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Abstract

Significance: Atherosclerosis and its complications, such as acute coronary syndromes, are the leading causes
of death worldwide. A wide range of inflammatory processes substantially contribute to the initiation and
progression of cardiovascular disease (CVD). In addition, epidemiological studies strongly associate both
chronic stress and acute psychosocial stress with the occurrence of CVDs.
Recent Advances: Extensive research during recent decades has not only identified major pathways in car-
diovascular inflammation but also revealed a link between psychosocial factors and the immune system in the
context of atherosclerosis. Both chronic and acute psychosocial stress drive systemic inflammation via neu-
roimmune interactions and promote atherosclerosis progression.
Critical Issues: The associations human epidemiological studies found between psychosocial stress and car-
diovascular inflammation have been substantiated by additional experimental studies in mice and humans.
However, we do not yet fully understand the mechanisms through which psychosocial stress drives cardio-
vascular inflammation; consequently, specific treatment, although urgently needed, is lacking.
Future Directions: Psychosocial factors are increasingly acknowledged as risk factors for CVD and are currently
treated via behavioral interventions. Additional mechanistic insights might provide novel pharmacological
treatment options to reduce stress-related morbidity and mortality. Antioxid. Redox Signal. 35, 1531–1550.
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Introduction

Atherosclerosis and its complications, such as acute
myocardial infarction (MI) and stroke, are the leading

causes of death worldwide (136). A chronic disease of the
vessel wall, atherosclerosis may ultimately lead to lumen
narrowing, partial or complete obstruction, and reduced blood
flow to downstream organs (91). Despite considerable prog-
ress in treating atherosclerosis, the prevalence of its compli-
cations almost doubled in the past three decades (132, 136).

Extensive research into the underlying mechanisms
has identified that inflammatory—along with metabolic—
components significantly contribute to the etiology of

atherosclerosis (90). In this context, various studies have
demonstrated that classical and nonclassical cardiovascular
risk factors are involved in the pathology of atherosclerosis
via the modulation of inflammatory processes (146). Psy-
chosocial stress in particular is a cardiovascular risk factor
that is strongly linked to cardiovascular disease (CVD) (75).
The complex interplay of the nervous, hormonal, metabolic,
and immune systems during stress responses harbors great
potential for interventions in the ways psychosocial stress
impacts cardiovascular inflammation. In this review, we
discuss recent scientific discoveries and developments that
investigate the effects of acute and chronic psychosocial
stress on cardiovascular inflammation.
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The Role of Inflammation in the Pathogenesis
of Atherosclerosis

Atherosclerosis is the underlying pathology for a variety of
cardiovascular complications and has long been considered a
largely metabolic disease, caused by high plasma cholesterol
levels and passive lipid accumulation inside the vessel wall
(141). However, in recent decades, a great number of ex-
perimental, epidemiological, and lately also clinical studies
have convincingly shown that inflammation plays an im-
portant role in the etiology of atherosclerosis (1, 133, 163,
176). This is reinforced by the fact that the incidence of CVD
remains high, even after efficient lipid-lowering treatment
became widely used (77, 134).

Various experimental studies have dissected the mecha-
nisms that underlie atherosclerosis initiation and progres-
sion. As a first step, in a setting with high plasma low-density
lipoprotein (LDL) levels and additional proinflammatory
stimuli, endothelial dysfunction in atherosclerosis-prone
regions with disturbed flow favors the uptake of cholesterol-
loaded LDL. This promotes the upregulation of adhesion
molecules on endothelial cells and the subsequent recruit-
ment of inflammatory leukocytes (93). Among these re-
cruited cells, specifically dedicated blood monocyte-derived
macrophages clear both nonmodified and oxidized choles-
terol particles and then become foam cells (89).

If initial clearance fails, inflammation persists and is fur-
ther promoted by a wide range of leukocytes that release
proinflammatory mediators such as interleukin (IL) 1b, tu-
mor necrosis factor alpha (TNFa), and various other cyto-
kines and chemokines (1, 190). To separate the plaque
content from the lumen, smooth muscle cells (SMCs) are
recruited from the tunica media to the tunica intima and
produce an extracellular matrix that forms a fibrous cap and
stabilizes the atheromatous plaque (161).

