
nutrients

Review

Lipid Composition, Digestion, and Absorption Differences
among Neonatal Feeding Strategies: Potential Implications for
Intestinal Inflammation in Preterm Infants

Kathryn Burge , Frederico Vieira , Jeffrey Eckert and Hala Chaaban *

����������
�������

Citation: Burge, K.; Vieira, F.; Eckert,

J.; Chaaban, H. Lipid Composition,

Digestion, and Absorption

Differences among Neonatal Feeding

Strategies: Potential Implications for

Intestinal Inflammation in Preterm

Infants. Nutrients 2021, 13, 550.

https://doi.org/10.3390/nu13020550

Academic Editor: Steven McElroy

Received: 11 January 2021

Accepted: 5 February 2021

Published: 8 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Section of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health
Sciences Center, 1200 North Everett Dr., Oklahoma City, OK 73104, USA; kathryn-burge@ouhsc.edu (K.B.);
frederico-vieira@ouhsc.edu (F.V.); jeffrey-eckert@ouhsc.edu (J.E.)
* Correspondence: hala-chaaban@ouhsc.edu

Abstract: Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality in the
neonatal population. Formula feeding is among the many risk factors for developing the condition, a
practice often required in the cohort most often afflicted with NEC, preterm infants. While the virtues
of many bioactive components of breast milk have been extolled, the ability to digest and assimilate
the nutritional components of breast milk is often overlooked. The structure of formula differs from
that of breast milk, both in lipid composition and chemical configuration. In addition, formula lacks
a critical digestive enzyme produced by the mammary gland, bile salt-stimulated lipase (BSSL).
The gastrointestinal system of premature infants is often incapable of secreting sufficient pancreatic
enzymes for fat digestion, and pasteurization of donor milk (DM) has been shown to inactivate BSSL,
among other important compounds. Incompletely digested lipids may oxidize and accumulate in
the distal gut. These lipid fragments are thought to induce intestinal inflammation in the neonate,
potentially hastening the development of diseases such as NEC. In this review, differences in breast
milk, pasteurized DM, and formula lipids are highlighted, with a focus on the ability of those lipids
to be digested and subsequently absorbed by neonates, especially those born prematurely and at risk
for NEC.
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1. Introduction

Necrotizing enterocolitis (NEC) is a common gastrointestinal emergency in preterm
infants (<37 weeks gestational age [GA]) [1]. Pathogenesis of this inflammatory disease is
complex and incompletely understood, but the initiation of enteral feeding often directly
precedes the development of NEC [2], potentially highlighting the importance of feed
composition, dosing, and timing [1,3]. NEC is characterized by a multifactorial profile of
risk factors, including prematurity, antibiotic use, and formula feeding [4], but a diet of
human breast milk (HM) is known to be protective against NEC. An exclusively HM diet
is associated with a NEC incidence six to ten times lower than that of preterm infants fed
exclusively formula [5], while an exclusively human donor milk (DM) diet affords nearly
an 80% reduction in risk [6]. While the nutritional and caloric composition of preterm
formulas often mimic that of HM, formula feeds lack many of the bioactive components
of HM thought to provide immunological and developmental benefits to the infant [7].
In addition, the digestive enzyme bile salt-stimulated lipase (BSSL), which facilitates the
assimilation of milk lipids [8], is entirely absent in formula [9], resulting in a higher fecal
lipid loss in preterm infants fed exclusively formula as compared with those on a mixed
diet of HM and formula [10]. This impaired absorption of lipids in formula-fed infants
harms the growth potential of these neonates, already requiring a growth rate double
that of term infants [11]. In this review, lipid digestion is considered in term and preterm
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infants, with a focus on differences in dietary lipid composition and structuring, as well
as absorption, among feeding strategies utilized in preterm infants. Additionally, these
disparities are related to potential gastrointestinal consequences in the premature newborn,
especially as it relates to intestinal inflammation and the risk for developing NEC.

2. Structural, Compositional, and Digestive Differences of Lipids in Neonatal
Enteral Nutrition

As a rich source of bioactive compounds and nutrition, HM is widely accepted as the
ideal food for infants, including for those born prematurely [12]. The lipid component of
HM provides energy, and also critical fat-soluble vitamins [13]. The composition, quantity,
and structure of lipids provided through available neonatal feeding strategies often differ
significantly, with potentially important effects on infant health and development [14].
Furthermore, these differences among dietary strategies are not static, as the fat quantity
and composition of HM, for example, changes throughout lactation [15], differs according
to daily maternal diet [16], and fluctuates even during the brief interval of an individual
feed [17].

