Sarton et al., 1999), noting that sex
differences in morphine-induced ventilatory depression reside in
peripheral chemoreflex loops (Sarton et al., 1999). Despite the
effects of L-CSNO on immediate changes in fR, VT, and VE

elicited by fentanyl, the ventilatory responses elicited by NLXmi
in rats receiving L-CSNO infusion were similar to those in
vehicle-infused rats. Whatever mechanisms are involved in
recruiting fentanyl-induced tonically active excitatory/
inhibitory ventilatory control pathways, they may not be
subject to control by L-CSNO or downstream events,
including S-nitrosylation (Lipton, et al., 1993; Matsumoto
et al., 2003; Forrester, et al., 2009). Despite a robust increase
in fR, NLXmi elicited minor changes in NEBI and NEBI/fR in
fentanyl-injected rats receiving vehicle or L-CSNO. As such,
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fentanyl did not initiate NLXmi-sensitive control processes that
perturb eupneic breathing.

STUDY LIMITATIONS

The main finding that continuous infusion of L-CSNO in
unanesthetized adult male Sprague Dawley rats diminishes the
detrimental effects fentanyl has on breathing should be confirmed
in female rats. There is amajor gap in understanding of sex differences
in 1) ventilatory control processes and the roles of SNOs in these
processes (Palmer et al., 2013a; Getsy et al., 2021), 2) S-nitrosylation
events (Brown-Steinke et al., 2010; Shao et al., 2016; Casin and Kohr,
2020), and 3) ventilatory responses to opioids in naïve rats or those
subjected to interventions such as, inhibition of NOS (Dahan et al.,
1998; Sarton et al., 1999; Hosseini et al., 2011; Gaulden et al., 2021). A
more circumspect set of studies in which a single higher dose of
fentanyl (e.g., 75 μg/kg) is injected into rats receiving an infusion of
L-CSNO may provide more straight-forward results to allow
additional interventions (e.g., injection of enzyme inhibitors) aimed
at elucidatingmechanisms by which L-CSNOhas profound effects on
the ability of fentanyl to deleteriously affect breathing and NEBI.
Studies using centrally active μ-OR antagonists (Dahan et al., 2010) or
δ-OR antagonists (Young et al., 2013) will help to define the roles of
peripheral and central OR systems associated with the effects of
NLXmi in fentanyl-injected rats. Moreover, it would seem essential to
establish the potency and efficacy of L-CSNO in dose-response studies
to see whether even lower infusion concentrations of L-CSNO will be
efficacious against fentanyl. As mentioned above, a limitation of this
study is the lack of understanding of molecular mechanisms by which
L-CSNO modulates the ventilatory and antinociceptive actions of
fentanyl. Therefore, we are currently determining whether systemic
injections of fentanyl generate SNOs in central or peripheral structures
in rats using capacitative sensor technology (Seckler et al., 2017), and
whether infusions of fentanyl change the S-nitrosylation status of
central/peripheral structures by NADPH diaphorase histochemistry,
which visualizes S-nitrosylated proteins (Seckler et al., 2020).

CONCLUSION

This study reports that the deleterious effects of fentanyl on fR,
VT, VE, and ventilatory, stability, as defined by the increase in
NEBI, were diminished in unanesthetized rats receiving a
continuous intravenous infusion of L-CSNO, but not in those
receiving continuous intravenous infusion of L-cysteine or
D-CSNO. Additionally, the antinociceptive actions of fentanyl
were augmented by L-CSNO, but not L-cysteine or D-CSNO. As
such, we conclude that the ability of L-CSNO to exert these
therapeutically relevant responses against the detrimental effects
of fentanyl may involve the activation of stereoselective signal
transduction processes, which may include the activation of
membrane signaling proteins (Travis and Lewis, 2000; Joksovic
et al., 2007; Gaston et al., 2020) and/or intracellular entry via the
L-amino acid transporter (Li et al., 2000; Nemoto et al., 2003; Li
andWhorton, 2007), which allows for modulation of intracellular

signaling pathways. Taking into consideration the findings that
the peripherally-restricted μ-OR antagonist, NLXmi,
substantially reduces ventilatory and antinociceptive responses
elicited by fentanyl (Henderson et al., 2014), we conclude that
L-CSNOmodulation of the effects of fentanyl involve interactions
with both peripheral and central μ-OR signaling pathways.
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