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ABSTRACT: The mammalian target of rapamycin (mTOR) is a protein kinase of the PI3K/Akt signaling pathway that regulates
cell growth and division and is an attractive target for cancer therapy. Many reports on finding alternative mTOR inhibitors available
in a database contain a mixture of active compound data with different mechanisms, which results in an increased complexity for
training the machine learning models based on the chemical features of active compounds. In this study, a deep learning model
supported by principal component analysis (PCA) and structural methods was used to search for an alternative mTOR inhibitor
from mushrooms. The mTORC1 active compound data set from the PubChem database was first filtered for only the compounds
resided near the first-generation inhibitors (rapalogs) within the first two PCA coordinates of chemical features. A deep learning
model trained by the filtered data set captured the main characteristics of rapalogs and displayed the importance of steroid cores.
After that, another layer of virtual screening by molecular docking calculations was performed on ternary complexes of FKBP12−
FRB domains and six compound candidates with high “active” probability scores predicted by the deep learning models. Finally, all-
atom molecular dynamics simulations and MMPBSA binding energy analysis were performed on two selected candidates in
comparison to rapamycin, which confirmed the importance of ring groups and steroid cores for interaction networks.
Trihydroxysterol from Lentinus polychrous Lev. was predicted as an interesting candidate due to the small but effective interaction
network that facilitated FKBP12−FRB interactions and further stabilized the ternary complex.

1. INTRODUCTION
The mammalian target of rapamycin (mTOR) is an atypical
serine/threonine (S/T) protein kinase that belongs to the
phosphoinositide 3-kinase (PI3K)-related kinase family.
mTOR is frequently referred to as the master regulator of
cell growth, proliferation, metabolism, and survival.1−4 It
interacts with several proteins to form two distinct protein
complexes called mTOR complexes 1 (mTORC1) and 2
(mTORC2). Dysregulation of mTOR is associated with many
diseases, such as fibrosis, obesity, type 2 diabetes, neuro-
degeneration, and cancer, attracting great interest in
developing drugs targeting mTOR.5,6 The potent and specific
mTOR inhibitor is rapamycin, a 31-membered macrocyclic
lactone produced by Streptomyces hygroscopicus.7,8 It plays a
critical role in inhibiting cell growth, cell cycle progression, and
proliferation.9−11 Upon entering the cells, rapamycin specifi-
cally forms a gain-of-function complex with the 12 kDa FK506-
binding protein (FKBP12),12,13 interacting and inhibiting the
part of mTORC1. This inhibitory complex binds to the FRB
(FKB12−rapamycin binding) domain from the C terminus of
TOR proteins, leading to cell growth inhibitory and cytotoxic
effects. At the molecular level, an experimental study exhibited
the key role of FKBP12−rapamycin complex binding to the
FRB domain as a ternary complex as rapamycin itself possessed
only a modest affinity for the FRB domain in the absence of
FKBP12.14 Despite being poorly soluble in water and unstable,

rapamycin analogues, also known as rapalogs, have been
created with enhanced biopharmaceutical properties.2,10 These
rapalogs have been approved by the FDA as the first generation
of mTOR inhibitors for combatting cancer malignancies and
other diseases.

In addition to rapamycin and rapalogs, several small
molecules have also demonstrated the potential to inhibit the
mTOR pathway in some cancer cells.10,11,15 As the second-
generation mTOR inhibitors, the small molecules bind to the
ATP-binding site in the mTOR kinase domain, resulting in the
downregulation of both mTORC1 and mTORC2.16−18

Examples of the second generation of mTOR inhibitors
include AZD8055,19 AZD2014,19−21 CC-115,22 CC214-2,23

CC-223,24 WAY-600, WYE-354, WYE-687,25 WYE-125132,26

OSI-027,27 PP242,28 Torin 1,29 and Torin 2.30 In addition, the
dual mTOR/PI3K inhibitors that effectively inhibit mTORC1
and mTORC2 are GDC-0980,31 GSK2126458, SF1126,32

NVP-BEZ235,33,34 PKI-402,35 and XL765.36 However, these
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second-generation inhibitors exhibit lower specificity and are
likely to cause a correspondingly higher toxicity when
compared to rapamycin and rapalogs.37 Increasing evidence
suggested that natural compounds may exert their antiprolifer-
ative effects by inhibiting mTOR signaling, thus representing
new mTOR inhibitor alternatives. For example, numerous
studies have shown that curcumin inhibited the growth of
various cancer cells and showed effectiveness as a chemo-
preventive agent in animal carcinogenesis models.38−40

Furthermore, many natural compounds, including epigalloca-
techin gallate (EGCG),41 caffeine,42 and resveratrol,43 have
also been found to downregulate mTOR signaling in vitro.
Additionally, some natural products or nutraceuticals isolated
from plants also inhibit the PI3K/Akt/mTOR pathway, such as
apigenin,44 fisetin,45 indoles (indole-3-carbinol and 3,3′-
diindolylmethane),46 quercetin,47 and tocotrienol.48