Lipids of both HM and formula are structured within complex oil-in-water emulsions,
referred to as milk fat globules (MFGs). Human MFGs are structurally composed of triglyc-
erides (TGs), found in the core of the MFG, encased by a distinctive triple layer (inner
single layer and outer double layer) biological membrane of primarily polar sphingolipids,
phospholipids, non-polar cholesterol, and membrane proteins [13,18]. These layers, to-
gether, comprise the MFG membrane (MFGM), and differ dramatically in composition
and function from those of formula. Human MFG inner membrane generally includes
high levels of phosphatidylethanolamine (PE), small amounts of phosphatidylinositol (PI)
and phosphatidylserine (PS), and fatty acid binding protein (FABP), while the outer bi-
layer is composed of phosphatidylcholine (PC), lipid rafts rich in sphingomyelin (SM) and
cholesterol, and a number of antioxidant enzymes, mucins, and immunoglobulins [13,19].
In contrast, MFGs of bovine-based formula are typically surrounded by a thick layer of
casein and whey proteins, with PC and limited PE from soybean lecithin added as sta-
bilizers [20,21] after the original MFGM is lost through processing [22]. These structural
differences in MFG configuration largely derive from the manufacturing processes asso-
ciated with formula production, particularly homogenization, which renders uniformly
sized MFGs of bovine-, goat-, or soy-based formula significantly smaller than the average
diameter of MFGs found in HM [13,23,24]. Furthermore, aggregates of denatured milk
proteins, a consequence of preventative microbiological heat treatment, often occur at
the surface of bovine-based formula MFGs [21]. In total, these compositional differences
between HM and formula MFGs lead to alterations of biophysical properties that are
likely not benign, as studies have repeatedly shown lipid droplet size influences rates of
lipolysis [25]. In preterm infants, in particular, TGs from MFGs in HM are hydrolyzed more
rapidly than smaller, protein-coated MFGs in infant formula [26], likely due to enhanced
digestive lipase access to the MFGs’ TG cores [27]. The polar phospholipid coating of
human MFGs is also thought to contribute to enhanced intestinal digestion of HM lipids
as compared with those of formula [28], while the phospholipid profile of bovine MFGs
appears to aid gastric lipase digestion as compared with that of soy [29].

Cholesterol within the MFGM lipid rafts contributes to levels in HM much higher
than those of formula [30,31]. While compensatory upregulation of de novo cholesterol
synthesis has been demonstrated in several infant feeding studies in response to formula
intake [32,33], plasma cholesterol concentrations and cholesterol synthesis rates, even
following substantial cholesterol supplementation [34], do not always mirror those of
breastfed infants [32,34]. The failure of supplementation to meet the physiological effects
of HM cholesterol is likely a result of differences in bioavailability of the sources, as well as
the complex regulation of cholesterol metabolism [35].

The TG core of the MFG, supplied via maternal mammary epithelial cell plasma
membranes, as well as fatty acid (FA) synthesis by the mammary gland, contains upwards
of 98% of the lipids present in HM [36]. While the TG content of preterm HM typically
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exceeds that of term HM [37], fat quantities of both sources increase developmentally
from colostrum to mature milk [15]. Mothers of preterm infants often produce higher
concentrations of saturated (SFA) and polyunsaturated (PUFA) fatty acids as compared
with mothers of term infants [38]. Roughly 40% of the TG content of term mature HM
is composed of monounsaturated FA (MUFA) [39], such as oleic acid, providing fluidity
within the MFG core [40]. SFA make up approximately 35–40% of TGs, with the remainder
of the TG core comprised of PUFA, largely n-6 [41]. In addition, preterm HM includes small
amounts of medium-chain FA (MCFA), a rapid energy source due to direct absorption into
the portal circulation [41]. Preterm formula often includes significantly more substantial
MCFA content than HM via inclusion of coconut oil [42]. The structures of triglycerides
present in human MFGs often differ from those in formula. Unlike those present in
vegetable oils, formula fat blends, or other human tissues [43,44], triglycerides synthesized
in the mammary gland are characterized by the preferential placement of long-chain SFA in
the inner sn-2 position, increasing absorption of these saturates in the neonatal intestine [45],
with unsaturated FAs occupying the sn-1 and sn-3 positions [46]. To best approximate the
lipid composition of HM, formula most often incorporates bovine fats and also vegetable
oil blends [13]. Unfortunately, while 70% of the palmitic acid of HM is esterified in the sn-2
position, only 45% of bovine palmitic acid, and less than 20% of vegetable oil palmitic acid,
is esterified similarly [47]. These structural differences among HM and formula TGs result
in absorption profiles which vary drastically depending upon the lipid source [48].

Human milk and formula contain the essential FAs, linoleic acid (LA, n-6), and α-
linolenic acid (ALA, n-3), as well as their conditionally essential long-chain PUFA (LCPUFA)
derivatives, arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic
acid (EPA). These LCPUFAs are well-recognized for their importance in preterm neurocog-
nitive and visual development (e.g., [49]). LCPUFAs comprise up to 15% of the total HM
TG content [18], and maternal diet accounts for substantial interindividual variability
in HM LCPUFA content [50]. LCPUFA levels in DM are often insufficient to meet the
needs of preterm infants as DM is frequently donated at a much later period of lactation
when LCPUFA concentrations have naturally declined [15]. Importantly, up to 20% of the
LCPUFA in HM is bound in phospholipids of the MFGM [51], the component of the MFG
most likely to be negatively affected by temperature variations or mechanical processing
inherent to milk banking. While inclusion of LA and ALA are mandated in infant formula,
incorporation of DHA, EPA, and AA, though recommended, are typically not [52], result-
ing in a wide variety of levels of these conditionally essential FAs, depending upon the
formula manufacturer [41]. Irrespective of the source, if infants cannot produce LCPUFAs
endogenously from their respective precursor molecules, dietary intake is unlikely to meet
the requirements of rapidly developing preterm infants [53,54]. Opinions are mixed as
to whether all preterm infants can effectively synthesize LCPUFAs [55,56], as there are
genetic differences in FA desaturase levels [57]. The ratio of LA to ALA, and by definition,
their metabolites, appears important. For example, low n-3/n-6 ratios in HM or formula
have been correlated with poor neurodevelopmental outcomes in infants [58,59]. The
relative importance of the n-3/n-6 ratio to preterm infant health as compared with absolute
amounts of LCPUFAs provided through the diet is currently debated [41,60].