In general, lesions with a thick fibrous cap, low inflam-
matory cell activity, and small necrotic cores (accumulation
of lipids and apoptotic macrophages inside the atheroma) are
considered stable plaques (152). However, these plaques can
transition into unstable/vulnerable plaques. Plaque inflam-
matory leukocytes can promote extracellular matrix degra-

dation and SMC death, which can ultimately lead to plaque
rupture or erosion with atherothrombosis that causes car-
diovascular complications such as MI or stroke (92). Figure 1
illustrates the cellular processes that lead to the initiation and
progression of atherosclerotic lesions.

The role of neutrophils in vascular inflammation

The innate immune system has long been considered the
first line of defense against infections, as innate immune
system effector cells, such as neutrophils, are rapidly recruited
to sites of acute inflammation (150). However, innate immune
cells are now widely understood as contributors to chronic
sterile inflammation that occurs in atherosclerosis (27, 53).
Neutrophils contribute to all stages of the disease: initiation,
progression, and atherosclerotic lesion rupture (158).

As described above, lipid accumulation in the vessel wall
causes endothelial dysfunction and immune cell recruitment.
A growing body of evidence indicates that neutrophils are
among the first cells recruited to early atherosclerotic lesions
and contribute significantly to the subsequent recruitment of,
for example, inflammatory monocytes (141, 158). High
cholesterol levels affect not only the recruitment of neutro-
phils to atherosclerotic lesions but also their production in the
bone marrow (150). Experimental studies could prove that
hypercholesterolemia induces the proliferation of hemato-
poietic stem cells with a specific bias toward the myeloid
(neutrophils, monocytes, and macrophages) lineage, resulting
in blood neutrophilia and monocytosis (21, 29, 189).

Upon activation, neutrophils promote lesion progression
through various mechanisms, including macrophage activation
and the release of neutrophil extracellular traps, proin-
flammatory web-like structures consisting of DNA and proteins
(45, 151). Ultimately, neutrophils contribute to plaque desta-
bilization by releasing a wide spectrum of proinflammatory
mediators and matrix-degrading enzymes (41, 101).

In line with their mechanistic function in the pathology of
atherosclerosis, high levels of neutrophils in plasma and in-
side atherosclerotic lesions have been associated with an
increased risk for cardiovascular events (63, 94). Indeed, a
recent analysis of five large randomized clinical trials showed

FIG. 1. Cellular processes involved in atherosclerosis development. Atherosclerotic lesion development is initiated by
LDL particle uptake from the blood into the intimal regions of the vessel wall. The activated endothelium in these regions
upregulates adhesion molecule and cytokine expression, leading to blood leukocyte recruitment. This is further promoted by
increased inflammatory leukocyte production in the bone marrow caused by systemic inflammation, hyperlipidemia, and
hyperglycemia. Once inside the vessel wall, recruited monocytes differentiate into macrophages and develop into foam cells
when they engulf excess amounts of cholesterol. SMCs transmigrate from the vascular media to the intima and produce
collagen to stabilize the fibrous cap that separates the plaque content from the lumen. Upon lesion progression, foam cells
further accumulate and form a necrotic core. Eventually, persistent inflammatory processes culminate in fibrous cap
breakdown through, for example, matrix-degrading enzymes, and cause thrombotic complications. LDL, low-density li-
poprotein; SMC, smooth muscle cell.
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that the neutrophil–lymphocyte ratio is a readily available
inflammatory biomarker that predicts cardiovascular out-
comes (2). Moreover, the neutrophil–lymphocyte ratio is
modulated by canakinumab—a monoclonal antibody against
proinflammatory IL-1b—and may therefore help guide anti-
inflammatory treatment (2).

The role of monocytes and macrophages
in vascular inflammation

Similar to neutrophils, inflammatory monocytes are re-
cruited from blood to sites of inflammation (141). In early
atherosclerosis, the inflamed endothelium expresses adhesion
molecules and chemokines that promote monocyte recruitment
(129). Activated endothelial cells raise the expression of in-
tercellular adhesion molecule 1 (ICAM-1), vascular adhesion
molecule 1 (VCAM-1) and selectins, among others, and secrete
proinflammatory and leukocyte-attracting chemokines such as
CC-chemokine ligand (CCL) 2 (60). As mentioned above, prior
neutrophil recruitment is thought to further enhance inflam-
mation and consequently promote monocyte recruitment.