Despite the progress reported by these studies, there remains
a pressing need to find novel active compounds that have
improved pharmacokinetic properties and specificity toward
the mTOR complex or more potent dual PI3−mTOR
inhibitors. According to the large quantity of available data,
it is possible to utilize computational techniques, including
deep learning as the recently most successful machine learning
technique in drug discovery research, to predict and screen for
active compounds and mTOR-targeting drugs. Several
computational approaches and recent machine learning
techniques have been utilized to search for chemical scaffolds
to engender druglike properties as well as the selectivity of
allosteric mTOR inhibitors.49−52 For example, one recently
published work used the support vector machine (SVM) as a
virtual screening strategy to identify novel mTOR inhibitors,
which can supply some candidates for mTOR anticancer
drugs.50 Kumari et al. also suggested that an imbalance
between the numbers of active and inactive compounds in a
public database could impair the result of machine learning
prediction. Therefore, they used the technique called SMOTE
to balance the mTOR inhibitor data from ChEMBL and
demonstrated the improved prediction by various machine
learning models.53 Anderson et al. applied a Bayesian machine
learning model to search for inhibitors of chordoma, a rare
type of cancer, and found that the mTOR inhibitor AZD2014
is the most effective candidate.54 Another work employed
pharmacophore modeling to create a structure-based pharma-
cophoric model, which is a useful tool for discovering small
molecules. Then, combined with molecular dynamics (MD)
simulations, the most important interactions occurring in the
ternary complex FKPB12−rapamycin−FRB were revealed as
an essential step for the mTOR inhibition.51

It should be noted that there is considerable inconsistency in
the data associated with the chemical structures, as they have
been contributed by more than a hundred organizations.
Moreover, the positive data contained substances from several
subgroups, including the first, second, and other generations of
mTOR inhibitors with different inhibition mechanisms that
should cause uncertainty for the training set. Therefore, the
difficulty could be circumvented by preprocessing the data
with principal component analysis (PCA). Based on the
filtered data through PCA, a deep learning model was
constructed and trained to identify novel bioactive compounds
from BACMUSHBASE, a database of compounds from
mushrooms found in Thailand (http://bacmushbase.sci.ku.ac.
th/), as potent mTOR inhibitors, analogous to rapamycin and
the first-generation mTOR inhibitors (rapalogs). Then,

molecular docking and atomistic molecular dynamics simu-
lations were performed on the predicted compound candidates
with high active probability to obtain the structural detail of
ternary complex formation with FKPB12 and FRB domains
and to verify the deep learning prediction. Therefore, this
study aims to identify the natural compounds with excellent
mTOR kinase inhibitory potency and to provide a basic
understanding of the molecular mechanism for one of the
downstream regulations of the mTOR pathway to support the
discovery of new kinase-targeting drugs.

2. COMPUTATIONAL METHODS
2.1. mTOR Inhibitor Data Set. A list of compounds tested

against the activity of mTOR from PubChem55,56 (NCBI gene
ID: 2475) contains 4866 compounds as “active” (has an
inhibitory effect against mTOR) and 48328 compounds as
“inactive” (has no inhibitory effect against mTOR) as of 18
November 2020. The “active” compound list contains all
generations of mTOR inhibitors. To select only compounds
whose structures are similar to the first-generation mTOR
inhibitors (rapalogs), 75 per-atom features were extracted from
each mTOR active compound using the ConvMolFeaturizer()
command from the DeepChem package. Chemical features
presented in the binary vectors, e.g., atom type, degree, implicit
valence, formal charges, hybridization type, aromaticity, and
total number of hydrogens, enabled us to interpret the
outcomes from screened data. The per-atom feature matrix was
then incorporated into the structural information by
calculating

H A I F( )= + · (1)

where A is the adjacency matrix N × N of the molecule with N
atoms, I is the identity matrix, F is the per-atom feature matrix
N × 75, and H is the matrix N × 75, whose representation of
each atom is a sum of its neighboring atoms’ features. The
atom-level features in the matrix H were then pooled by
averaging feature values over all atoms in the molecule,
resulting in a vector 1 × 75 that contains a molecule-level
fingerprint of each mTOR active compound. Finally, principal
component (PC) analysis was performed on the fingerprint
vectors to project the 75-dimensional features onto the first
and second principal components (PC1 and PC2). The initial
data set of active compounds from PubChem contains all
generations of mTOR inhibitors. Here, only compounds whose
structures are similar to the first-generation mTOR inhibitors
based on the Euclidean distance on the PC coordinates were
selected as the “positive” data set for the deep learning model
(DL). Specifically, 900 compounds with the nearest distances
to the centroid of 10 known rapalogs on the PC coordinates
were chosen. Meanwhile, the mTOR-inactive compound data
from the PubChem database (as of 18 November 2020) was
used as the “negative” data set for the DL.