When HM from the mother is not available, DM is often supplied as a source of
neonatal nutrition. In order to reduce the risk of pathogen transmission, milk banks
pasteurize DM and freeze it at −20 ◦C before use. The most common pasteurization
process employed, Holder method (30 min at 62.5 ◦C), denatures many of the bioactive
proteins found in HM [61], including BSSL [62], often resulting in suboptimal digestion
of lipids by the neonate [63]. In addition, heat from pasteurization threatens the integrity
of the donor MFGM, as phospholipids may be released from the outer lipid bilayer [64]
and protein aggregates often accumulate at the surface of the MFGM [65]. The effects
of phospholipid release and surface protein aggregation alter the size of the MFG, thus
influencing lipase kinetics. Studies have been mixed on the effects of Holder pasteurization
on the FA quantity of DM [66,67], but post-pasteurization freezing practices may disrupt the
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lipid structure of DM, with fat crystallization potentially puncturing the fragile MFGM [68].
While protein and lactose contents of DM are insignificantly altered with storage below
freezing, concentrations of both lipids, and thus calories, decrease with increasing time at
−20 ◦C [69]. Additionally, both pasteurization and storage at −20 ◦C are known to increase
the risk of LCPUFA oxidation [70,71], particularly harmful in the context of DM when
levels of both LCPUFA and intact antioxidants are already comparatively low [72]. In total,
processing techniques employed in milk banks may contribute to the reduction in NEC
protection offered by DM as compared with HM [6].

3. Digestion of Milk Fat Globules in Term and Preterm Infants

While enteral feeds arguably begin by 20 weeks of gestation with fetal swallowing [73],
the digestive tract of infants only reaches functional maturity between three and six months
of age [74]. In the weeks following birth, infants must transition from a metabolism heavily
predicated on placental transfer of maternal glucose to one more inclusive of dietary lipids,
ideally sourced from maternal HM [75]. Low pancreatic enzyme and bile salt concentrations
during the neonatal period can present nutritional challenges [76], especially if the infant
requires formula feeding, but HM provides essential digestive enzymes the infant lacks
in order to increase lipid absorption in the developing neonate. Digestion and absorption
of lipids are essential, as up to 50% of infant daily caloric needs are supplied via HM or
formula fats [77]. In addition, efficient assimilation of these nutrients aids in proper growth
and development, both of the intestine and systemically [78], as many of these lipids serve
additional roles in signaling and cell structure [79]. In contrast with adults, the process
of digestion and nutritional assimilation in infants, especially preterm infants, is not yet
fully understood.

In neonates, digestion is initiated in the stomach due to the short transit time of an
entirely liquid diet. Gastric acidity in preterm infants is reduced as compared with term
infants and adults, resulting in a fasting pH of 3.2 to 3.5, a postprandial pH near neutral [80],
and a microenvironment not conducive to proteolytic enzyme activation. In the stomach,
pepsin and gastric lipase begin digestion of the MFG. Pepsin, due to an optimal working pH
of 2, is both less active and abundant in preterm infants than in term infants or adults [75].
However, a longer period of gastric digestion provided by immature gastrointestinal
motility, potentially in combination with additional undescribed proteases active in the
preterm stomach [81], appears to compensate for this lower proteolytic capability [82].
Gastric lipase is capable of penetrating the complex MFGM of HM to initiate TG digestion
at the MFG core [83], with high specificity for both LCPUFA and MCFA [84]. In infants,
gastric lipase is highly effective as it does not require bile salt interaction nor low pH [84],
and the enzyme is critical for lipid digestion, as lipases released downstream cannot
similarly penetrate the MFGM [85]. While in the stomach, partial digestion of proteins and
gastric lipase activity, together, cause coalescence of smaller MFGs into larger, and fewer,
droplets [86]. Maternal enzymes present in HM are also active in the infant’s stomach and
are likely responsible for some of the protein digestion occurring in the early stages [81].
This is especially important given the contractile activity of the neonatal stomach is not yet
developmentally mature, resulting in fewer mechanical forces mixing stomach contents
during digestion [87].

