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ABSTRACT
Brain-gut microbiota interactions are intensively studied in connection with various neurological 
and psychiatric diseases. While anorexia nervosa (AN) pathophysiology is not entirely clear, it is 
presumably linked to microbiome dysbiosis. We aimed to elucidate the gut microbiota contribution 
in AN disease pathophysiology. We analyzed the composition and diversity of the gut microbiome 
of patients with AN (bacteriome and mycobiome) from stool samples before and after renourish-
ment, and compared them to healthy controls. Further, levels of assorted neurotransmitters and 
short-chain fatty acids (SCFA) were analyzed in stool samples by MS and NMR, respectively. 
Biochemical, anthropometric, and psychometric profiles were assessed. The bacterial alpha- 
diversity parameter analyses revealed only increased Chao 1 index in patients with AN before the 
realimentation, reflecting their interindividual variation. Subsequently, core microbiota depletion 
signs were observed in patients with AN. Overrepresented OTUs (operation taxonomic units) in 
patients with AN taxonomically belonged to Alistipes, Clostridiales, Christensenellaceae, and 
Ruminococcaceae. Underrepresented OTUs in patients with AN were Faecalibacterium, 
Agathobacter, Bacteroides, Blautia, and Lachnospira. Patients exhibited greater interindividual varia-
tion in the gut bacteriome, as well as in metagenome content compared to controls, suggesting 
altered bacteriome functions. Patients had decreased levels of serotonin, GABA, dopamine, buty-
rate, and acetate in their stool samples compared to controls. Mycobiome analysis did not reveal 
significant differences in alpha diversity and fungal profile composition between patients with AN 
and healthy controls, nor any correlation of the fungal composition with the bacterial profile. Our 
results show the changed profile of the gut microbiome and its metabolites in patients with severe 
AN. Although therapeutic partial renourishment led to increased body mass index and improved 
psychometric parameters, SCFA, and neurotransmitter profiles, as well as microbial community 
compositions, did not change substantially during the hospitalization period, which can be poten-
tially caused by only partial weight recovery.
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Introduction

Anorexia nervosa (AN) is a complex eating disor-
der characterized by self-starvation, excessive 
weight loss, modified body self-perception, and an 
intense fear of gaining weight. This severe psychia-
tric illness is one of the most common chronic 
diseases with onset in female adolescence, usually 
gradually associated with various medical and psy-
chiatric comorbidities. AN has the greatest 

mortality rates of any psychiatric disorder in 
young females. According to the criteria of the 
Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5), patients with AN can be clas-
sified as restrictive or binge-eating/purging sub-
types. While the restrictive subtype is 
characterized by starvation and frequent physical 
hyperactivity, the binge-eating/purging subtype is 
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defined by self-induced vomiting and misusing 
laxatives, diuretics, or enemas.1

The study of the human microbiome, including 
bacteria, archaea, fungi, viruses, and protozoa, in 
physiology regulation in both health and disease is 
recently widely extending. Many diseases, ranging 
from autoimmune, neurodegenerative, or even 
cancers, are linked to microbiome imbalance, called 
dysbiosis.2 Microbiome dysbiosis is characterized 
by either expansion of pathobionts, loss of com-
mensals, loss of microbial diversity, or their 
combinations.3 The main focus is dedicated to the 
bacterial microbiome portion. About 1,000 bacter-
ial species colonize the human gut, and two-thirds 
of them are unique to each individual.4 Non- 
negligible constituents of human microbiota are 
fungi, representing the so-called mycobiome. 
Fungi represent only 0.001–0.1% of genes found 
in gut microbiome stool samples, and their diver-
sity is much lesser compared to bacteria. Further, 
the mycobiome exerts great inter- and intra- 
individual variability, and there is no consensus 
on the normal balanced fungal community 
composition.5 Microbiota composition and its 
associated metabolites can be influenced by many 
factors such as diet, hygiene, geographical location, 
host genotype, age, medicaments, etc.6 Diet and 
starvation as well as anxiety and stress, which are 
often associated with AN disorder, can alter the 
patient’s microbiome.7

Currently, there are a few studies on the gut 
microbiota in patients with AN; all performed on 
stool samples. The outcomes of these studies are 
diverse and deviations in abundance, diversity, and 
microbial composition were found. The number of 
patients with AN in cross-sectional studies was 
mostly few, between 9 and 25.8–12 Two longitudinal 
studies included 16 and 55 patients.7,13 Lesser alpha 
diversity at least in one analyzed index, reflecting 
the variance within a particular sample compared 
to controls, was described in four studies;7,12,14,15 in 
two other studies, no difference in diversity was 
found.11,13 Concerning specific changes in micro-
biota composition, there are some indications of 
different signatures associated with AN. One 
potentially relevant species is the archaeon 
Methanobrevibacter smithii, which abundance was 
increased in several AN studies.8,10,11,13 Conversely, 
decreased species abundance from the phylum 

Firmicutes, e.g. Roseburia, Clostridium, 
Anaerostipes, and Faecalibacterium, was reported 
as a significant feature of patients with AN.7,11,13,14

The central nervous system (CNS) and the intes-
tine are closely connected. The gut and the host 
brain bidirectionally communicate, and thus repre-
sent the so-called gut-brain axis. CNS modulation 
by the microbiome occurs primarily through neu-
roimmune and neuroendocrine mechanisms. This 
communication is mostly mediated by gut micro-
bial metabolites, including short-chain fatty acids 
(SCFAs), bile acids, tryptophan metabolites, and 
various neurotransmitters and hormones.16,17 

Specifically, microbes were shown to synthesize 
dopamine, serotonin, norepinephrine, and gamma- 
aminobutyric acid (GABA).16 SCFAs are generated 
by microbial fermentation of non-digestible colon 
polysaccharides. The majority of gut microbial- 
derived SCFAs represent acetate, propionate, and 
butyrate.18 Produced microbial metabolites may 
enter systemic circulation, cross the blood-brain 
barrier, affect brain structures, and thus modify 
various cognitive functions.19,20

We tested the hypothesis that gut microbiota and 
its metabolites in patients with AN differ from 
healthy controls. We aimed to identify hallmarks 
of AN microbiota, to assess their changes during 
realimentation, to determine the levels of assorted 
neurohormones and SCFAs at hospitalization 
admission and discharge, and to identify potential 
correlations with various biochemical as well as 
anthropometric and psychometric parameters. 
While previous intestinal microbiota studies 
mainly focused on bacterial species, other micro-
biota members, e.g. fungi, archaea, viruses, and 
protozoa, are also relevant in microbiome analysis. 
In this study, fungal community composition was 
also assessed. Overall, this study represents 
a detailed longitudinal study of 52 patients 
with AN.

Results

Parameters of healthy women and patients with AN 
prior to (AN1) and after hospitalization (AN2)

The basic parameters of all studied groups (control, 
AN1, AN2) are summarized (Table 1). Patients 
with AN (AN1) differed from healthy women 
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significantly in body mass index (BMI), body fat 
percentage, and waistline and hipline circumfer-
ence. Further, they had significantly decreased 
levels of total protein, alpha 1 globulin, beta globu-
lin, gamma globulin, IgG, IgM, cholinesterase, and 
fT4. Conversely, they exhibited increased levels of 
albumin percentage (not albumin concentration) 
and IL-17 (Table 1). The alteration of these bio-
chemical blood parameters is related to malnutri-
tion and protein deficiency from food.

Patient renourishment during hospitalization led 
to increased BMI, body fat percentage, waist and 
hip circumference, alpha 2 and beta globulin and 
cholinesterase levels, which were observed at their 
discharge (∆ values), whereas albumin and IgA 
levels were decreased (Table 1). However, some 
patients’ values at their discharge did not reach 
control values, suggesting that patients with AN 
were not fully recovered.

Eating disorder examination-questionnaire (EDE-Q)

The mean EDE-Q global and subscale scores of 
patients with AN and their changes during treat-
ment are shown in Table 2. All EDE-Q concern 
values considerably decreased after treatment, indi-
cating eating disorder psychopathology improve-
ment (Table 2). All four categories, as well as 
a total score, correlate with each other having the 
greatest levels in total score (Table S1).