2.2. Deep Learning Model and Prediction on the
mTOR Bioactivity. The positive and negative data sets were
combined, shuffled, and used to train a deep learning model
which was created by the commands in the Deepchem
package.57 The model consisted of a graph convolutional layer
(GraphConv) of 64 nodes with batch normalization
(layers.BatchNormalization) and graph pooling (GraphPool),
followed by a hidden layer of 128 nodes with batch
normalization (layers.BatchNormalization). A data dropout
(layers_dropout) was performed for each training with a
dropout rate of 0.2. The model was trained with an optimized
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learning rate of 0.001. A 5-fold cross-validation was performed
to evaluate the performance of the deep learning model.
Finally, due to the stochastic nature of the learning algorithm,
the whole data set (900 positive and 900 negative data points)
was used to train three replicas of deep learning models. Then,
the three independently trained deep learning models were
employed to predict “active” probability scores for compounds
from the BACMUSHBASE database. Compounds that
achieved top-ranking consensus across all three models were
selected for further validation by structural methods.

2.3. Molecular Docking. From the previous step, our deep
learning model screened a number of compounds based on the
similarity of chemical properties to those of the mTORC1
active compounds from the BACMUSHBASE database.
However, the deep learning model could not confirm whether
the screened bioactive compounds could bind to the active site
of the target protein. Therefore, molecular docking calculations
were performed to verify that the screened compounds could
bind to the target protein at the native binding site. In this
research, the AutoDock 458,59 was used to perform all
molecular docking calculations, including the calculations of
binding energy between the target protein and the compounds
screened by the deep learning model with a predicted
probability greater than 95%. Atomistic coordinates of an
FKBP12−FRB complex with rapamycin were obtained from
the protein databank (PDB 1FAP) before the coordinates of
rapamycin were removed. Meanwhile, the atomistic coordi-
nates of the compounds screened by the deep learning models

were obtained from the PubChem database. During each
molecular docking calculation, steric repulsion and hydro-
phobic or hydrogen bonding interactions were classified from
the PDBQT coordinate files of protein target mTOR, and a
screened bioactive compound with a combined knowledge-
based and empirical binding energy score was provided. Then,
the Iterated Local Search global optimizer implemented within
AutoDock 4 was used to search for the most favorable binding
mode of the bioactive compound on a protein target mTOR
with the lowest binding energy score. For each docking
calculation, a 30 × 30 × 30 Å3 dimension box was defined at
the midpoint of the FKBP12−FRB interfacial region to limit
the configuration space for only productive binding modes.
After that, each docked configuration was visualized for the
details of hydrogen bonding and hydrophobic interaction
networks by the LigPlot software.60,61

2.4. Molecular Dynamics Simulations. A series of all-
atom molecular dynamics (MD) simulations were performed
for ternary complexes, each involving FKBP12−FRB domains
and rapamycin or a screened compound docked within a
binding cleft formed at the interface between FKBP12 and
FRB to fully investigate the intermolecular interaction network,
where protein dynamics and solvation effects were taken into
account. Atomistic coordinates of each ternary complex were
obtained from the best binding mode obtained from the
molecular docking calculation. All molecular structures were
parametrized by the GROMOS54A7 force field.62 Partial
charge distribution on each atom within a screened compound

Figure 1. Combined deep learning and molecular modeling workflow to identify candidate mTOR inhibitors from natural compounds found in
Thai mushrooms.
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was determined by the Automated Topology Builder (ATB)
web server tool,63 where a semiempirical QM calculation by
the MOPAC program was performed. After that, each system
of ternary complexes was explicitly solvated by simple point-
charge (SPC) solvent molecules64 and a number of Na+ or Cl−
counterions so that the total charge of the system was zero.
Then, energy minimization was performed, followed by 1 ns
simulated annealing that linearly increased the temperature
from 100 to 300 K. After that, a 50 ns productive MD run was
performed within an NPT ensemble under a constant
temperature of 300 K regulated by the velocity-rescale
algorithm and constant pressure of 1 atm regulated by the
Parrinello−Rahman barostat.65 Particle mesh Ewald (PME)72

treatment with a periodic boundary condition (PBC) and the
10 Å cutoff distance was employed. Holonomic constraints by
the P-LINC algorithm66 were applied for covalent bonding
with hydrogen atoms, which allowed the use of 2 fs time step.
All MD simulations were performed by the GROMACS 5.1.2
package.67 After all simulations were finished, root-mean-
square deviation (RMSD) for global conformational change of
proteins and for the motion of docked compounds relative to
the proteins were calculated along the trajectory, and per
residue root-mean-square fluctuations (RMSF) of C-α atomic
positions were calculated from the last 50 ns of each
simulation. Binding free energy between the protein complex
and the docked compound contributed by electrostatics, van
der Waals, and solvation was further investigated through the
MM/PBSA calculation by the g_mmpbsa package68 along each
MD trajectory of ternary complexes. For each calculation,
dielectric constants of proteins and water were set to 4 and 80,
respectively, and the surface tension of the solvent was set to
0.0226778 kJ/(mol Å2). Also, the contribution of each amino
acid residue was considered to identify the important binding
sites within the FKBP12−FRB protein interface.