From the stomach, digestion continues in the small intestine, where bile and pancreatic
enzymes secreted into the duodenum, as well as enzymes associated with the epithelial
brush border, work to further break down MFGs. The pancreas secretes a variety of diges-
tive enzymes into the duodenum, including trypsin, elastase, carboxypeptidases, pancreatic
triglyceride lipase (PTL), phospholipase A2 (PLA2), BSSL (also known as carboxyl ester
lipase [CEL] or bile salt-dependent lipase [BSDL]), and pancreatic lipase-related protein 2
(PLRP2) [83]. Concurrent with the excretion of pancreatic juice, the gallbladder releases bile
salts into the intestinal lumen, but the concentration of bile salts released is extremely low
as compared with an adult, often dropping below that required to properly emulsify lipids
to micelles [86], especially in preterm infants [88]. While bile acid (BA) synthesis rates in
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premature infants are significant [89], there is thought to be a lag in development of BA
secretory processes [90]. The chief neonatal primary bile acids, cholic acid and chenodeoxy-
cholic acid [88], are predominantly conjugated to taurine, as the glycine conjugation process
in the liver is not yet developmentally mature [91]. While there is passive uptake of BAs
in the neonate, luminal bile salt concentration does not increase significantly until later in
infancy, as active transport and enterohepatic circulation of these BAs is hampered during
the neonatal period [92]. Interestingly, despite both groups harboring low levels of bile
salts, preterm infants fed HM absorb lipids at a higher rate than those fed formula [93]. HM,
including colostrum, does contain bile salts [94], but the extent to which these exogenous
BAs contribute to lipid digestion in infants, term or preterm, is unknown [92]. The effective
adsorption of pancreatic lipases to MFGs is greatly aided by the restructuring of fat into
bile salt micelles.

While PTL and PLA2 are the predominant pancreatic lipases involved in lipid break-
down in the adult, low levels of these enzymes in the neonate, and especially the preterm
infant, necessitate PLRP2 and BSSL bearing much of the duodenal fat digestion burden [76].
PLRP2 is capable of hydrolyzing a wide spectrum of lipids, including TGs and phos-
pholipids, and its activity correlates negatively with luminal bile salt concentrations [95],
seemingly in perfect concert with neonatal intestinal physiology. BSSL, released in low
concentrations by the infant pancreas, requires primary bile salt activation to enable hydrol-
ysis of a broad array of lipid classes [86], including LCPUFAs not hydrolyzed effectively
by PLRP2 [95]. Importantly, BSSL is also secreted by the mammary gland throughout the
duration of lactation, providing a critical secondary, and majority, source of the enzyme
for both term and preterm infants [96]. This enzyme, capable of fully hydrolyzing TGs
in vitro [97], is thought to provide much of the duodenal lipid breakdown in neonates. The
physiological importance of BSSL is illustrated via its prominent representation in HM,
comprising up to 2% of total protein present in HM [98]. The majority of non-esterified
fatty acids (NEFA) and 2-monoacylglycerols produced through BSSL activity are emul-
sified into micelles for enterocyte uptake, largely in the jejunum.These lipid breakdown
products are subsequently re-esterified to TGs within the intestinal epithelium, packaged
into chylomicrons, and exported systemically via lymph [99]. However, very high dietary
fat intake or a relative inability to digest TGs, in preterm infants especially [100], can result
in the channeling of lipids to the ileum, where they are much less effectively absorbed [86].
Neither term nor preterm infants fully absorb lipids, with the former excreting up to 10%,
and the latter up to 30%, of the dietary lipid load [76]. In addition, animal modeling
has indicated preterm infants may struggle to repackage absorbed lipid products into
chylomicrons [101], presumably resulting in lipid accumulation within the distal small
intestine. However, while the preterm infant suffers from insufficient pancreatic function,
immature gastrointestinal motility, and a lower intestinal surface area through which to ab-
sorb nutrients, macronutrient assimilation can be aided via the digestive enzymes present
in HM.

4. Physiological Consequences of, and Influences on, Differential Lipid Absorption
in Neonates

Compositional and structural differences of lipids among neonatal feeding strategies,
combined with maturational inadequacies among prematurely born infants, may result
in significant physiological consequences for preterm infants. Despite the importance of
fats calorically in the infant diet, gastrointestinal developmental immaturity deems neither
preterm nor term infants capable of absorbing lipids to the same degree as adults [76,102].
A number of clinical trials have documented the superior lipid absorption, often denoted
by coefficient of fat absorption (CFA), of HM relative to formula, especially in preterm
infants [61,72,102–104]. Due to required processing of DM, fresh HM is also associated with
a higher CFA as compared with DM [72]. Characteristics unique to each of the neonatal
feeding strategies influence the degree to which lipids are absorbed in the preterm infant,
with ensuing effects on growth rate, intestinal health and maturation, and the risk for
NEC development.
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4.1. Long-Chain Polyunsaturated Fatty Acids