Once inside the atherosclerotic lesion, most inflammatory
monocytes differentiate into macrophages dedicated to in-
gesting cholesterol particles (107). The resulting lipid-loaded
macrophages, termed foam cells, further fuel inflammation
by, for example, secreting IL-1b (30). Of note, recent studies
have demonstrated that macrophage accumulation in ath-
erosclerosis is also driven by local proliferation and SMC
transdifferentiation into macrophage-like cells (54, 92, 135).

In advanced atherosclerotic lesions, macrophages contribute
to the development of unstable plaques as prolonged inflam-
mation and disturbed efferocytosis (phagocytic clearance of
apoptotic cells) promote macrophage death and necrotic core
expansion (141). In addition, activated macrophages produce
different kinds of proteinases, such as matrix metalloprotei-
nases, that lead to fibrous cap breakdown (90, 107). Although
macrophages are generally considered the main drivers of in-
flammation in atherosclerosis, accumulating evidence has
demonstrated the heterogeneity of lesional macrophages,
highlighted the importance of macrophages in atherosclerosis
regression, and thus propagated a more nuanced view of the
role of macrophages in atherosclerosis (7, 38, 170, 183).

As mentioned above, both hyperlipidemia and hypergly-
cemia contribute to high blood monocyte levels in athero-
sclerosis by increasing their production in the bone marrow.
In addition, release from the bone marrow is promoted by
circulating chemokines such as CCL2, CCL7, and CXC-
chemokine ligand 1 (CXCL1) (28, 166). Similar to neutro-
phils, high numbers of inflammatory blood monocytes are
strongly associated with CVD risk (8, 49).

The role of lymphocytes in vascular inflammation

While the role of innate immune cells in atherosclerosis is
widely acknowledged, adaptive immune responses also
contribute to all stages of atherosclerosis (56). Lymphocytes,
namely T and B cells, are the cellular key players of the
adaptive immune system with their reactions being highly
specific and long-lasting (72). In atherosclerosis initiation,
myeloid infiltration, as a response to LDL accumulation, is
accompanied by the recruitment of both T and B cells (44).
Some of these cells harbor a specific receptor to recognize the
core component of LDL, apolipoprotein B, which has led to

the notion that atherosclerosis is an inflammatory disease that
involves autoimmune processes (184).

Although both T and B cells can be found in atheroscle-
rotic plaques, T cells are more prominent throughout all
stages of the disease and constitute approximately one-fourth
of all plaque leukocytes (72, 184). T lymphocytes have been
found to play controversial roles in atherosclerosis progres-
sion. Both the predominant cluster of differentiation (CD) 4+

effector T cells and the cytotoxic CD8+ T cells have been
shown to be proatherogenic, while some CD4+ regulatory T
cells exert highly atheroprotective functions (56, 194). T cell
polarization inside the plaque occurs as a result of the inter-
action with antigen-presenting cells (184). Here, costimula-
tory molecules on the interacting cells and cytokines released
by the antigen-presenting cell decide on the fate of the naive
T cell, which results in the activation into either a pro- or
antiatherogenic phenotype. Based on their polarization, ma-
ture T cells exert their pro- or anti-inflammatory functions by
effecting other T cells, B cells, and tissue-resident cells (184).

Classically, B cells can be distinguished into B1 cells that
are part of the innate immune system, and B2 cells that can
differentiate into plasma cells and secrete immunoglobulin G
(IgG) antibodies (184). Both types are found in atheroscle-
rotic plaques although less frequent than T cells. While B1
cells are attributed to be exclusively atheroprotective, B2
cells seem to exert both pro- and antiatherogenic responses
inside plaques (3, 17, 82)

Taken together, the adaptive immune system is involved
in pro- and anti-inflammatory processes in atherosclerosis.
Current models suggest a general transition from anti-
atherogenic to proatherogenic mechanisms during disease
progression although it is still unclear if this switch is a
cause or a consequence (184). Although research has dis-
covered multiple roles of the adaptive immune system in
CVD, experimental studies on the risk factors of athero-
sclerosis have predominantly focused on the roles of the
innate system until now.

Risk Factors of Atherosclerosis

Classical risk factors

Certain risk factors and cardiovascular inflammation are
connected throughout the pathophysiological processes
leading to the development of atherosclerosis. Some
classical risk factors are largely nonmodifiable. Being
male, for example, is one such classical risk factor for
CVD risk, and recent studies link at least part of its asso-
ciation with increased vascular inflammation in both ani-
mals and humans (97).