3. RESULTS
3.1. Data Filtering via Principal Component Analysis

for Deep Learning Model Training. The overall virtual
screening workflow in this study is illustrated in Figure 1. First,
known inhibitors and noninhibitors of mTOR were retrieved
from PubChem (NCBI gene ID: 2475). The primary data set
revealed 4866 compounds as active (has an inhibitory effect
against mTOR) and 48328 compounds as inactive (has no
inhibitory effect against mTOR) as of 18 November 2020.
Principal component analysis (PCA) was performed on the
data set consisting of 75 molecular descriptor features
extracted by the graph convolution technique for all 4866
active compounds. The projection of the 75-feature molecule
fingerprint of the active compounds on the first two principal
components (PC1 and PC2) in Figure 2 clearly displayed the
clustering of 10 known rapalogs (red dots in Figure 2). Then,
the projected data of 900 compounds (blue dots in Figure 2)
with shortest distances from the centroid of 10 rapalogs (red
cross in Figure 2) in the PC1−PC2 space were classified as the
positive data set with relatively high structural similarity to the
rapalogs. Meanwhile, the negative data set contains the
randomly selected 900 compounds out of 48 328 compounds
labeled as inactive mTOR inhibitors.

3.2. Active Compound Selection by a Deep Neural
Network Classification and Molecular Docking Calcu-
lations. 3.2.1. Deep Learning Model Exhibited the
Importance of Steroid Core Structures. The combined and
shuffled positive and negative data sets of 1800 molecules with

75-feature molecule fingerprints were used for training a deep
learning model that predicts the probability of finding an
individual compound within the “active” class for mTOR
inhibition. A 5-fold cross-validation was performed to estimate
the model performance, for which the ROC-AUC score was
0.9970 ± 0.0009 for the training data sets and 0.9917 ± 0.0019
for the testing data sets. Then, due to the stochastic nature of
the learning algorithm, three independent deep learning
models were trained by the same data set (1800 data points)
to predict the probability score for finding each of 589
compounds from the BACMUSHBASE database (http://
bacmushbase.sci.ku.ac.th/) in the “active” class. Fifty com-
pounds with the highest “active” probability were retrieved
from each model. Among the top 50 compounds from each
model, six compounds appeared across all three models
(Figure 3 and Table 1). Structural representations of
rapamycin and the six potential alternatives in Figure 3
showed that all predicted candidates consisted of the steroid
core structures. Moreover, 5 of 6 compounds were found in
Ganoderma lucidum.

3.2.2. Molecular Docking Underestimated the Binding
Energy of Compounds Within Ternary Complexes: Relaxa-
tion Needed. In order to verify the prediction results from
deep learning, molecular docking calculations were performed
to search for the favorable binding posture between the protein
complex and the screened compounds (FKBP12−FRB
compound). Moreover, docking calculations were also
performed to investigate the interactions of FKBP12
compound and FRB compound for each of the six candidate
molecules. From the docking calculations results in Table 1, six
candidate compounds with the steroid core structure were with
the predicted binding affinity between the compound and the
FKBP12−FRB complex from −10.02 to −11.31 kcal/mol.
Meanwhile, the binding affinity with only the FKBP12 part
ranged from −6.66 to −7.77 kcal/mol, and the binding affinity
with only the FRB part ranged from −7.11 to −9.57 kcal/mol.

An additional molecular docking calculation was performed
for rapamycin. It was found that the binding affinity to the
FKBP12−FRB complex (−21.17 kcal/mol) and both isolated
proteins (−12.19 and −10.12 kcal/mol) was significantly
higher than all of the predicted compounds. It could be
explained that the crystallographic structure of a rapamycin-

Figure 2. Projection of the 75-feature molecule fingerprint of the
active mTOR inhibitors from PubChem on the first two principal
axes. Red dots, a red cross, and blue dots are 10 rapalog data points,
the centroid of the red dots, and 890 nearest data points from the
centroid, respectively.
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bound FKBP12−FRB complex was with the most suitable
binding pocket conformation for rapamycin. Therefore,
atomistic molecular dynamics simulations should be performed
to better accommodate the binding of other predicted
compounds by allowing for conformational relaxation at the
interfacial region of the FKBP12−FRB complex.

3.3. MD Simulations to Elucidate the Binding
Mechanisms of Selected Compounds. To investigate the
binding mechanisms of the predicted compounds at the
interfacial region of the FKBP12−FRB complex by atomistic
MD simulations, a representative compound with the highest
probability score/binding energy score was chosen from each
of the two different organisms: butyl ganoderic acid B from G.
lucidum and trihydroxysterol from L. polychrous Lev. (IUPAC
name: (3β,5α,6β,22E,24R)-Ergost-22-ene-3,5,6-triol). Butyl
ganoderic acid B was preferred over butyl ganoderic acid A

due to its significantly better binding energy score from
molecular docking. A reference simulation was performed for
binding of rapamycin with the protein complex. For each
compound, the best-docked configuration with the highest
binding affinity was chosen as the starting structure for the
atomistic MD simulations. After a 50 ns production MD run,
conformational analysis was performed for each trajectory file.
Figure 4a,b displays the root-mean-square deviation (RMSD)
calculated for global conformational changes of the FKBP12
and FRB structures, respectively, from all three simulations of
ternary complexes. The RMSD of FKBP12 structures from all
three simulations was found in the range between 0.2 and 0.3
nm, while the RMSD of FRB domains was found between 0.18
and 0.25 nm, signifying global structural changes from X-ray
crystallography. Fluctuation of the protein RMSD values
observed near the beginning and the end of the simulation