Body mass index (BMI)

At patients’ admission, lesser levels of total pro-
tein, alpha 1 globulin, beta globulin, gamma 

globulin, IgG, and cholinesterase correlated 
with BMI values (data not shown). Orthogonal 
projections to latent structures (OPLS) analysis 
indicated that the increase in BMI during reali-
mentation correlated positively with hospitaliza-
tion length and negatively with adulthood stress. 
Further, the BMI increase correlated with the 
decrease in Eating Disorder Examination 
Questionnaire (EDE-Q) components, fT4 levels, 
and AN severity, and with an increase in gamma 
globulin and IgM levels. The multiple regression 
(MR) model of the same data revealed that some 
parameters did not reach significance; thus, they 
are not independent and they are intercorrelated 
with other explaining variables (Table 3). The 
variables in the OPLS model and MR analysis 
explained 80.2% (69.3% after cross-validation) of 
the variability in the BMI changes.

BMI change in patients with AN depends on 
many parameters, and it can be to a certain 
extent predicted. Prediction analysis (OPLS) 
revealed that reduced BMI, body fat percentage, 
smaller hipline, adulthood stress, and basic edu-
cation worsen the conditions for BMI increase 
(Table 4). MR analysis showed a similar signifi-
cance pattern; only the hipline value seems to be 
dependent on other predictors (Table 4). It is 
likely that lesser BMI, body fat percentage, and 
hipline predict greater BMI increase due to the 
greater distance to normal values. The predictors 
in the OPLS model and MR analysis explained 
53.5% (44.4% after cross-validation) of the varia-
bility in the BMI changes.

Outcome predictors

Prediction analysis (OPLS) revealed that shorter 
hospitalization duration, longer illness duration, 
lesser BMI, lesser total protein and albumin con-
centrations, adulthood stress, comorbid somatic 
diagnosis associated with antidepressant and 
other medication, and disability pension result 
in worse patient outcome (Table 5). But OPLS 
analysis did not find the significance of kynur-
enine, acetate (described in the subsequent 
metabolite section), and IgE levels. The OPLS 
model and MR analysis predictors explained 
46.4% (35.7% after cross-validation) of the out-
come variability. The associations between the 

Table 2. Initial and final EDE-Q scores and their changes.
Variable AN1 AN2 ∆ p-value

EDE-Q restraint 
concern

2.4 (0.9, 
4.3)

0.4 (0.05, 
0.8)

−1.8 (−3.6, 
−0.6)

�0.001 ***

EDE-Q eating 
concern

3 (1.6, 4) 1 (0.4, 1.4) −1.6 (−2.5, 
−0.5)

�0.001 ***

EDE-Q shape 
concern

3.88 (2.88, 
5.13)

2.88 (2.03, 
4.22)

−0.625 (−1.88, 
0.125)

�0.001 ***

EDE- Q weight 
concern

3.4 (2.2, 
4.8)

1.8 (1, 3) −1 (−2, −0.2) �0.001 ***

EDE-Q total 
score

3 (1.95, 
4.46)

1.37 (0.988, 
2.63)

−1.21 (−2.32, 
−0.563)

�0.001 ***

∆ represents the absolute change calculated as the value after intervention – 
basal value. The p-value was determined by Wilcoxon’s robust paired test; 
AN1 – patients with anorexia nervosa before treatment, AN2 – patients 
with anorexia nervosa after treatment, nAN1 = 59, nAN2 = 52. 
Standardized Cronbach’s alpha coefficient was = 0.95 for EDE-Q scores 
and 0.91 for EDE-Q score changes.
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negative outcome as an explained variable and 
various parameters analyzed by OPLS and multi-
ple regression revealed similar results. The OPLS 
model and MR analysis predictors explained 
53.9% (47.9% after cross-validation) of the out-
come variability (Table S2).

Gut bacteriome
DNA isolation processing quality as well as ampli-
con libraries preparation workflow were demon-
strated by microbial community standards 
sequencing (Table S3). The relative bacterial abun-
dance approximately corresponded to the original 

Table 3. Relationships between ∆BMI and relevant parameters as evaluated by the OPLS model and multiple regression analyses.
OPLS Multiple regression

Variable Component loading t-statistics Ra Regression coefficient t-statistics

Relevant predictors 
(matrix X)

∆EDE-Q eating concern −0.297 −3.04 −0.469 ** −0.089 −1.73
∆EDE-Q weight concern −0.23 −2.41 −0.364 * 0.023 0.3
Hospitalization (days) 0.525 13.79 0.83 ** 0.372 3.83 **
Adulthood stress −0.285 −8.05 −0.451 ** −0.131 −1.89
∆Gamma globulin (%) 0.257 1.97 0.406 * 0.078 1.25
∆Gamma globulin (g/l) 0.241 2.26 0.381 * 0.088 1.63
∆IgM (g/l) 0.226 2.66 0.357 * 0.15 2.43 *
∆fT4 (pmol/l) −0.217 −2.53 −0.343 * −0.167 −2.09 *
∆AN DSM mild 0.315 2.88 0.498 * 0.289 2.78 *
∆AN DSM extreme −0.324 −4.74 −0.513 ** −0.225 −3.9 **

(matrix Y) ∆BMI (kg/m2) 1 20.95 0.896 **
Explained variability 80.2% (69.3% after cross-validation)

aR Component loadings expressed as correlation coefficients with predictive component, *p < 0.05, **p < 0.01; fT4 – free thyroxine

Table 4. Prediction of ∆BMI and predictors as evaluated by the OPLS model and MR.
OPLS Multiple regression

Variable Component loading t-statistics Ra Regression coefficient t-statistics

Relevant predictors (matrix X) BMI (kg/m2) −0.365 −4.354 −0.471 ** −0.237 −3.45 **
Body Fat (%) −0.291 −3.54 −0.378 ** −0.184 −4.44 **
Hip (cm) −0.323 −2.79 −0.419 * −0.124 −1
Adulthood stress −0.501 −6.03 −0.659 ** −0.202 −2.29 *
Basic education −0.432 −3.19 −0.54 ** −0.428 −4.71 **

(matrix Y) ∆BMI (kg/m2) 1 9.77 0.732 **
Explained variability 53.5% (44.4% after a cross-validation)

aR Component loadings expressed as correlation coefficients with predictive component, *p < 0.05, **p < 0.01

Table 5. Prediction of patients’ outcome and predictors as evaluated by the OPLS model and MR.
Predictive component Multiple regression

Variable Component loading t-statistics Ra Regression coefficient t-statistics

Relevant predictors (matrix X) Hospitalization duration (days) −0.185 −1.90 −0.328 * −0.114 −2.60 *
Disease duration (months) 0.338 7.94 0.596 ** 0.110 3.41 **
BMI (kg/m2) −0.167 −2.54 −0.294 * −0.055 −2.53 *
Total protein (g/l) −0.209 −4.22 −0.369 ** −0.069 −1.62
Albumin (g/l) −0.207 −3.13 −0.367 ** −0.075 −2.13 *
IgE (IU/ml) −0.003 −0.05 −0.007 −0.058 −2.25 *
Kynurenine (PQN) −0.146 −1.27 −0.253 −0.093 −2.93 *
Acetate (PQN) 0.171 1.81 0.290 0.065 2.74 *
Adulthood stress 0.252 2.77 0.447 * 0.110 2.60 *
No somatic diagnosis −0.373 −7.64 −0.657 ** −0.119 −2.60 *
Disability pension 0.395 5.64 0.698 ** 0.146 2.95 *
University education −0.061 −0.97 −0.107 −0.063 −2.57 *
Second education −0.135 −2.29 −0.238 * −0.054 −3.81 **
Basic education −0.011 −0.27 −0.020 −0.039 −1.94 *
No medication −0.382 −5.93 −0.673 ** −0.100 −4.31 **
Antidepressants 0.261 3.65 0.461 ** 0.096 2.04 *
Other medication 0.429 8.93 0.758 ** 0.137 3.81 **

(matrix Y) Negative outcome, LRRb 1.000 6.73 0.681 **
Explained variability 46.4% (35.7% after cross-validation)

aR Component loadings expressed as correlation coefficients with predictive component, *p < 0.05, **p < 0.01 
bLRR Logarithm of likelihood ratio (logarithm of the ratio of the probability that the patient’s psychopathology improved to the probability that not); PQN– 

probabilistic quotient normalization
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standards composition except for Pseudomonas 
aeruginosa abundance, which was present in the 
analyzed sample in a greater proportion than 
expected, particularly in a microbial community 
with log distribution of bacterial species. 
However, the standards provide only theoretical 
composition calculated from theoretical genomic 
DNA composition, taking into account the genome 
size and 16S copy number.