In addition to aiding in proper infant growth and development, LCPUFAs serve as
immunomodulatory agents [105], a critically important function in the context of upreg-
ulated inflammation during the preterm neonatal period [106]. The ability to produce
LCPUFA derivatives with both anti-inflammatory and immunoprotective properties in
a delicate balance is essential in the complex development of the infant intestine [107].
Preterm infants forgo much of the third gestational trimester in utero, thereby relinquishing
the substantial maternal transfer of LCPUFAs normally taking place during this devel-
opmental period [108]. As a result, these neonates often develop severe deficiencies of
LCPUFAs, particularly DHA [102,103]. Given the demonstrated ability of n-3 LCPUFAs
to dampen and resolve inflammation [109], including within the pro-oxidative preterm
environment [110], the effects of n-3 supplementation on the risk of developing NEC
have been widely explored. In a hypoxia mouse model of NEC, fish oil supplementation,
containing both DHA and EPA, reduced the severity of intestinal lesions through a re-
duction in inflammatory prostaglandin and leukotriene production [111]. In premature
rat pups subjected to NEC, formula supplemented with either DHA or EPA resulted in
lower levels of the inflammatory transcription factor, nuclear factor kappa B (NF-κB), and
prostaglandin receptor expression as compared with pups fed solely the soybean oil-based
control, resulting in a reduction in intestinal inflammation [112].

However, an appreciation for balance in n-3 to n-6 LCPUFAs during the developmental
fetal and neonatal periods is growing [113], with studies indicating targeted supplemen-
tation of n-3 without a concomitant rise in n-6 may have detrimental effects on intestinal
development. In preterm piglets, balanced supplementation of AA and DHA resulted in
an increase in intestinal villus height and smooth muscle development as compared with
targeted DHA supplementation alone or the soybean oil-based control, IntraLipid® [114].
Singh et al. evaluated the effects of n-3 LCPUFA enrichment on postnatal intestinal de-
velopment utilizing the fat-1 transgenic mouse, a model for fish oil-based nutrition in
premature infants. Transgenic pups accumulated increased DHA stores correlating with
upregulation of cellular differentiation and protective FABP gene expression, as well as
a functional decrease in intestinal permeability. In contrast, wild-type pups, a model for
preterm nutritional standard of care, accumulated n-6 FA stores and expressed higher levels
of the inflammatory genes, TLR9 (toll-like receptor 9) and CAMP (cathelicidin antimicrobial
peptide) [107]. High stores of n-3 LCPUFA in transgenic mice, however, lowered goblet
cell numbers and tight junction protein expression generally considered to be important in
innate immune protection, highlighting the importance of the LCPUFA n-3/n-6 balance in
postnatal development.

Additional studies, therefore, have attributed protection against NEC more generally
to LCPUFAs inclusive of AA. In a rat model of NEC, LCPUFA supplementation of AA
and DHA, in an n-3/n-6 ratio of 1.0:1.5, significantly reduced the incidence of disease
through a reduction of inflammatory mediators in the intestine [115]. Further study
in this model indicated DHA + AA, egg phospholipids (AA, DHA, and choline), and
DHA alone all reduced the incidence of NEC via reductions in inflammatory mediators
and TLR4 signaling [116]. In vitro work demonstrated the ability of both AA and DHA,
individually, to reduce inflammatory mediator capacity and TLR4 induction in rat intestinal
epithelial cells [116]. Finally, Wijendran et al. demonstrated a reduction in inflammation
associated with interleukin-1β (IL-1β) induction in both adult and fetal human intestinal
epithelial cells with pretreatment of DHA, but pretreatment with AA reduced inflammation
solely among fetal cells [117]. Much of the protection afforded by balanced LCPUFA
supplementation may be attributable to a reduction in cytokine-induced intestinal barrier
dysfunction [118].

Despite promising results in rodent and in vitro models, LCPUFA supplementation in
human trials has demonstrated limited and mixed results in NEC prevention [49,119–121].
Understanding the effects of LCPUFA supplementation on infant risk for NEC has been
complicated by clinical trial procedural differences in LCPUFA composition, baseline diet,



Nutrients 2021, 13, 550 7 of 19

inclusion criteria, dosing schedules, and the classification of NEC as a primary or secondary
outcome. A single study, thus far, has demonstrated a significant reduction in preterm
infant NEC risk, utilizing formula supplemented with egg phospholipids, a source of DHA,
AA, and choline [122].

4.2. Medium-Chain Fatty Acids

HM generally contains less than 10% MCFA [123]. Due to the recognition of poor lipid
absorption in preterm infants, nearly 75% of these infants [124] are fed preterm formula
with a lipid profile encompassing nearly 50% MCFAs [125], primarily to circumvent the
digestive requirement of micelle formation by bile salts. Recent evidence, however, suggests
this practice has little benefit on short-term infant growth [123], feeding tolerance [126], or
the risk for developing NEC [126]. Compared with preterm formula consisting of largely
LCPUFA [127], preterm formula high in MCFA provides no significant benefit to weight
gain or nitrogen retention [127], energy expenditure or storage [127], or absorption of
lipids and minerals [123,128]. Interestingly, in vitro studies have indicated the proportion
of MCFAs in infant formula does not significantly influence the rate of gastrointestinal
lipolysis [129].

The use of medium-chain triglycerides (MCTs) derived from coconut oil is a likely
cause for the lack of benefit derived from MCFA supplementation of preterm formula. HM
TGs containing MCFAs typically occur as one MCFA paired with two LCFAs, while coconut
oil typically contains TGs with three MCFAs, with further significant differences noted in
MCFA chain length and saturation levels [130]. These differences in FA stereospecificity
within the TG result in equivalent release of MCFAs within the stomach when comparing
formula with HM, despite significantly higher MCT levels in the former [85]. Furthermore,
high levels of formula MCTs may interfere with the absorption of essential FAs, such as
DHA [131].