Figure 3. Structural representation of six compounds with predicted “active” class whose probability scores were ranked within the top 50 in
consensus among three deep learning models.

Table 1. List of Six Compounds with Consensus Predictions as Top-Ranked “Active” Class by Three Deep Learning Modelsa

binding energy (kcal/mol)

name source log (prob) FKBP12−FRB FKBP12 FRB (mTOR)

rapamycin known inhibitor N/A −21.17 −12.19 −10.12
trihydroxysterolb Lentinus polychrous Lev. −1.50 × 10−5 −10.08 −7.39 −9.37
butyl ganoderic acid A G. lucidum −1.57 × 10−5 −10.02 −7.75 −7.18
butyl ganoderic acid B G. lucidum −1.71 × 10−5 −11.29 −6.66 −7.11
ganoderic acid C2 G. lucidum −2.78 × 10−5 −9.81 −6.33 −7.16
cerevisterol G. lucidum −3.64 × 10−5 −10.85 −7.54 −9.57
methyl ganoderate A G. lucidum −3.73 × 10−5 −11.31 −7.64 −7.15

aThe table displays the log probability of being an active compound (log Prob) predicted by deep learning and the binding free energy predicted by
molecular docking calculations of the six compounds in comparison with rapamycin. bIUPAC name: (3β,5α,6β,22E,24R)-Ergost-22-ene-3,5,6-triol.
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with trihydroxysterol was contributed by flexible loops far from
the ligand-binding site, as shown in the root-mean-square
fluctuation (RMSF) profiles from Figure 4c. From Figure
4c,4d, RMSF profiles were calculated for each amino acid of
FKBP12 (Figure 4c) and FRB (Figure 4d) from all three
simulations. Regions highlighted in both figures represented
important binding regions for rapamycin and other com-
pounds (FKBP12: residues 36, 37, 46, 53−59, 90, and 91;
FRB: residues 2039 and 2098−2108). Butyl ganoderic acid B
displayed relatively higher RMSF values around the binding
residues compared to those of trihydroxysterol and rapamycin.
Interestingly, despite a relatively high RMSF profile of
trihydroxysterol at a number of flexible regions (especially
around residues 2060−2080 in the FRB domain), trihydrox-
ysterol had a relatively low RMSF profile at all binding regions,
signifying high binding stability. This was confirmed through
the RMSD calculation for ligand positions shown in Figure 4e.
The RMSD for each compound in Figure 4e was calculated

relative to the starting structure from the best docking mode,
while the translational and rotational motions of the proteins
were removed. Changes observed in the RMSD profile of butyl
ganoderic acid B signified the continuous movement of the
ligand from the docked regions. Meanwhile, RMSD profiles of
rapamycin and trihydroxysterol displayed significant changes
only at the beginning of production runs and shortly became
equilibrated, signifying that the ligands were displaced from the
binding sites predicted by molecular docking to another stable
binding site when exposed to explicit solvent. Furthermore, the
smaller radius of gyration when the two predicted compounds
were introduced into the FKBP12−FRB complex instead of
rapamycin (Figure 4f) suggested that the ternary complex
became more compact, which could promote protein−protein
interactions.

3.4. Interaction Analysis: Roles of Steroid Cores and
Other Functional Groups. 3.4.1. Contributions of Extra
Hydrophobic Contacts and Polar Solvation. Table 2 displays

Figure 4. Conformational analysis from three 50 ns MD trajectories of rapamycin and the two selected compounds binding with the FRB−FKBP12
complex. (a) RMSD of the FKBP12 protein compared to the starting structure, (b) RMSD of the FRB protein compared to the starting structure,
(c) RMSF per residue of the FKBP12 protein, (d) RMSF per residue of the FRB protein, (e) RMSD of each compound compared to the starting
binding configuration, and (f) radius of gyration representing the compactness of each system.
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the binding free energy calculated by the MM/PBSA method
between pairs of molecules within all three MD trajectories of
ternary complexes with rapamycin and two selected com-
pounds: butyl ganoderic acid B from G. lucidum and
trihydroxysterol from L. polychrous Lev. The “protein−
compound” binding energy for each ligand molecule was
contributed by van der Waals, electrostatics, polar solvation,
and nonpolar solvation terms. The strongest total binding free
energy was found for rapamycin and trihydroxysterol from L.
polychrous Lev., and the slightly weaker binding was found for
butyl ganoderic acid B. According to Table 2, the major
interactions for all three simulations of FKBP12−FRB
compounds were the van der Waals interactions contributed
by hydrophobic contacts. From the decomposition of MM/
PBSA binding free energy at some important residues (with
binding energy <−3 kJ/mol) shown in Table 3, three common
binding sites were found between the compounds and the FRB
domain of the mTORC1 complex at the hydrophobic residues
Phe2039, Trp2101, and Tyr2105 for all simulations, while the
common binding sites were found between the compound and
three hydrophobic residues Phe46, Ile56, and Trp59 of the