The bacterial dataset comprised 997 operation 
taxonomic units (OTUs; including six archaeal 
OTUs) represented by 5,649,978 high-quality 
sequences with average sequencing depth per sam-
ple corresponding to 32,849 reads (range: 
6723–117,647). Both observed OTUs number and 
estimated Chao 1-based total OTU richness varied 
between the studied groups (control, AN1, AN2; 
LMM: Δ d.f. = 2, χ2 = 7.0287, p = 0.02977; Δ d.f. = 2, 
χ2 = 7.8437, p = 0.0198, respectively). According to 
Tukey post-hoc testing, the Chao 1 index was 
increased in AN1 compared to controls 
(p = 0.0384), and compared to AN2 (p = 0.0482). 
The same marginally nonsignificant trend was 
observed if analyzing observed OTU richness 
(Tukey post-hoc tests: p = 0.0588 for AN1 vs. con-
trol groups and p = 0.0596 for AN1 vs. AN2). 
However, there was no significant difference in 
observed Shannon diversity between the studied 
groups (LMM: Δ d.f. = 2, χ2 = 3.1526, p = 0.2067, 
Figure 1).

Bacterial profiles of the three studied groups 
exhibited comparable representation of dominating 
bacterial classes (Figure 2). Similarly, we did not 
observe any pronounced differences in average pro-
portions of bacterial genera between the three 
groups (Fig. S1).

According to betadisper analysis, the control 
group exhibited reduced interindividual gut bac-
teriome variation compared to both patient 
groups, whereas the interindividual variation of 
AN1 did not differ from AN2 (Table 6). 
Furthermore, pair-wise PERMANOVA analyses 
suggested systematic differences in gut bacter-
iome composition between control samples and 
both patient groups, but not between AN1 and 
AN2 (Table 6 and Figure 3). However, interin-
dividual variation and bacterial composition 
changed partially during the therapy as can be 
seen from pair-wise comparison values (Table 

6). Overall, the microbiome of patients with 
AN after weight gain more resembles the micro-
biome of patients with AN before renourishment 
than that of healthy controls.

It is generally assumed that indispensable 
microbiome functions are facilitated by so-called 
‘core microbiota’ (a set of highly prevalent 
bacteria21), and that depletion of these keystone 
species may disturb ecosystem services provided 
by microbiota to the host. Here we observed core 
microbiota depletion signs in AN1 and AN2, 
which was putatively driven by increased inter-
individual variation in AN1 and AN2. 
Specifically, there were 21 core bacterial OTUs 
shared among >90% of control individuals, but 
only 14 OTUs in the case of AN2 and 9 OTUs in 
AN1. Moreover, these core bacteria (22 unique 
OTUs in total) represented on average 45% of all 
reads in control microbiota profiles, but only 40% 
and 36% in the case of AN2 and AN1, respec-
tively (ANOVA: F(2,169) = 7.041, p = 0.00116, 
Figure 4).

DESeq2 analyses identified 11 OTUs that were 
overrepresented (taxonomically belonged to 
Alistipes, Clostridiales, Christensenellaceae, and 
Ruminococcaceae) and eight that were underrepre-
sented (Faecalibacterium, Agathobacter, 
Bacteroides, Blautia, and Lachnospira) in AN1 
compared to control samples (Figure 5). 
Simultaneously, only a single OTU (Megapshaera) 
exhibited a significant abundance increase, and no 
OTU exhibited a significant abundance decrease in 
AN1 compared to AN2. Interestingly, 
Methanobrevibacter smithii abundance that was 
based on previous reports increased in anorectic 
patients,8,10,11,13 exhibited approximately twice 
greater abundance in AN1 (average relative abun-
dance = 0.0042) and AN2 (0.0036) compared to the 
control group (0.0017). However, this difference 
was not supported by DESeq2 analyses 
(p = 0.3433, adjusted p = 0.6616). Taxonomic fea-
tures detected by DESeq2 pertaining to bacterial 
genera abundances (or greater taxonomic ranks) 
exhibited great consistency with OTU-level results 
(Fig. S2). Nevertheless, there were a subset of OTUs 
not recovered by genus-level analyses (e.g. 
Anaeroplasma, Dorea, Anaerotruncus, and 
Hydrogenobacterium) and vice versa (e.g. Alistipes, 
Ruminococcaceae NK4A214, Christensenellaceae R 
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−7, and Ruminococcus 1). This discrepancy may be 
partly explained because some OTUs within indi-
vidual genera varied in their response to anorexia. 
For example, only a single Alistipes OTU (of 14 
detected) (related to A. finegoldi/A. onderdonkii 
according to phylogenetic placement analyses 
(Fig. S3)) exhibited a significant abundance 
increase in AN1, whereas the others exhibited no 
significant variation or even the opposite pattern.

Bacterial community composition association with 
EDE-Q scores, BMI, hyperactivity, and anorexia 
duration
We did not find any association between EDE-Q 
scores, BMI, hyperactivity, or disease length, and 
any of the tested alpha diversity measures (p > 0.1 
for all comparisons). Furthermore, alpha diversity 
changes during hospitalization (i.e. the difference 
in alpha diversity between AN1 vs. AN2) did not 

a

b

c

Figure 1. Gut bacteriome alpha diversity variation between control individuals vs. AN1 vs. AN2 assessed based on A) Observed OTUs 
number, B) Total OTU richness predicted by Chao 1 index, and C) Shannon index. Significant differences between categories (p < 0.05 
according to Tukey post-hoc tests) are indicated by different letters above the bars.
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correlate with the BMI and EDE-Q score changes, 
reported outcome, or hospitalization length (p > 0.2 
for all comparisons).

Using data from AN1, we did not find any 
effect of EDE-Q scores, BMI, hyperactivity, or 
disease duration on the gut bacteriome composi-
tion (db-RDA: p > 0.10 for Bray-Curtis and 
Jaccard divergence). Furthermore, the magnitude 
of gut bacteriome changes during hospitalization 
was not associated with changes in EDE-Q 
scores or BMI changes (p < 0.2 for both 
Jaccard and Bray-Curtis dissimilarities). 
However, the divergence in gut bacteriome 
between AN1 vs. AN2 was positively correlated 
with log-scaled hospitalization length (Bray- 
Curtis: F(1,46) = 6.980, p = 0.011, Jaccard: 
F(1,46) = 11.241, p = 0.002). Simultaneously, posi-
tive outcome (i.e. outcome scores = 1 or 2) was 

reported in patients exhibiting less pronounced 
bacterial changes after statistical control for the 
hospitalization length (Bray-Curtis: F(2,46) 
= 4.579, p = 0.015, Jaccard: F(2,46) = 6.878, 
p = 0.002; Fig. S5). Finally, the hyperactive 
patients exhibited smaller changes in OTU rela-
tive abundances compared to patients with no 
signs of hyperactivity (Bray-Curtis: F(1,46) 
= 5.2473, p = 0.02672). Conversely, hyperactivity 
did not predict magnitude of changes in OTU 
prevalences (Jaccard: F(1,46) = 0.4914, p = 0.4869; 
Fig. S5). However, subsequent mixed models did 
not detect any OTU exhibiting inconsistency in 
abundance changes between hyperactive vs. non- 
hyperactive patients (i.e. hyperactivity × group 
identity [AN1 vs. AN2] interaction; FDR > 0.05 
in all cases; Fig. S5). This suggests that greater 
changes in non-hyperactive patients were of 
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Figure 2. Proportions of dominating bacterial classes (represented by >1% of reads) in the three studied groups.

Table 6. Pair-wise comparisons of gut bacteriome interindividual variation and composition.
Bray-Curtis Jaccard

A) BETADISPER df F p F p

control vs. AN1 1;119 31.597 0.001 33.928 0.001
control vs. AN2 1;116 16.492 0.001 20.316 0.001

AN1 vs. AN2 1;103 1.258 0.280 1.539 0.217
B) PERMANOVA df F p R2 F p R2

control vs. AN1 1;119 3.595 0.001 0.029 4.013 0.001 0.033
control vs. AN2 1;116 2.309 0.001 0.020 2.370 0.001 0.020

AN1 vs. AN2 1;103 1.065 0.356 0.010 0.910 0.664 0.009

Comparisons of A) interindividual variation, B) composition between studied groups based on Betadisper tests and PERMANOVA, respectively. Tests were 
conducted using relative abundance-based (Bray-Curtis) and prevalence-based (Jaccard) dissimilarities. Values of (pseudo-) F statistics (F), associated degrees 
of freedom (df), resulting probability values (p), and proportions of explained variance (R2) are shown. Significant values are in bold.
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stochastic nature with rather unpredictable con-
sequences for the bacteriome content.