Aging is yet another independent risk factor for CVD;
biological aging is associated with various inflammatory
processes such as increased oxidative stress or more circu-
lating inflammatory cytokines (167, 177). Clonal hemato-
poiesis, the process in which increasing numbers of white
blood cells derive from one single clone due to specific so-
matic mutations in hematopoietic stem cells (64), has re-
cently been identified as a pathophysiological mechanism
that links aging with atherosclerosis (65). In atherosclerotic
mice, clonal hematopoiesis resulted in a stronger activation
of inflammatory pathways and thus accelerated atheroscle-
rosis progression (43).
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Hereditary components also contribute to CVD risk, and a
multitude of genetic loci have been associated with CVD in
large-cohort, genome-wide association studies (17a, 55).
Interestingly, many of these loci are associated with genes
that are part of inflammatory pathways (100). Additional to
an inherent genetic component in atherosclerosis itself, cer-
tain classical risk factors such as high cholesterol levels, ar-
terial hypertension, and diabetes also harbor some degree of
genetic predisposition (15, 46a, 95).

As outlined above, high cholesterol levels contribute to
the initiation and progression of atherosclerosis by acting as
an important proinflammatory stimulus. Of note, obesity
and unhealthy diet, which are also considered classical risk
factors for atherosclerosis (35, 121, 178), strongly promote
high cholesterol levels (19). Arterial hypertension is an-
other classical risk factor and acts on the integrity of the
endothelial cell layer (98). Ongoing research is inten-
sively investigating the link between atherosclerosis and
diabetes, with the general proinflammatory milieu in dia-
betic patients most likely being a major player in the de-
velopment of atherosclerosis (70, 123).

Smoking is yet another classical risk factor for cardio-
vascular inflammation and promotes atherosclerosis via both
local and systemic proinflammatory effects, for example, by
circulating toxic compounds and increasing hematopoietic
stem cell proliferation (111, 149, 154). Elevated hemato-
poiesis contributes to atherosclerosis progression by en-
hancing inflammatory leukocyte supply (117, 146).

Nonclassical risk factors

It has become increasingly clear that apart from classical risk
factors, additional lifestyle factors and other coexisting pa-
thologies influence CVD (Fig. 2). Many of these risk factors
have only recently been identified and are thus referred to as
nonclassical or nontraditional risk factors. Both viral and bac-

terial respiratory infections create a higher risk for MI not only
during the acute infection but also in the postinfection phase
(81, 114). Mechanistically, the acute increase in CVD events
may be caused by elevated procoagulant activity, while long-
term effects may exacerbate vascular inflammation and hence
promote progression of atherosclerosis (140). Moreover, sterile
inflammatory pathologies such as prior MI, stroke, or rheuma-
toid arthritis are linked to increased cardiovascular risk (31,
153). Mechanistically, both nonsterile and sterile inflammations
partly exert their effects on cardiovascular inflammation by
raising the proinflammatory leukocyte supply through increased
production in the bone marrow (31, 32, 140), a mechanism
shared by other nonclassical risk factors such as sedentary
lifestyle and sleep deprivation (42, 102, 146).

Regular exercise reduces cardiovascular risk through
metabolic and antihypertensive effects (86), and a recent
study in mice demonstrated that physical activity (simulated
by voluntary wheel running) also mitigates cardiovascular
inflammation (42). The researchers showed that regular ex-
ercise reduces leptin levels and blood leukocyte numbers in
mice and humans. In mice, low leptin levels induce bone
marrow niche quiescence and retention factors, which limit
proinflammatory leukocyte supply. As a consequence, car-
diovascular inflammation and atherosclerotic plaque size are
curtailed in exercising mice.

A similar picture is emerging with regard to poor sleep
quality or sleep deprivation. While epidemiological studies
had already linked insufficient sleep to higher cardiovascular
risk (13, 162, 165), a recent study in mice uncovered a direct
link between sleep and cardiovascular inflammation (102).
Here again, the effect on atherosclerosis is mediated via in-
creased proinflammatory leukocyte production in the bone
marrow: sleep fragmentation causes the hypothalamus to
generate less hypocretin, a circulating hormone that normally
restricts myeloid cell production in the bone marrow.