FKBP12 protein. Despite missing Tyr26 and Ile90 for
additional hydrophobic contacts, extra binding sites were
found at residues Tyr82, Lys52, and Arg2036 for rapamycin,
which contributed to its strongest hydrophobic interactions
along with the strongest FKBP12 interaction at Ile56 and the
FRB interaction at Phe2039. Meanwhile, trihydroxysterol from
L. polychrous Lev. displayed the strongest FKBP12 interaction
at Phe46 and Ile90.

Despite the strongest van der Waals interaction between the
FKBP12−FRB complex and rapamycin due to the largest
number of hydrophobic contacts, the largest surface contact
between rapamycin and the proteins resulted in the loss of
polar solvation energy. The binding free energy loss of 135 ±
27 kJ/mol for rapamycin (combining both polar and nonpolar
solvation terms) was significantly higher than the 57 ± 11 kJ/
mol binding free energy loss for trihydroxysterol from L.
polychrous Lev. so that the total binding free energies of
rapamycin and trihydroxysterol became similar. Moreover, the
binding of the FKBP12−FRB complex with trihydroxysterol
with the lowest molecular mass and binding surface area
corresponded to the strongest protein−protein interaction
between FKBP12 and FRB, which could positively affect the
mTORC1 kinase inhibition.

3.4.2. Chemical Features of Rapamycin and Selected
Compounds Affect Interaction Networks. Figure 5 illustrates
the interactions between a FKBP12−FRB complex and a
rapamycin molecule. A schematic representation of rapamycin
in Figure 5a shows that rapamycin is a macrocyclic lactone
containing an ester group (−(C�O)O−) at the carbon
position 1, along with three aliphatic rings about the ester
group capable of hydrophobic contacts, and three ketone
groups (−(C�O)−) capable of hydrogen bonding. The
opposite side of the macrocyclic ring from the ester group
contains a long strand of a terpene-like hydrophobic chain
(carbon positions 17−25) of three methyl groups and three
alkene groups between two methoxy groups (−O−CH3) at
carbon positions 16 and 27. The X-ray crystallographic data of
the FKBP12−FRB−rapamycin tertiary complex (PDB ID:
1FAP69) in Figure 5a showed that FKBP12 was bound with
the three aliphatic rings of rapamycin and that FRB was bound
with the long hydrophobic strand (see Figure 5b). Figure 5c
displays the important binding residues containing 13
hydrophobic contacts and four hydrogen bonds formed
between the FKBP12−FRB complex and rapamycin in the
crystal structure.

After the starting structure from X-ray crystallographic data
was subjected to explicit solvation under a 50 ns MD
simulation (see Figure 6a), all interactions from the crystallo-
graphic data were conserved, and additional hydrophobic
contacts at Ile90 and Leu2031 were observed. An important
binding characteristic of rapamycin observed both directly

Table 2. Contribution of van der Waals, Electrostatics, Polar Solvation, and Nonpolar Solvation to the Binding Free Energy of
the Compounds to the FRB−FKBP12 Complex Calculated by the MM/PBSA Method for All Three Atomistic MD
Simulationsa

MM/PBSA energy (kJ/mol): protein−compound

name van der Waals electrostatics
polar

solvation
nonpolar
solvation total

MM/PBSA energy (kJ/mol): FKBP12−FRB
domain

rapamycin −321 ± 15 −36 ± 23 176 ± 25 −41 ± 2 −222 ± 21 −192 ± 70
butyl ganoderic acid B −238 ± 16 −27 ± 14 101 ± 15 −27 ± 2 −191 ± 18 −289 ± 140
trihydroxysterol −263 ± 12 −22 ± 10 82 ± 10 −25 ± 1 −227 ± 15 −393 ± 106
aMM/PBSA binding free energy for the FRB−FKBP12 interaction was also calculated.