Metagenomic prediction

We used PICRUSt2 pipeline to infer variation in 
metagenome functions based on 16S rRNA pro-
files, and multivariate analyses on predicted rela-
tive abundances of functional pathways 
recapitulated patterns observed at the OTU 
level. Specifically, AN1 and AN2 exhibited 
increased interindividual variation in the pre-
dicted metagenome content compared to con-
trols (betadisper: p = 0.001 in both cases), and 
pair-wise PERMANOVA analyses suggested that 
the predicted metagenome content differed 

between controls vs. AN1 and AN2 (p = 0.017 
and 0.003, respectively; Figure 6). Consistent 
with OTU-level analyses, hospitalization did not 
result in systematic gut bacteriome function 
changes (PERMANOVA: p = 0.395), nor in 
changes in their interindividual variation (beta-
disper: p = 0.224). Using DESeq2, we identified 
two overrepresented and four underrepresented 
predicted metabolic pathways in controls vs. 
AN1 (Figure 6).

Fungal communities

The ITS profiles dataset included a high percentage 
of non-fungal reads (50%). After the elimination of 
these non-target taxa, we obtained 488 fungal 
OTUs represented by 2,346,476 high-quality 
sequences with an average sequencing depth per 
sample of 13,642 reads (range = 78–63,662). We 
excluded 16 samples that comprised a fewer num-
ber of fungal reads (<1000) from all downstream 
analyses.

Fecal samples in our study included 13.60 
(range = 1–99) different fungal OTUs on average, 
as predicted by Chao 1 estimates, but there was no 
significant difference in alpha diversity between the 
studied groups (LMM: p > 0.7 for all alpha diversity 
measures). The fungal communities composition 
did not correlate with the bacterial profile composi-
tion, neither for all sample analyses in our dataset 
(Mantel test, r = −0.038, p =0.77 for Bray-Curtis 
and r = −0.0395, p = 0.856 for Jaccard dissimila-
rities) nor for separate sample analyses for each 
category (Mantel test: p > 0.5 for all combinations 
of categories vs. dissimilarity measures). 
Consequently, our data does not provide clear evi-
dence that variation in gut bacteriome follows 
changes in gut mycobiome and/or vice versa.

Fungi from class Saccharomycetes dominated in 
fungal profiles of most samples (68% of reads on 
average, dominated by genus Saccharomyces, 
Candida, and Nakaseomyces). However, in the sam-
ples subset, we observed representatives of class 
Eurotiomycetes (10% of reads, represented by 
Penicillium and Aspergillus), mushroom-forming 
fungi Agaricomycetes (5% of reads, represented by 
Agaricus and Boletus), and Tremellomycetes 
(Solicoccomyza, Cryptococcus, and Naganishia, 
Figure 7, S1).

a

b

Figure 3. PCoA showing variation in bacterial microbiota com-
position between controls vs. AN1 vs. AN2. Compositional varia-
tion was assessed based on A) relative abundance-based (Bray- 
Curtis) and B) prevalence-based (Jaccard) dissimilarities.
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Unlike the bacterial dataset, we did not find any 
systematic shifts in fungal profiles composition 
between the studied groups (PERMANOVA: 

p >0.2 for both Bray-Curtis and Jaccard dissimila-
rities; Fig. S6), and interindividual variation in the 
fungal profile composition was the same within 

Figure 4. Bacterial core microbiota in the studied groups. A) Proportion of reads corresponding to core bacterial OTUs (i.e. detected in 
>90% samples) in each studied group and B) heatmap showing their prevalences.
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each group (Betadisper: p >0.2 for both Bray-Curtis 
and Jaccard dissimilarities).

Only three fungal OTUs of lesser prevalence 
exhibited abundance differences between controls 
vs. AN1. OTUs belonging to Nakaseomyces were 
overrepresented in AN1, whereas Mucor and 
Naganishia OTUs were more abundant in control 
samples, according to DESeq2 analyses (Fig. S6). 
These differences, however, mirror the fungal com-
position in only a few individuals. Furthermore, 

there were no changes in fungal OTUs and genera 
between AN1 vs. AN2.

Neurotransmitter and SCFA levels

Fecal concentrations of assorted neurotransmitters 
were measured by mass spectrometry (MS). In AN1 
samples decreased GABA and dopamine levels 
were found. Similarly, decreased serotonin level 
was detected in the AN1 and AN2 groups, but 

Figure 5. Relative abundances of bacterial OTUs (squared-root transformed) that varied, according to DESeq2 analyses (FDR < 0.05), 
between control samples and AN1.
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was significant only in renourished patients (Table 
7). Tyramine, kynurenine, and hydroxytryptophan 
concentrations did not vary between groups (con-
trol, AN1, AN2), and they did not change during 
the course of hospitalization.

Fecal SCFA levels were assessed by nuclear mag-
netic resonance (NMR). Patients (AN1) exhibited 
a decreased butyrate level, which slightly increased 
after renourishment. Propionate abundance was 
slightly reduced in patients after hospitalization 
(AN2). Acetate concentration was much less in 
patients with AN at both sampling intervals. We 
did not detect any significant changes in neuro-
transmitters and SCFA levels after renourishment 
(Table 7).

Bacterial community composition association with 
SCFAs, neurotransmitters concentration, 
biochemical and anthropometric parameters

The relative abundance of OTU_2700 
Ruminococcaceae NK4A214 was negatively asso-
ciated with propionate and acetate concentrations, 
while acetate levels were positively associated with 
the abundance of two OTUs (OTU_1879 
Pasterullaceae and OTU_1429 Lachnospiraceae). 
Similar analyses that focused on links between bac-
terial OTUs and neurotransmitter concentrations 
found a negative effect of dopamine on 
OTU_34444 Christensenellaceae and kynurenine 
on OTU_1627 Methanobacteriaceae (Figure 8). 

Genus-level analyses did not find any association 
with SCFA concentrations, but abundances of four 
genera were negatively linked with dopamine con-
centrations and three with kynurenine concentra-
tions (Fig. S4). These effects could not arise as an 
inter-group abundances variation by-product of 
these taxa, as our models took this potentially con-
founding factor into account.

Finally, we found only two significant associa-
tions between bacterial OTU/genera abundances 
and any of the biochemical and anthropometric 
parameters. Namely, relative abundance of 
Ruminiclostridium_9 was negatively related to α1 
globulin (g/l) (GLMM slope [± S. 
E] = −3.48562 ± 0.60499, FDR < 0.0001), while 
there was positive association between Dialister 
and γ globulin (g/l) (GLMM slope [± S. 
E] = 1.3001 ± 0.1815, FDR < 0.0001).

Discussion

To the best of our knowledge, our study for the first 
time reports the combined intestinal microbiota 
composition, SCFAs, and neurotransmitter levels 
together with biochemical, anthropometric, and 
psychometric profiles in a substantial number of 
patients with AN before and after hospitalization 
in comparison to normal-weight healthy 
participants.

Patients with severe or extreme AN (an average 
BMI of 14.4 kg/m2 at admission), increased their 

Figure 6. A) PCoA showing variation in relative abundances of predicted metabolic pathways between controls vs. AN1 vs. AN2, and B) 
Relative abundances of bacterial metagenomic pathways (squared-root transformed) that varied, according to DESeq2 analyses (FDR < 
0.05), between control samples vs. AN1.
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Figure 7. Fungal microbiota variation in the three studied groups. A) Dominating fungal class proportions (represented by >1% of 
reads); PCoA for B) Bray-Curtis and C) Jaccard dissimilarities between samples.