4.3. Beta-Palmitate

Palmitic acid bound to the sn-2 position of a TG, the biochemical default of HM, is
termed β-palmitate [132]. Both term and preterm infants absorb palmitic acid and calcium
most effectively when the long-chain SFA is structured as β-palmitate [133]. Alternatively,
when palmitic acid or other saturated LCFAs are positioned in the sn-1,3 positions of a TG,
as with most formula [74], early lipase digestion in the duodenum paired with free calcium
ions in the intestinal lumen can result in the formation of insoluble calcium soap com-
plexes [134]. The creation of calcium soaps prompts fecal loss of precious calories, and often,
calcium deficiency in the preterm infant [135]. Preterm infants are commonly administered
supplemental calcium due to low stores of skeletal calcium and insufficient levels provided
through preterm HM [136]. Unfortunately, the process of calcium supplementation fur-
ther exacerbates the formation of calcium soaps [76,137], resulting in reduced absorption
of both calcium and LCFAs, especially among preterm infants fed formula. In general,
infants fed HM are characterized by higher bone mineral densities as compared with
those fed formula, despite similar mineral intakes [138]. The formation of calcium soaps
is thought to largely explain this disparity [133]. As palmitic acid comprises a substantial
proportion of formula FAs [41], infant formulas containing low levels of palmitic acid, or
palmitic acid structured primarily as β-palmitate, have been developed to reduce lipid
and calcium malabsorption [135,139]. However, while positive effects on stool consistency
have been noted, β-palmitate-heavy formulas have not been well-studied, and therefore
are not widely utilized [140]. Importantly, the benefits of β-palmitate appear to extend
beyond absorption to generalized intestinal health and development. In a mouse model
of spontaneous enterocolitis, a diet high in β-palmitate as compared with a diet high in
sn-1,3 TGs provided protection against intestinal inflammation through anti-inflammatory
regulatory T cell responses and upregulation of antioxidant defenses [141]. β-palmitate
also appears to positively influence the developing infant microbiome. Partial replacement
of palm oil-based formula sn-1,3 palmitic acid with β-palmitate in term infants increased
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the beneficial microbiome constituents, Bifidobacteria and Lactobacillus [142], mimicking
similar associations between β-palmitate and the microbiome in infants fed HM [143].

4.4. Bile Salt-Stimulated Lipase

Optimal neonatal digestion and absorption of lipids, especially LCPUFA [144], hinges
upon exogenous BSSL provided through HM [104,145]. However, infant formula lacks
BSSL entirely, while pasteurization of DM inactivates the enzyme. Malabsorption of LCFA,
especially LCPUFA, and thus reduced growth [146], in preterm infants fed formula is, at
least in part, attributed to the lack of this nonspecific lipase [100]. In an animal model
for neonatal nutrition, kittens fed formula lacking BSSL gained half the weight of their
naturally nursed littermates [147]. Weight loss was reversed, however, when the kittens
were supplied with human BSSL. In preterm human infants, the inactivation of BSSL
in pasteurized HM reduced weight gain and lipid absorption as compared with fresh,
unprocessed HM from the same source [146]. In addition to preventing proper lipid
digestion and absorption, animal modeling has indicated neonatal BSSL deficiency may
induce functional intestinal damage. In neonatal mouse pups, BSSL inhibition results in
undigested fats accumulating in enterocytes of the distal ileum, physically injuring the
villus epithelium [14]. To address this prominent lipase deficiency in neonatal nutrition, a
phase 2 clinical trial investigated the supplementation of recombinant human BSSL (rhBSSL)
to preterm infants on a diet of DM or formula. Both LCPUFA absorption and growth rate
increased with the addition of rhBSSL as compared with placebo [63]. However, a phase 3
trial showed improvement in preterm infant growth following rhBSSL supplementation
only in a subset of small for gestational age (SGA) infants [148].

4.5. Complex Lipids

The unique composition and structure of the human MFG have proven difficult to
mimic in infant formula [46] and are often disrupted by processing methods associated
with DM [65]. Complex lipids, located both within the MFGM and in membranes of HM
exosomes, comprise up to 1% of the lipids found within HM [41]. The most prevalent
complex lipid within HM is the sphingolipid SM, accounting for 36% of the combined sph-
ingolipid and phospholipid pool, with glycerophospholipids, PE and PC, each accounting
for less than 30% [20,149]. In contrast, the bovine-based formula pool of complex lipids is
dominated by PC, with significantly less SM [150]. As with the TG FA profile, however, the
FA composition of complex lipids in HM is not static, and can be altered by maternal diet
(e.g., [151]).