Table 3. Per Residue Binding Free Energy from the
Decomposition of MM/PBSA Results from All Three MD
Simulationsa

FKBP12−FRB
residue

butyl ganoderic acid B
(kJ/mol)

trihydroxysterol
(kJ/mol)

rapamycin
(kJ/mol)

TYR 26 −5.99 −3.88 −2.93
PHE 36 −3.57 −2.51 −4.07
PHE 46 −5.37 −8.01 −4.31
LYS 52 1.52 −1.01 3.84
GLU 54 −1.87 3.99 7.83
VAL 55 −6.04 −4.00 −6.53
ILE 56 −5.91 −4.46 −10.75
ARG 57 2.60 1.59 5.06
TRP 59 −4.81 −4.25 −3.43
TYR 82 −1.77 −1.08 −3.43
ILE 90 −6.51 −9.60 −1.88
PHE 99 −2.88 −2.73 −2.47
GLU 107 −1.34 −0.01 0.92
LEU 2031 −0.04 −2.71 -3.66
ARG 2036 −0.46 −0.18 -6.42
PHE 2039 −6.45 −6.47 −12.31
GLY 2040 −0.38 −0.05 -3.37
THR 2098 −1.63 −3.43 −0.60
TRP 2101 −4.59 −6.90 −5.66
TYR 2105 −9.22 −10.51 −11.24
PHE 2108 −1.04 −3.56 −5.13

aOnly residues with binding free energy lower than <−3 kJ/mol are
highlighted through the bold and italic text.
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from the crystallographic data and after an MD simulation is
the binding of an aliphatic ring at carbon positions 37−42
containing a hydroxy and a methoxy group with both FRB and
FKBP12. For the two selected compounds in Figure 6b,c, it
was found that one of the ring structures from each compound
served as common binding sites to both FRB and FKBP12,
while the steroid core of both butyl ganoderic acid B and
trihydroxysterol was also found interacting with the FKBP12,
analogous with the three aliphatic rings within the rapamycin.
The terpene-like hydrophobic chain of rapamycin interacting
with the FRB side was, in turn, mimicked by the tail structure
of each selected compound in Figure 6b,6c. Considering the
interaction networks along with the MM/PBSA energy
decomposition in Table 3, it was found that there was a
greater number of binding residues between the FRB side
(residues 2031−2108) and trihydroxysterol than between
butyl ganoderic acid B. The tail structure of trihydroxysterol
was the shortest among other compounds and contained no
hydrogen bonding sites; however, it corresponded to the
strongest binding free energy as the steroid core was involved
in the interactions with both FRB and FKBP12 sides.

3.5. Druglikeness Evaluation for the Candidate
Compounds. Finally, the druglike properties of trihydrox-
ysterol and butyl ganoderic acid B were retrieved from the
BACMUSHBASE database and are shown in Table 4. The
analysis showed that each candidate violates only one rule
(log P of trihydroxysterol = 5.32 and the molecular weight of
butyl ganoderic acid B = 572.77 g/mol). The profiles indicate
that both compounds have the potential for further drug
development.

4. DISCUSSION
In many Asian countries, mushrooms and their extracts have
been long used as traditional medicine with antioxidant,
antipathogenic, antitumoral, and immuno-modulating ef-
fects.70−72 The present work identified several compounds
containing ring groups with steroid cores from G. lucidum and
L. polychrous Lev., with possible inhibitory effects on mTOR. A
previous study has shown that ergostanoids extracted from L.
polychrous Lev. possessed a moderate antiproliferation effect on
oestradiol-enhanced T47D breast cancer cells73 and those
extracted from G. lucidum have been widely shown to have
cytotoxic activities against many cancer types.74

In this study, a combination of machine learning and
structural modeling tools was used in a search for potential
active compounds for the mTOR complex from natural
products. Deep learning models were built based on previous
experimental data of the bioactivity. The performance of the
deep learning model was enhanced through data filtering after
a principal component analysis (PCA) that projected the data
with extracted chemical features onto the principal compo-
nents. The closeness observed between rapamycin and the
group of rapalogs in the chemistry space could guide filtering
for more compounds with similar chemical properties,
reducing the uncertainty of mixing bioactive compounds
with different inhibition mechanisms.

Table 5 displays the three most significant loadings or
components of eigenvectors of the first three PC modes.
Projection of feature vectors extracted from molecules within
the data set on the PC1 axis represented the proportion of
atoms with the sp3 hybridization, which opposed the
proportion of atoms with the sp2 hybridization and hydro-
phobicity. High proportion of sp3 found for the first-generation

Figure 5. (a) 3D-structure of the FRB−FKBP12−rapamycin tertiary complex from X-ray crystallographic data, (b) schematic representation of a
rapamycin molecule, and (c) interaction network between the FRB−FKBP12 complex and rapamycin analyzed from X-ray crystallographic data.
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mTOR inhibitors was in concurrence with the large proportion
of aliphatic structures and the absence of an aromatic ring from
the molecular structure of rapamycin. The high score on the
PC2 axis represented the high proportion of heavy atoms with
only one connection with other heavy atoms (degree = 1),
corresponding to the branching groups of rapamycin. As the
carbonyl (C�O) group had both degree = 1 for heavy atom

connections and no covalently bonded hydrogen atom (total
number of hydrogens = 0 and implicit valence = 0), the lower
score of zero hydrogen connection corresponded to the lower
amount of C�O groups in rapamycin and other first-
generation mTOR inhibitors. Finally, the PC3 axis displayed
whether the molecules contained a high number of oxygen or
nitrogen atoms, for which the first-generation mTOR
inhibitors tended to contain a higher oxygen proportion and
the second-generation mTOR inhibitors tended to contain a
higher nitrogen proportion. Therefore, the first-generation
mTOR inhibitors were separated from the others through their
aliphaticity (PC1) and hydrocarbon branch structure (PC2)
and the training data set was created based on this primary
screening scheme.