Table 7. Neurotransmitter and SCFA levels in healthy controls and patients.
p-value

%
p-value

%
p-value

%Variable Control AN1 AN2 AN1 vs. AN2 AN1 vs. C AN2 vs. C

GABA 1.8 (1.47, 3.29) 1.39 (0.997, 2.41) 1.53 (1.02, 3.31) 0.372 10.1 0.014* −22.8* 0.190 −15.0
Tyramine 3.47 (2.07, 6.45) 3.45 (1.54, 6.66) 2.36 (1.24, 5.92) 0.480 −31.6 0.796 −0.6 0.385 −32.0
Serotonin 0.482 (0.238, 0.846) 0.332 (0.234, 0.602) 0.266 (0.214, 0.443) 0.058 −19.9 0.371 −31.1 0.012* −44.8*
Dopamine 0.102 (0.046, 0.267) 0.044 (0.017, 0.096) 0.044 (0.017, 0.256) 0.596 0.5 0.025* −57.1* 0.084 −56.9
Kynurenine 0.064 (0.047, 0.103) 0.063 (0.042, 0.087) 0.063 (0.051, 0.095) 0.944 −0.9 0.997 −0.9 0.986 −1.9
5-HTP 0.047 (0.027, 0.07) 0.043 (0.032, 0.064) 0.041 (0.028, 0.065) 0.539 −4.4 0.856 −7.7 0.922 −1.,8
Butyrate 2.01 (1.37, 2.8) 1.2 (0.738, 2.13) 1.38 (0.944, 2.29) 0.263 15.0 0.038* −40.3* 0.298 −31.3
Propionate 2.08 (1.55, 2.94) 1.84 (1.06, 2.34) 1.59 (1.11, 2.4) 0.897 −13.6 0.108 −11.5 0.028* −23.6*
Acetate 19 (13.7, 25.9) 14 (7.2, 18.8) 12 (8.55, 17.4) 0.286 −14.3 ˂0.001*** −26.3*** 0.013* −36.8*

The comparison of a control group with both AN1 or AN2 was analyzed by one-way ANOVA with Dunnett’s test. The changes during hospitalization of patients 
with AN were tested by paired t-test. *p˂0.05, ***p˂0.001. nControl = 67, nAN1 = 49–53, nAN2 = 39–51. Data are also presented as a percentage change 
relative intensity between groups. Significant changes are in bold. GABA – gamma-aminobutyric acid; 5-HTP – 5-hydroxytryptophan
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BMI by 2.18 kg/m2 during the realimentation 
(Table 1). We confirmed the literature findings 
that BMI increase can be predicted by many bio- 
psycho-social factors (Table 4). However, only the 
history of adulthood stress (surprisingly not the 
childhood stress known to influence the early child-
hood microbiome) negatively influenced the BMI 
gain in patients with AN (Table 3). Stress activates 
the hypothalamic-pituitary-adrenal (HPA) system 
as well as the sympathetic nervous system (SNS), 
and thus affects the immune system. A chronically 

upregulated HPA axis and SNS are often associated 
with AN co-morbidities, like obsessive-compulsive 
disease, depression, anxiety, post-traumatic stress 
disorder, and others.22 Since weight and nutritional 
restoration are key conditions for AN recovery, our 
criteria for positive outcome are very complex, 
expressed by global impression at discharge, 
including BMI gain (and motivation to maintain 
it), the patient’s attitude, body image perception, 
and awareness of relapse risk factors. In our final 
study cohort, we did not detect the negative 

Figure 8. Significant associations between bacterial OTU abundances and concentrations of SCFAs or neurotransmitters. Predictions 
and 95% confidence intervals for negative binomial generalized linear mixed models (GLMMs) are shown.
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outcome. However, seven patients with AN dis-
charged earlier due to their treatment violation or 
their drop-out were not included into the final 
analysis. These patients would most likely report 
the unchanged or negative outcome. The predic-
tion model confirmed that positive patient outcome 
can be predicted to a certain level by several clinical 
parameters (Table 5), similarly to Wales et al., who 
demonstrated that greater entry BMI and early 
weight gain predicted a positive treatment outcome 
in patients with AN.23

We hypothesized that microbial diversity and 
composition in patients with AN differ from 
healthy individuals, and better understanding will 
improve AN course, prediction, and therapy imple-
mentation. Of the measured alpha-diversity para-
meters only the Chao 1 index was increased in 
patients before renourishment, reflecting their 
interindividual variation. The OTUs number 
exhibited a comparable yet nonsignificant pattern, 
and the qualitative Shannon diversity did not vary 
among the studied groups (Figure 1). A similarly 
large microbiome study of patients with AN 
(n = 55) found no differences in the number of 
observed species and Chao 1 index.13 Three other 
smaller studies describe decreased alpha diversity 
and microbial richness in patients with AN.7,12,15 

Since the results vary between studies, it is difficult 
to unequivocally interpret the modification of alpha 
diversity parameters during AN. Weight gain in 
our patients with AN led to Chao 1 index modifica-
tion and reached healthy control values. Mack et al. 
described increased species richness in patients 
with AN after weight gain, although there was no 
difference when compared to healthy controls.13

The control group exhibited less interindividual 
variation, which was manifested by core microbiota 
depletion, as well as a systematic difference in gut 
bacteriome compared to patients with AN 
(Table 6). Greater interindividual variation of 
patients with AN can be explained by the so- 
called “Anna Karenina principle,” explaining that 
dysbiotic individuals vary more in microbial com-
munity composition than healthy individuals due 
to stochastic microbiota response to 
a disequilibrium state induced by stressors. Such 
effects on the microbiome are common, important, 
and they are often associated with host health 
impairment.24

Both AN1 and AN2 exhibited increased interin-
dividual variation of gut bacteriome composition 
compared to controls, which was putatively linked 
with partial depletion of core bacteriome OTUs 
(Figure 4). Most AN studies describe microbial 
alteration at the genera, class, or even phylum 
level. However, differences in specific OTUs rather 
than in the specific microbiome communities may 
address their important role in illness pathology.

Patient renourishment led to minor bacterial 
composition changes (Table 6), which are sup-
ported by the positive correlation of hospitalization 
length and bacteriome divergence of AN1 vs. AN2. 
The bacteriome of patients after weight gain was 
still more similar to the bacteriome of patients at 
admission than to the bacterial composition of 
healthy controls, which is in accordance with 
Mack et al.13 We detected a significant change in 
a subset of OTUs that did not correspond to the 
results from a separate genus-level analysis; how-
ever, these OTUs may play an important role in AN 
pathophysiology. For example, only a single 
Alistipes OTU (out of 14 detected) exhibited 
a significant abundance increase in AN1. This 
OTU_3215 is related to A. finegoldi and 
A. onderdonkii (Fig. S3). Different strains of the 
Alistipes genus were shown to have unique physio-
logical roles associated with different diseases and 
disorders.25 Since Alistipes can hydrolyze trypto-
phan (serotonin precursor) to indole and thus 
decreases serotonin availability, Alistipes increased 
abundance can disrupt the gut-brain axis. Further, 
a decrease in serotonin is associated with 
depression.26

Only one Faecalibacterium OTU exhibited 
a significant abundance decrease in AN1. 
Similarly, altered microbiota with overexpressed 
Alistipes and decreased Faecalibacterium levels 
were found in patients with depression,26 

a common AN comorbidity. Faecalibacterium 
levels are reduced in many human diseases and 
disorders, including patients with AN.7 Studies 
examining gut Faecalibacterium suggest that its 
greater abundance is associated with a healthier 
state and proposes its potential therapeutic usage. 
Further observed overrepresented OTUs in patients 
with AN taxonomically belonged to 
Christensenellaceae. The Christensenellaceae family 
was enriched in subjects with a lesser BMI.27 
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Moreover, the Christensenellaceae family is herita-
ble and host genetics influence the human gut 
microbiome composition.27 Conversely, one of the 
less represented species in AN1 was Agathobacter. 
There is a discrepancy in the taxonomic annotation 
of Agathobacter, Roseburia, and Eubacterium. 
Because the different reference databases can anno-
tate the same sequence with different species, we 
presume that decreased Agathobacter levels in 
patients with AN in our study correspond to the 
decreased Roseburia levels in other studies.11,13,14

These findings indicate that different OTUs cor-
responding to the same bacterial genus can be 
associated with different features. We believe that 
abundance changes at the OTUs level reflect more 
their importance than changes at the genus level.

Only a few positive or negative correlations 
between bacterial OTUs or genus abundances and 
SCFAs or neurotransmitters amount were found 
(Figure 6, Fig. S4). This can be explained by the 
overlapping production of these molecules by many 
bacterial species. Moreover, since the majority of 
SCFAs produced in the colon are absorbed by the 
gut mucosa, stool SCFAs quantification does not 
accurately reflect the bacterial production level.28

Except for the positive correlation of bacteriome 
changes with hospitalization length, we did not find 
any association of bacterial community composi-
tion and diversity with disease duration, BMI, and 
EDE-Q scores. However, besides the greater inter-
individual variation in gut bacteriome compared to 
controls, patients with AN also exhibited greater 
interindividual variation in the metagenome con-
tent, suggesting altered bacteriome functions 
(Figure 7).