Furthermore, the impact of air, light, and noise pollution
on CVD health has long been underestimated (87, 112).
While air pollution can directly act on inflammatory pathways,
noise pollution likely increases CVD risk by modulating other
lifestyle risk factors such as sleep and psychosocial stress (112).
In detail, air pollution has been shown to influence a wide range
of inflammatory processes, including blood leukocyte levels,
leukocyte activation, circulating cytokine levels, and endo-
thelial dysfunction (110, 113), which can all act on cardio-
vascular inflammation. Indeed, air pollution promoted
cardiovascular inflammation in mouse models of atheroscle-
rosis (105). Still, it is not yet clear if the effects of air pollution
occur primarily through direct action of circulating fine par-
ticulate matter (2.5 lm in diameter and less), systemic neuro-
endocrine activation, and/or systemic inflammation caused by
lung injury. In contrast, noise pollution presumably exerts in-
direct effects by activating physiological stress responses,
which are further outlined below. Stress perception in this
context may be both conscious (during daytime) and subcon-
scious (during sleep) (112). Data from animal experiments
indicate that noise pollution may act on cardiovascular in-
flammation via various mechanisms, including circulating cy-
tokines, endothelial dysfunction, and neutrophil infiltration into
atherosclerotic plaques (79, 109).

Over the past years, the term ‘‘exposome’’ has been estab-
lished to summarize the cumulative effect of lifelong, conscious
or unconscious, environmental risk factor exposure (23, 171).

FIG. 2. Nonclassical risk factors contribute to the de-
velopment of cardiovascular inflammation. Apart from
classical risk factors such as sex, age, genetic predisposition,
and blood cholesterol levels, recent research has identified
further factors that promote cardiovascular inflammation.
Several publications have shown that prior infections, co-
existing pathologies, sedentary lifestyle, poor sleep quality,
noise and air pollution, and psychosocial stress can all
contribute to the development of atherosclerosis. MI, myo-
cardial infarction; RA, rheumatoid arthritis.
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International projects/consortia such as ‘‘ENNAH’’ (European
Network on Noise and Health), ‘‘ELAPSE’’ (Effects of Low
Level Air Pollution: A Study in Europe), and EX-
POsOMICS seek to reveal how a combination of different
environmental risk factors influence each other and how they
affect human health including CVD (20, 39, 85, 173). The
exposome concept includes air pollution and noise pollution,
and also other factors such as chemical pollution, diet, sleep
disruption, social isolation, and work stress (23).

Psychosocial stress, both chronic and acute, is yet another
independent risk factor for atherosclerosis that in the past
few years has been closely investigated in the context of
cardiovascular inflammation. This review aims to summarize
the latest advances in this specific research area.

Psychosocial stress in vascular inflammation and
CVD. Stress has been defined as a constellation of events
comprising a stimulus (stressor) that precipitates a reaction
in the brain (stress perception) and activates physiologic
fight-or-flight systems in the body (175). Psychosocial
stressors can be classified as chronic or acute, based on
exposure severity and duration (26). Determining strict
discrimination criteria, however, is hardly possible, and
parameters vary widely between scientific publications. In
general, chronic stress is considered exposure to low or
moderate and consistent or repetitive stressors such as
caring responsibilities, job strain, job insecurity, social
isolation, lack of social support, financial stress, marital
unhappiness, long-term depression, hopelessness, loneli-
ness, and type A or D personality (75). In contrast, acute
stress refers to short-term (minutes up to days) and severe
stressors such as anger outburst, emotional upset, anxiety,
sadness, grief, bereavement, natural disasters, acts of war

and terrorism, major sporting events, and work stress (high-
pressure deadline at work) (106).

Naturally, acute stress can also transition into chronic
stress, and perceived severity strongly depends on individual
stress susceptibility (33). The distinction between distress
(negative stress) and eustress (positive stress) is yet another
way to classify psychosocial stressors (12), and individual
perception plays an even bigger role in this differentiation.
For simplicity, this review only summarizes current literature
on the effects of distress on cardiovascular inflammation.

Exposure to an external stressor promotes the activation
of a physiological stress response. From an evolutionary
perspective, this reaction is essential to ensure survival in so-
called fight-or-flight situations (116). To trigger a fight-or-
flight response, the respective stimulus needs to be perceived
by the brain, where subsequent neuronal networks activate
three major pathways in the body (Fig. 3) (83).