A remarkable pattern was observed from the virtual
screening by the trained deep learning model as most of the
compounds with high “active” probability scores were found to
involve a “steroid core” as an essential molecular feature.
Moreover, the majority of the top candidates were the
compounds extracted from G. lucidum, for which each
ganoderic acid and its derivatives contained a steroid core.
Apart from G. lucidum, trihydroxysterol from L. polychrous Lev.
also displayed strong potential as a bioactive compound that
facilitates mTOR kinase inhibition. It could also be seen from
Table 5 that trihydroxysterol and butyl ganoderic acid B
displayed most features in common with the first-generation
mTOR inhibitors, except by slightly lower amounts of C�O
groups and oxygen proportion.

Figure 6. Interaction networks between the FRB−FKBP12 complex with (a) rapamycin, (b) butyl ganoderic acid B, and (c) trihydroxysterol after
50 ns MD simulations.

Table 4. Druglikeness Properties of the Candidate
Compounds and Rapamycina

property (rule) trihydroxysterolb
butyl ganoderic

acid Bc rapamycind

molecular weight
(<500 g/mol)

432.68 572.77 914.19

number of H-bond
acceptors (≤10)

3 7 14

number of H-bonds
donors (≤5)

3 2 3

number of rotatable
bonds (≤10)

4 10 6

log P (≤5) 5.23 4.72 4.92
polar surface area
(≤140 Å2)

60.69 117.97 195.45

aThe properties that violate the rule are marked in bold. bProperties
were retrieved from BACMUSHBASE (http://bacmushbase.sci.ku.ac.
th/properties.php?CID=34002) (accessed February 6, 2023). cPro-
perties were retrieved from BACMUSHBASE (http://bacmushbase.
sci.ku.ac.th/properties.php?CID=1140) (accessed February 6, 2023).
dProperties were predicted by the Molinspiration Property Calcu-
lation Service (www.molinspiration.com) (accessed February 6,
2023).
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5. CONCLUSIONS
To provide further validation of the prediction results by deep
learning in a structural aspect, molecular docking calculations
and all-atom molecular dynamics simulations were performed
for some top candidate compounds screened by the “active”
probability score. It has been known that rapamycin forms a
ternary complex with the FK506-binding protein (FKBP12)
and the FKBP12−rapamycin binding (FRB) domain, thus
inhibiting the kinase activity of an mTORC1 complex.
Therefore, intermolecular interactions were investigated for
both the compound FKBP12 and compound FRB sides to
address how each compound candidate could stabilize the
ternary complex during kinase inhibition. Analogously,
rapamycin and all of the screened compound candidates
contained ring groups and steroid cores that mostly interacted
with FKBP12, along with terpene-like chains that interacted
with FRB. However, trihydroxysterol from L. polychrous Lev.
displayed a rather small but effective interaction network that
also facilitated FKBP12−FRB interactions and further
stabilized the ternary complex. Therefore, combining informa-
tion from machine learning, structural modeling, and drug-
likeness analyses, trihydroxysterol from L. polychrous Lev. and
butyl ganoderic acid B from G. lucidum could be interesting
alternatives to rapamycin and rapalogs for mTOR kinase
inhibition and the downstream regulations of the mTOR
pathway.
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Table 5. Important Molecular Descriptor Features from the First Three Principal Componentsa

feature index
(loading) description

average score from 10
Gen-1 inhibitors

average score from 9
Gen-2 inhibitors

trihydroxysterol (our
candidate)

butyl ganoderic acid B
(our candidate)

PC1 feature 67
(0.378)

hybridization = sp3 2.11 ± 0.09 0.63 ± 0.39 2.97 2.29

PC1 feature 66
(−0.390)

hybridization = sp2 0.98 ± 0.11 2.59 ± 0.38 0.23 0.85

PC1 feature 70
(−0.375)

is aromatic 0.06 ± 0.13 2.21 ± 0.44 0.0 0.0

PC2 feature 46
(0.396)

degree = 1 0.90 ± 0.07 0.44 ± 0.07 0.84 1.02

PC2 feature 71
(0.298)

total number of
hydrogens = 0

0.93 ± 0.06 1.72 ± 0.14 0.32 1.17

PC2 feature 56
(0.293)

implicit valence = 0 0.93 ± 0.06 1.73 ± 0.14 0.32 1.17

PC3 feature 2
(0.426)

is a N atom 0.05 ± 0.06 0.56 ± 0.20 0.0 0.0

PC3 feature 3
(−0.189)

is an O atom 0.65 ± 0.05 0.25 ± 0.13 0.26 0.63

aFeature vector components of interest were compared between two generations of inhibitors and the screened candidate in this study.
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