Variations in predicted metabolic pathways 
associated with AN were not described in any 
other microbiome study. In AN1 samples, we iden-
tified an underrepresented S-adenosyl- 
L-methionine cycle I pathway (Figure 7). In cells, 
about 80% of the L-methionine pool is converted to 
S-adenosyl-L-methionine (SAM), which is the 
major methyl donor. After the methyl group dona-
tion, SAM is converted to S-adenosyl- 
L-homocysteine, which can be recycled back to 
SAM via this cycle. Deficiency in SAM production 
and subsequent DNA methylation, an important 
epigenetic mechanism, is connected with severe 
neuro-psychiatric diseases.29 Besides, SAM is 

required for some neurotransmitter synthesis, 
such as serotonin, dopamine, and 
norepinephrine.29 Interestingly, the use of SAM as 
a dietary treatment leading to modulation of 
patient methionine metabolism via altered nutrient 
availability showed promising results in depression 
disorder treatment.30

None of the existing microbiome studies on 
patients with AN analyzed fungal communities 
together with bacterial composition. There is grow-
ing evidence emerging that host fungal commu-
nities could also be linked with various diseases. 
However, during the mycobiome analysis, we 
found neither significant differences in mycobiome 
alpha diversity between patients with AN and con-
trols, nor any correlation of the fungal composition 
with bacterial profiles. However, fungi constitute 
less than 0.1% of the human gut microbiome.5 

Their composition and abundance are strongly 
affected by food, and the composition is not stable 
over time.5 We detected two different phylotypes 
across all studied groups. The first phylotype was 
dominated by Saccharomycetes, and the second 
was comprised of various fungal species. The 
absence of abundant Saccharomycetes in 
the second group most likely led to the PCR ampli-
fication of rare species, and subsequently to their 
greater diversity. During the gut mycobiome assess-
ment in the frame of the Human Microbiome 
Project, the most abundant human gut genera 
include the yeasts Saccharomyces, Malassezia, and 
Candida.5 Interestingly, this study recognized 
Saccharomyces and Candida as prevalent members 
of the gut mycobiome, but did not identify 
Malassezia. Similarly, this discrepancy was also 
found by Hoffmann et al. related to mycobiome 
changes associated with diet.31 One explanation 
could be the use of primers amplifying the ITS1 
region, when primer sequence mismatches may not 
allow optimal amplification of Malassezia DNA. 
However, we used primers amplifying the ITS2 
region as in the Human Microbiome Project, 
although the primer sequences differed. 
Potentially, Malassezia was not identified in our 
dataset due to different diet or geographic location. 
The only overrepresented fungal species in AN1 
was Nakaseomyces, and its clade includes various 
human pathogens.32 It seems that balanced fungal 
representation preventing overcolonization during 
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severe dysbiosis is most likely more important than 
specific taxonomic abundance. Previously, great 
abundance and variability of fungal species were 
found in one patient suffering from severe and 
enduring AN.33

The gut-brain axis is increasingly connected with 
central nervous system health. Since gut microbiota 
may produce various neurotransmitters as well as 
neuro-reactive microbial metabolites, including 
SCFAs, we aimed to assess the levels of assorted 
neurotransmitters and individual SCFAs in AN 
patient stools. We found significantly decreased 
levels of GABA and dopamine, and slightly 
decreased serotonin levels in stools of patients 
with AN compared to healthy controls (Table 7). 
Individuals suffering from AN have altered brain 
serotonin and dopamine pathways.34 There are 
indicators that altered serotonin function contri-
butes to anxiety in patients with AN.34 Similarly, 
changed GABA levels were implicated in a variety 
of mental illnesses, including anxiety and 
depression.35 Interestingly, the levels of the seroto-
nin precursor 5-hydroxytryptophan (5-HTP) as 
well as kynurenine levels, an alternative tryptophan 
metabolite, were comparable in all study groups, 
suggesting that probably only part of 5-HTP is 
converted to serotonin in patients with AN. 
Neurotransmitter levels are generally assessed in 
the brain. Reduced neurotransmitter levels in indi-
viduals with AN tend to normalize with 
recovery.34,35 We analyzed the levels of various 
neurotransmitters in the stools of patients with 
AN and healthy controls, and these did not change 
after the realimentation (Table 7). This raises the 
question whether altered metabolite levels in the 
gut can truly effectively influence gut-brain com-
munication and eventually modify the impact of 
medications. SCFAs are extensively studied as 
molecules associated with gut microbiota effect 
host energy metabolism and appetite.36 We found 
reduced butyrate and acetate levels in patients with 
AN, which were not altered after weight gain (Table 
7). SCFA abundance is inconsistently reported in 
AN studies. While one study showed reduced con-
centrations of acetate and propionate,9 another 
found decreased butyrate and propionate 
concentrations.11 A longitudinal study by Mack 
et al. observed a slightly decreased butyrate level 

in patients with AN, which did not change after 
weight gain, similar to our results.13,33

Only a few positive or negative correlations 
between bacterial OTUs or genus abundances and 
SCFAs or neurotransmitters amount were found 
(Figure 8, Fig. S4). This can be explained by the 
overlapping production of these molecules by many 
bacterial species. Moreover, since the majority of 
SCFAs produced in the colon are absorbed by the 
gut mucosa, stool SCFAs quantification does not 
accurately reflect the bacterial production level.28 

The correlation analysis of fecal metabolites and 
bacterial composition in patients with AN revealed 
metabolite consumption by the intestinal micro-
biota outweighs their production.15

This longitudinal study provides biochemical, 
anthropometric, psychometric, comprehensive 
microbiome, and targeted metabolomic data from 
a large cohort of patients with AN compared to 
healthy controls. The results are based on quality 
sequencing microbiome data and underline the 
importance of individual OTUs rather than taxo-
nomical genus abundance. Since approximately 
10% of patients with AN are males, and AN has 
an onset in adolescence, our cohort represented 
only by adult women can pose a potential weakness.

Further, the use of antidepressants and other 
medications can alter the microbiome as well as 
neuroactive microbial metabolites and neurotrans-
mitters production, therefore, we cannot rule out 
that medication use might influence our results. 
Another clear limitation of the metagenomics 
study is host microbiome variability, which can 
change in response to diet or other environmental 
factors. Alternatively, the host microbiome is sus-
ceptible to its preventive or therapeutic target 
modification.

Although therapeutic renourishment led to 
increased body mass index (BMI) and improved 
psychometric parameters, SCFA and neurotrans-
mitter profiles as well as microbial community 
compositions did not change substantially. This 
can be potentially explained by the only partial 
weight gain of patients with AN, which mostly did 
not reach healthy control values during hospitaliza-
tion. To achieve full recovery (normalization of the 
fat mass, BMI 19–25, menstruation, etc.), patients 
are offered post-hospitalization programs.
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Patients and methods

Participants

The study was performed in accordance with the 
Declaration of Helsinki, and it was approved by the 
Ethics Committee of General University Hospital in 
Prague. All participants signed an informed consent 
form.

Fifty-nine patients with restrictive AN (age 23 
(19, 27) years), BMI 14.4 (13.4, 15.9) kg/m2, 
shown as median with quartiles, were recruited 
from the in-patients of the Center for Eating 
Disorders at the Psychiatric Clinic of the First 
Faculty of Medicine of Charles University and 
the General University Hospital in Prague (Table 
1). Patient severity of AN was diagnosed accord-
ing to the Diagnostic and Statistical Manual of 
Mental Disorders, 5th Edition, American 
Psychiatric Association, 2013 (none, mild, moder-
ate, severe, and extreme). Only clinically stable 
patients without psychosis or current abuse on 
psychoactive substances were included. Seven 
patients with AN terminated the therapy prema-
turely. Hospitalization duration was 51 (28.5, 62.5) 
days (Table 1). At the patients’ discharge, outcome 
scoring, representing the global clinical impres-
sion, was determined (no change, slight improve-
ment, significant improvement, slight worsening, 
and significant worsening). Patients who took 
some medication before hospitalization took the 
same medication during AN treatment. 32 
patients of 59 total participants (50.9%) were 
using antidepressants (majority SSRI type), 16 
patients (25.4%) antipsychotics (mainly evidence- 
based Olanzapine), and 32 patients (50.9%) were 
taking other medications (anxiolytics or hypno-
tics, hormonal substitution, vitamins or analgetics, 
Omeprazole, digestive aids).

Sixty-seven healthy female controls were 
recruited for the study, comprising university stu-
dents, office workers, and university employers. 
Healthy controls were screened for a hidden eating 
disorder by the SCOFF Questionnaire. The controls 
were healthy weight Czech women (age 24 (22, 28.5) 
years) with BMI 21.9 (19.9, 23.7) kg/m2 (Table 1).

Exclusion criteria for all participants were preg-
nancy, diabetes, any severe active infection, and 
various chronic diseases. Additionally, controls 

did not suffer from any subtypes of AN or BN, or 
other psychiatric disorders.