Sphingolipids are a significant component of the mucosal brush border. These com-
pounds can be synthesized during growth along the crypt-villus axis [152] or taken up
through the diet [153]. While importance of sphingolipids to infant health has been pre-
dicted, the roles of many of the sphingolipids within the preterm infant gut, specifically,
are largely speculative, as most studies have been conducted in adults. Interestingly, the
highly saturated and tightly packed nature of HM sphingolipids delays their digestion to
the middle and distal intestine, exposing the distal ileum and colon, sites most commonly
affected by NEC lesions, to these unique compounds [46,154]. In addition, sphingolipids
have been demonstrated to accumulate in the mucosa of the small intestine at twice the
rate of the colon [155], further implicating their potential importance to NEC development.
Sphingolipids in HM consist principally of SM, gangliosides, glucosylceramide, and lac-
tosylceramide [152]. Sphingomyelin in HM, often consisting of a phosphocholine head
group and LCFA tails [13], is digested to the bioactive metabolites, ceramide, ceramide-
1-phosphate (C1P), sphingosine-1-phosphate (S1P) [46,156], and sphingosine, the central
building block of all sphingolipids [153]. Within the gut, SM and its metabolites likely
play a role in trafficking of lymphocytes [157], proliferation of intestinal cells [152], angio-
genesis [46], apoptosis induction [158], cholesterol uptake and lipoprotein synthesis [159],
and maintenance of the intestinal barrier [46]. In rat pups, SM contributed to accelerated
intestinal maturation [160] and myelination of nerve fibers [161]. In addition, when SM
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reaches the distal ileum and colon intact, the compound may positively influence the
microbiome away from pathogenic gram-negative bacteria [162], as well as inhibit the
actions of lipopolysaccharide (LPS) [163] and protect against lipid-related intestinal in-
flammation [164]. To date, the only study examining the addition of SM to HM did not
consider gastrointestinal outcomes, but did indicate very low birthweight (VLBW) infants
demonstrated improved neurobehavioral development [165].

Gangliosides, glycosphingolipids containing ceramide and sialic acid [153], may play
a critical role in infant health. While found in relatively low abundance in HM [166], gan-
gliosides are nearly absent from bovine-based formula [167]. During lactation, gangliosides
are at their highest level in colostrum [168], and both the composition of the FA tails and
the sialylation patterns of these molecules shift during the lactation period [46]. Dietary
gangliosides are likely absorbed whole and deposited in the membranes of intestinal
enterocytes, both apically and basolaterally [169], where they may influence membrane
functionality through displacement of cholesterol [170]. Much like SM, gangliosides can
also be synthesized endogenously along the crypt-villus axis [152]. In the intestine, ganglio-
sides have been ascribed many important functions, including reduction of inflammatory
signaling [171,172], competitive binding of pathogens [173], and modulation of the im-
mune response [46]. In preterm infants, formula supplemented with porcine gangliosides
positively influenced the microbial composition of the gut, with increased Bifidobacteria
and decreased Escherichia coli counts [174]. Experiments in both rodent and ex vivo
human tissues have indicated gangliosides, particularly the species most abundant in
human colostrum (GD3) [175], exert protection against NEC, largely through a reduction in
inflammatory signaling [176]. While individual complex lipids, such as SM or gangliosides,
may have positive effects on the risk of NEC development, studies have indicated that the
ratio of sphingolipids deposited or synthesized in the small intestine may also provide
an early indication of the development of NEC. Rusconi et al. found an increase in the
SM content and decrease in ceramide accumulation in the stools of infants immediately
preceding the development of Bell’s Stage ≥ 2 NEC, potentially indicating alterations in
sphingolipid metabolism may pave the way for development of NEC [177].

Recognition of the importance of intact complex lipids in both MFGMs and HM
exosomes has grown. With the recent ability to isolate HM exosomes, in vitro and in vivo
experiments have demonstrated their utility in the attenuation of NEC-induced intesti-
nal damage via influences on goblet cell mucus production and generalized reduction of
inflammation [178]. While exosomes transport a number of bioactive molecules, includ-
ing proteins, mRNA, miRNA, and DNA [179], their membrane of complex lipids may
very well contribute to the protection against NEC. Advances in manufacturing technol-
ogy now allow for extraction and concentration of the MFGM from bovine milk [180].
Supplementation with bovine MFGM in infants has resulted in neurodevelopmental and
cognitive improvements [181,182], as well as fewer infections [183]. Animal modeling
has demonstrated additional benefits of bovine MFGM specific to the intestine, including
enhanced intestinal growth and maturation [180], shifts in the microbiome composition
approximating that of naturally nursed infants [180], and protection against intestinal
inflammation [184]. In a neonatal rat model of NEC induced by hypoxia and hypothermia,
formula-fed pups supplemented with bovine MFGM demonstrated increased weight gain,
reductions in NEC incidence and mortality, and a decrease in intestinal damage as com-
pared with pups fed formula alone [185]. Yang et al. reported that treatment of neonatal
rats with a bovine milk polar lipid extraction, including both sphingolipids and phospho-
lipids, reduced NEC symptoms through a reduction in both apoptosis and inflammation
in the intestinal epithelium [186]. Though supplementation of bovine MFGM does not
address the discrepancy in MFG size between infant formula and HM, the individual
protein, sphingolipid, and phospholipid components of the MFGM clearly exert positive
physiological influences in the postnatal environment [22].
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4.6. Lipid Malabsorption and Intestinal Inflammation