Anthropometric measurements (i.e., height, 
weight, fat percentage, hipline, and waistline) were 
supervised and taken by nursing staff and occurred 
on bioimpedance scales (TANITA, Japan). Blood 
samples were collected from all participants from 
the cubital vein early morning; from patients with 
AN there were two collections – at admission and 
discharge. On the same day, stool samples of all 
participants were collected and immediately frozen 
at −80°C. Participants were asked not to drink 
alcohol, coffee, black tea; not to eat chocolate, pro-
ducts containing cacao, bananas, nuts; and not to 
take probiotics or aspirin two days before the stool 
collection.

Biochemical analysis of blood samples

Blood samples of controls and AN patients at both 
intervals (before and after hospitalization) were used 
for determining serum levels of albumin, total pro-
tein, alfa-, beta-, and gamma-globulins; immunoglo-
bulins IgA, IgG, IgM, and IgE; CRP, cholinesterase, 
triacylglycerols, TSH, and fT4 (Agilab, Czech repub-
lic; Table 1). Further, serum was used for IL-6, IL- 
17, and TNF-α levels assessment by ELISA (Human 
IL-6, IL-17, and TNF-α Quantikine HS ELISA kit, 
Bio-Techne R&D Systems, USA; Table 1).

Questionnaires

All participants completed questionnaires (AN 
patients at admission and discharge) addressing 
hyperactivity (none, present, significant), disease 
duration (months), menarche (age), sleeping habits 
(time of getting up, going to sleep, sleep length), 
exercise activity (hours per week), number of daily 
meals, allergy, history of a stressful event (none, 
present until 3 years of age, present in adolescence, 
present in adulthood), antidepressant and other 
medication, another somatic or psychiatric diagno-
sis, psychiatric disorders heredity, childbirth type, 
menstruation presence, employment/education 
(disability pension, university education, secondary 
school education, basic school education, second-
ary school student, university student).
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Eating disorder examination (EDE-Q)

AN patients completed the EDE-Q 6.0 within 
24 hours of admission.37 The EDE-Q 6.0 is a 28– 
item measure derived from the Eating Disorder 
Examination (EDE).38 The 22 items together com-
prise four subscales, assessing restraint, shape con-
cerns, weight concerns, and eating concerns over 
the previous 28 days. They were scored using 
a 7-point rating scale (0–6). The sum of each sub-
scale was averaged to provide subscale scores. 
A global score was calculated by summing and 
averaging the subscale scores. Greater scores indi-
cate greater ED psychopathology. Another six 
questions assessed the frequency (number of times 
or days) of specific eating behavior, such as objec-
tive binge eating, self-induced vomiting, laxative 
use, or excessive exercise, over the last 28 days. 
These are not included in the subscale scores. The 
internal consistency reliability of the EDE-Q was 
measured with Cronbach’s α coefficients. Data are 
presented as mean scores on the EDE-Q global and 
sub-scale scores.

Statistical analysis

For the basic measured parameters, comparison of 
the three studied groups (controls, AN1 – patients 
at admission, and AN2 – patients at discharge) was 
analyzed by the Kruskal–Wallis Z test followed by 
Dunn’s multiple comparisons with Bonferroni cor-
rection. The evaluation of changes during hospita-
lization (calculated as the values at hospitalization 
end and values at hospitalization beginning) were 
evaluated by Wilcoxon’s paired test corrected for 
ties. Besides the Bonferroni correction for between- 
group differences we also completed the Bonferroni 
correction for multiplicity for Kruskal–Wallis test 
and Wilcoxon’s test respecting the 27 biochemical 
and anthropometric parameters under 
investigation.

To obtain data symmetry and homoscedasticity 
of non-Gaussian distributed metabolomic data, the 
original continuous variables were transformed by 
power transformation. The comparison of a control 
group with both the AN1 or AN2 groups was ana-
lyzed by one-way ANOVA with the Dunnett’s test. 
The changes during patients’ renourishment were 
tested by paired t-test.

The relationship between variables and indivi-
dual predictors was evaluated by multivariate 
regression (MR) with a reduction of dimensionality 
known as orthogonal projections to latent structure 
(OPLS). OPLS for one predicted variable allows 
great intercorrelation determination and enhances 
the model predictivity. MR without dimensionality 
reduction was employed for a specific correlation 
with one predictor (uncorrelated with other vari-
ables). OPLS is capable of coping with the problem 
of severe multicollinearity (great intercorrelations) 
in the predictors matrix, while multiple regression 
fails to evaluate such data. Assessing patient out-
come after renourishment utilized the logarithm of 
the ratio of the probability that the patient’s psy-
chopathology improved to the probability that not. 
The original probabilities of the negative outcome 
were transformed to logarithms of the likelihood 
ratio (logarithm of the ratio probability of negative 
outcome/(1-probability of negative outcome)) and 
this (transformed) parameter was used as 
a dependent variable in both the OPLS model, as 
well as in MR analysis.

The correlation between individual EDE-Q sub-
scales was analyzed by Pearson’s correlations after 
the power transformation of data. The internal 
consistency reliability of the EDE-Q was measured 
with Cronbach’s α coefficients.

Statistical software Statgraphics Centurion 18 
Version 18.1.06 from Statgraphics Technologies, 
Inc. (The plains, VA, USA) was used for Box-Cox 
transformations, ANOVA testing, while the OPLS 
and MR analyses were performed using the soft-
ware SIMCA P+ Version 12.0.0.0.

Gut microbiota analysis

Genomic DNA was isolated from stool by DNeasy 
PowerSoil Kit (Qiagen). The total extracted geno-
mic DNA (gDNA) from stool samples was used for 
high throughput sequencing (HTS, Miseq platform, 
Illumina) of the bacterial V3-V4 region of the 16S 
rRNA gene, and fungal ITS2 region. Besides the 
isolated gDNA, ZymoBIOMICSTM microbial com-
munity standard and Standard II (log distribution), 
as well as ZymoBIOMICSTM microbial commu-
nity DNA standard and Standard II (log distribu-
tion), were used to assess the performance of entire 
metagenomic workflows (Zymo research). The 
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original standards’ microbial composition and the 
obtained sequencing data are shown in Table S3,4. 
Two sets of specific primers with barcodes (342 F/ 
806 R primer for 16S rRNA39 and ITS7/ITS4 for 
fungal ITS40) were used in PCR using HiFi HotStart 
Ready Mix (Roche). PCR reactions were carried out 
with 25 (bacteria) and 30 (fungi) cycles. Triplicates 
of the amplicons were pooled, normalized with the 
SequalPrep™ Normalization Plate Kit 
(ThermoFisher Scientific), and pooled and concen-
trated on a Concentrator 5301 (Eppendorf) for 
approximately 3 h at 30°C under vacuum. The 
resulting volume of each library was purified 
using the DNA Clean & Concentrator kit (Zymo 
Research) and ligated with sequencing adapters 
(TruSeq DNA PCR-free LT Sample Preparation 
Kit, Illumina) using KAPA HyperPlus Kit, 
(Roche). Concentrations of libraries with ligated 
adapters were validated by a KAPA Library 
Quantification Kit (Illumina). The final libraries 
were pooled in equimolar concentrations, and 
sequenced. The amplicons were sequenced on an 
Illumina MiSeq using a Miseq Reagent Kit v2 
(Illumina).

Bioinformatic pipeline

Fastq files produced by Illumina Miseq were 
demultiplexed and primers were trimmed by 
skewer software.41 Using dada242 we eliminated 
low-quality sequences (expected number of errors 
per read >1), denoised quality-filtered fastq files, 
and constructed an abundance matrix (OTU 
table) representing reads counts for individual hap-
lotypes in each sample. Next, we identified chimeric 
haplotypes using uchime43 and the gold.fna data-
base (in the case of bacterial data) or UNITE 
database44 (in the case of fungal data) and elimi-
nated them from the OTU table. Using Procrustean 
analyses, we checked for consistency in haplotype 
composition among profiles of identical samples 
that differed only in the sequencing orientation 
(i.e. 3ʹ to 5ʹ end or 5ʹ to 3ʹ end) and retained only 
those haplotypes that were consistently present in 
both duplicates. After these steps, haplotypes were 
clustered to Operational Taxonomic Units (OTUs) 
using vsearch45 assuming 97% sequence similarity 
threshold. Taxonomic assignation of OTUs was 
conducted by RDP classifier (80% confidence 

threshold)46 and Silva reference database (v. 
132)47 (bacterial data) or UNITE database (fungal 
data).44 In specific cases, we applied phylogenetic 
placement analyses to achieve more detailed OTU 
assignation. To do so, we extracted all reference 16S 
rRNA sequences corresponding to the same genus 
as OTUs in question from the Silva database and 
clustered them at 99% similarity using vsearch.45 

Representative sequences for clusters exhibiting 
>97% sequence similarity with any OTU in ques-
tion were used for phylogenetic reconstruction, 
which was done by RAxML,48 assuming the GTRI 
substitution model after mafft alignment.49 

Bootstrap analysis (1,000 replicates) was conducted 
to assess the robustness of phylogenetic clades. 
OTU table, OTU representative sequences, OTU 
taxonomy, and sample metadata were merged into 
a single phyloseq database for later statistical 
calculations.50 Bacterial metagenome functional 
predictions were conducted using PICRUSt2 
pipeline51 using default setup, and predicted meta-
genomes were categorized into functional 
pathways.52 Their predicted abundances were 
used in later statistical analyses. Weighted NSTI 
scores (i.e. an index negatively related to the pre-
diction quality and characterizing similarity 
between 16S rRNA profiles in question and refer-
ence genomes) calculated using PICRUSt2, were 
comparable across the three study groups 
(ANOVA: F(2,169) = 2.62, p = 0.0757; mean = 0.136 
for controls, 0.162 for AN1, and 0.146 for AN2).

Statistical analyses of microbiota data

Overall, the bacterial and fungal community com-
position of 172 or 156 samples was analyzed, 
respectively. As sequencing coverage varied 
between samples, we rarefied resulting OTU tables 
(rarefaction threshold being equal to minimal 
sequencing coverage) and used the rarefied datasets 
for further analyses, if not otherwise stated. The 
observed number of OTUs, Chao 1 total OTU 
richness estimates, and Shannon indices were 
included as response variables for alpha diversity 
analyses. We compared alpha diversities between 
the three study groups (i.e. control, AN1, and AN2) 
using linear mixed effect models (LMM), where 
individual identity was considered as a random 
effect. Using linear regression on a sample subset 
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corresponding to AN1, we tested for the association 
between alpha diversity and BMI, EDE-Q scores, or 
disease length. We also checked if individual-level 
alpha diversity changes before vs. after hospitaliza-
tion corresponded to changes in BMI, EDE-Q 
scores, or disease outcome while accounting for 
the hospitalization length.

Visual insight into microbiota composition was 
provided by bar plots for dominating microbiota 
classes and by Krona hierarchical piecharts.53 We 
also employed Principal Coordinate Analysis 
(PCoA) running on abundance-based (i.e. Bray- 
Curtis) and prevalence-based (i.e. binary Jaccard) 
dissimilarities. Systematic differences in composi-
tion and interindividual variation between groups 
were tested by pair-wise PERMANOVA and beta-
disper using R package metagMisc. Distance- 
based redundancy analysis (db-RDA) was applied 
to test for the association between bacteriome 
composition and BMI, EDE-Q scores, hyperactiv-
ity, or disease length in patients prior to hospita-
lization. Using linear regression, we also tested if 
changes in bacteriome composition (expressed as 
Jaccard and Bray-Curtis dissimilarities) prior vs. 
after hospitalization correlated with changes in 
BMI, EDE-Q scores, or “outcome” as well as with 
the hospital stay length. OTUs and genera, whose 
abundances varied between controls vs. AN1 and 
between AN1 vs. AN2, were identified using 
DESeq2 pipeline.54 Mixed models assuming nega-
tive binomial error distribution (R package 
glmmTBM) were employed to test for association 
between abundances of bacterial OTUs or genera 
(i.e. response variables) and concentrations of 
SCFAs or neurotransmitters (i.e. model predic-
tors). The effect of these predictors was statistically 
controlled for putative variation of OTU/genera 
abundances among study groups. The individual 
identity included a random effect and per sample 
sequencing depth (log scaled) as a model offset. 
False discovery rates were used to account for 
false-positive outcomes due to multiple testing.55 

Due to convergence problems, we fitted this model 
only for OTUs/genera detected in <10% samples. 
The same approach was applied to detect associa-
tions between biochemical and anthropometric 
parameters and bacterial OTUs/genera.

For each experimental group, we identified bac-
terial OTUs that were present in >90% of the sample 
(hereafter “core” microbiota), and compared varia-
tion in the percentage of reads corresponding to 
these OTUs using analysis of variance (ANOVA).

Variation in predicted proportions of the func-
tional pathway between study groups was analyzed 
using pair-wise PERMANOVA and betadisper as 
well as by PCoA. Functional pathways whose abun-
dances varied among study groups were identified 
using DESeq2 as already described. All statistical 
analyses were run using R software (version 3.4.4).

NMR and MS samples preparation

For nuclear magnetic resonance (NMR) analysis, 
approximately 100 mg aliquot of stool was mixed 
with water (1 mL, LC-MS grade) and vortexed for 
2 min. The homogenized mixture was centrifuged 
(10 minutes, 14000 rpm, at 4°C). The supernatant 
was transferred by needle (100 Sterican, 
1.20 × 40 mm, Braun, Germany) into a syringe 
(Omnifix® LuerLockSolo, Germany) and filtered by 
syringe filter (pore size 0.2 µm, diameter 25 mm, 
Whatman, UK); the filter was then rinsed with water 
(0.5 mL). The filtrate was mixed with a methanol/ 
dichloromethane mixture (2:1 v/v, 1 mL), vortexed 
for 2 min, and centrifuged (30 minutes, 14000 rpm, at 
4°C). The upper hydrophilic phase was collected to 
a fresh vial, evaporated using Speedvac, and stored at 
−80°C.

Before analysis, dried stool extract samples were 
dissolved in D2O (450 µL), mixed with phosphate 
buffer (50 µL, 1.5 M KH2PO4 in D2O containing 
2 mM NaN3 and 0.1% (w/v) trimethylsilyl propionic 
acid (TSP), pH 7.4), and transferred to 5 mm NMR 
tubes.

For the mass-spectrometry (MS-based neuro-
transmitter analysis), an internal standard methio-
nine-d3 (EZ:faast kit, Phenomenex) was added into 
the next 100-mg stool aliquot. Then, water (1 mL, 
LC-MS grade) was added, vortexed, centrifuged 
(10 minutes, 14000 rpm, at 4°C), and filtered in the 
same way as for the NMR sample preparation. The 
filtrate (200 µL) was mixed with formic acid (1 µL, 
MS grade, Honeywell) and derivatized according to 
the manual (EZ:faast kit, Phenomenex).
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SCFAs analysis

SCFA levels (acetate, butyrate, propionate) in stool 
samples were assessed by NMR. All NMR experi-
ments were performed at 300 K on a Bruker Avance 
III 600 MHz spectrometer (Bruker BioSpin, 
Rheinstetten, Germany) equipped with a 5 mm 
TCI cryogenic probe head. Nuclear Overhauser 
effect spectroscopy pulse sequence with presatura-
tion in relaxation delay (1D NOESY, pulse 
sequence: noesygppr1d) was used for 1H NMR 
experiments (256 scans (NS), 64k of data points 
(TD), spectral width (SW) of 20 ppm, relaxation 
delay (d1) of 4s). The free induction decays of the 
1D NOESY experiments were multiplied by an 
exponential window function (LB = 0.3 Hz). The 
spectra were automatically phased, baseline cor-
rected, and referenced to TSP (0.0 ppm). All spectra 
were normalized by probabilistic quotient normal-
ization (PQN)56 to the group of healthy controls 
using MATLAB software (MATLAB version 9.2; 
R2017a). Normalized SCFA concentrations were 
calculated from methyl signals of acetate (at 1.92 
ppm), propionate (at 1.05), and the methylene signal 
of butyrate (at 1.57 ppm).

Analysis of neurohormone levels

Derivatives were measured by a mass spectro-
meter (TSQ Quantum Access Max, Thermo 
Fisher Scientific, Inc., USA) by the selective reac-
tion monitoring in positive ionization mode. 
Measurement conditions were optimized by 
standards (direct infusion of 10 mg/L in the 
mobile phase, 20 µL/min; Table S4). The injec-
tion volume was 10 µL. HESI-II probe was run 
under the following set up: vaporizer tempera-
ture 320°C, spray voltage +2250 V, sheath gas 
pressure 34.0 AU, auxiliary gas pressure 15.0 
AU, ion sweep gas pressure 11.2 AU, collision 
gas Ar pressure 1.0 mTorr, capillary temperature 
320°C. Data were processed by ThernoXcalibur 
software (Thermo Fisher Scientific, Inc., USA). 
The peak areas were normalized by the stool 
sample weight and internal standard area. In 
stool samples, the adrenaline concentrations 
were under the detection limit.
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