The accumulation of incompletely digested lipids, often NEFAs, in the distal intestine
of premature infants can cause inflammation and structural damage to the intestinal
epithelium [187]. NEFAs are not bound to protein, and therefore, are natural detergents
that are able to bind and disrupt lipophilic cell membranes. Insufficient protection of the
intestinal lining by mucin, as is often seen in premature infants [188], or an extremely high
concentration of NEFA accumulation, can result in intestinal necrosis [189], potentially
inciting excessive intestinal inflammation and development of NEC. This phenomenon
has been directly visualized in rodent models, where undigested lipids accumulated in the
distal small intestine as droplets, resulting in sloughing of villus tips and compromised
barrier integrity [14]. The severity of this event tracked inversely with age of the pup,
indicating a period of early susceptibility in neonates [14]. Bhatia et al. noted in a rodent
model of NEC that undigested lipids present in the postnatal small intestine during periods
of ischemia exacerbated injury to the intestine, potentially via increased production of
inflammatory mediators [190].

The source of neonatal nutrition strongly affects the likelihood of NEFA accumulation
in the distal small intestine. Lipase digestion of formula, in vitro, results in 10 times the
NEFA production of that of fresh HM, and these NEFA rapidly induce cell death in immune,
endothelial, and intestinal epithelial cells via detergent effects on the cell membrane [191].
Importantly, as HM serves as a source of BSSL, stored HM or DM may contain higher levels
of NEFA through enzymatic digestion of TGs, potentially explaining the inability of HM [5],
and especially DM [6], to universally protect against NEC. Experiments, in vivo, have
demonstrated predigestion of lipids in formula, resulting in hydrolyzed TGs, significantly
reduced both deposition of fat droplets in the distal ileum and associated reactive oxygen
species (ROS) formation as compared with standard formula feeding [187]. In addition,
ROS associated with TG from standard formula feeding created malondialdehyde (MDA),
a toxic and reactive product of PUFA TG peroxidation [187]. Characteristics of the dietary
FA profile, such as degree of saturation or chain length, may also influence the propensity
of lipids to inappropriately accumulate in the distal intestine, or alternatively, be excreted
through the feces. In general, LCFAs are characterized by low infant CFA, as are highly
saturated FAs [76]. Infusions of long-chain monounsaturated FAs (LCMUFAs) and MCFAs
cause increased mucosal permeability and injury in newborn piglets, the severity of which
positively correlates with carbon chain length and negatively correlates with age of the
animal [192]. Interestingly, identical lipid infusions were physiologically benign when
esterified to methyl groups [193], representing a decrease in amphiphilicity.

Malabsorbed lipids in the distal ileum of premature infants are, importantly, correlated
with increased excretion of bile acids through the feces [93]. Formula intake is known
to increase levels of intraluminal bile acids over that of HM consumption [194]. The
immaturity of postnatal enterohepatic bile acid recycling results in significant loss of BA
to the stool, particularly with formula feeding [89]. Comparisons of fecal excretion of bile
salts with diet have demonstrated highest BA loss in infants fed a high LCPUFA, soy-based
formula, lower loss in infants fed bovine-based formula, and lowest loss in infants fed
exclusively HM [194]. Alternatively, Halpern et al. demonstrated, if high levels of bile
acids are not excreted through the feces, but rather taken up by ileal enterocytes, they may
be inappropriately retained within the intestinal epithelium, resulting in mucosal damage
in rodents very similar to that seen in human NEC [195–197].

Finally, while differences in lipid intake through the diet can indirectly affect the
bacterial makeup of the intestine [198], distal lipid accumulation may directly influence the
microbial diversity and phylogenetic composition of the microbiome. De Wit et al. [199]
demonstrated a diet high in saturated fat, resulting in lipid overflow to the distal ileum,
increased representation of Firmicutes (Bacilli and Clostridia) as well as decreased microbial
diversity, as measured by Simpson’s Diversity Index (SDI). Decreased microbial diversity
as a consequence of undigested lipid accumulation in the distal intestine has been noted in
a number of studies (e.g., [200]).
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5. Conclusions

While differences among bioactive components of HM, DM, and infant formula are
widely recognized, alterations to macronutrient structuring are less frequently discussed.
The formula manufacturing process, as well as pasteurization and freeze/thaw cycles
associated with sterilization and storage during milk banking, result in a number of
important alterations to lipids within formula and DM as compared with fresh HM. An
absence, or damage, of the MFGM, altered ratio of n-3 to n-6, varying percentage of TGs
structured as β-palmitate, lack, or inactivation, of BSSL and other digestive enzymes, and
a dearth of sphingolipids differentiate the digestability of formula or DM from HM. These
attributes, in addition to an immature gastrointestinal system, contribute to malabsorption
of ingested lipids in preterm infants. This impaired absorption could potentially affect
the growth of these neonates and contribute to intestinal inflammation, hastening the
development of diseases such as NEC. An avoidance of infant formula whenever possible,
and potentially a move toward high hydrostatic pressure processing in association with
milk banking [62], may limit lipid malabsorption and the risk for NEC in preterm infants.
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