One pathway is the hypothalamus/pituitary/adrenal (HPA)
axis. Here, the hypothalamus releases the corticotropin releas-
ing hormone (CRH), which leads the pituitary gland to secrete
the adrenocorticotropic hormone (ACTH) into the blood
stream. In the adrenal cortex, ACTH leads to systemic release of
glucocorticoid hormones such as cortisol. The other two path-
ways exert their functions via the sympathetic nervous system
(SNS). The sympatho-adrenomedullary (SAM) axis involves
sympathetic innervation of the adrenal medulla, which releases
systemic catecholamines (epinephrine and norepinephrine) in
response to stimulation. SNS activation through stress percep-
tion can also directly activate dedicated end organs via sym-
pathetic nerve endings locally releasing norepinephrine.

The purpose of this physiological response is to prepare the
body to react to threats and endure potential injuries (116).
Body functions necessary for bolstering survival, such as

FIG. 3. Stress perception acti-
vates distinct physiological stress
responses. Once the brain per-
ceives an external stressor, the
body attempts to restore homeo-
stasis by activating systemic stress
responses. The HPA axis results in
the release of glucocorticoids from
the adrenal cortex, while sympa-
thetic nervous system activation
causes systemic (via the adrenal
medulla) and local (via sympathetic
nerve endings) release of catechol-
amines. Altogether, these act on
respective end organs to prepare
the body for a fight-or-flight situa-
tion. ACTH, adrenocorticotropic
hormone; HPA, hypothalamus/
pituitary/adrenal.
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blood perfusion of skeletal muscles, energy mobilization,
ventilation of the lungs and heart rate, are increased while
supply to, for example, the digestive and reproductive sys-
tems, is curtailed (125).

Neuroimmunology is a rapidly developing research area
studying interactions between the nervous and immune sys-
tems. Both systems are responsible for maintaining homeo-
stasis despite adverse environmental stimuli, and it is widely
acknowledged that they operate together to exert appropriate
adaptations to potential threats (142). Stress situations pro-
mote neuroimmune interactions, but they also occur con-
stantly under steady-state conditions during which they
control, for example, circadian leukocyte trafficking (62,
145). In this context, the SNS seems to play a specific pivotal
role in rhythmic leukocyte recruitment (66).

Interactions between the nervous and immune systems are
bidirectional, but signaling from the nervous to the immune
system seems to be especially critical with regard to the
negative effects of stress on human health (47). Despite
contributing to a low-grade inflammatory milieu in the body,
psychosocial stress is thought to compromise the body’s
ability to mount a proper immune reaction in response to
infections. Accordingly, stimulating adrenergic signaling
over 7 days resulted in reduced host resistance to viral in-
fections in a study investigating how adrenergic signaling
affects the innate immune response in a mouse model (180).
Furthermore, a recent publication showed that acute stress
leads the adipose tissue to release more IL-6, which is needed
to ensure glucose supply in a fight-or-flight situation but
would have detrimental effects regarding concomitant bac-
terial infection (128).

Other studies, by contrast, suggest that acute psychosocial
stress has a short-term immune-enhancing effect, for example,
by mobilizing immune cells from the bone marrow or redis-
tributing leukocytes to sites of inflammation (25, 175). Overall,
the effect of psychosocial stress on the immune system may
depend on the combination of the stress duration and the spe-
cific type of environmental challenge in which it occurs (62).

In the context of vascular inflammation and atherosclero-
sis, we have just begun to explore neuroimmune interactions.
Nervous system activity is critical to the regulation of stem
cell proliferation in hematopoietic organs and the release of
mature leukocytes (18, 71, 124). Of note, sympathetic neu-
ronal activation promotes the proliferation of splenic hema-
topoietic progenitor cells with a concomitant myeloid cell
bias (169). Recent publications have also demonstrated that
the nervous system directly affects immune processes in the
vessel wall (18). Depleting the SNS, for instance, reversed
adhesion molecule upregulation by aortic endothelial cells in
a mouse model of MI (139).

It is only logical that neuroimmune interactions are also
involved in linking psychosocial stress and cardiovascular
inflammation. Experimental studies on psychosocial stress
have identified three major areas with potential influence on
CVD. First, the physiological stress response strongly in-
fluences hemodynamic parameters such as cardiac output,
blood pressure, and heart rate (138). Second, activation of
the different stress axes can also affect hemostatic param-
eters such as platelet activation (67, 78). In the following
sections, this review seeks to summarize experimental ev-
idence for the third area: the inflammatory contribution of
psychosocial stress to CVD risk (Fig. 4).

Chronic psychosocial stress. Results from the
INTERHEART study provide a large body of evidence for
the association between psychosocial stress and CVD
(188). This large case/control study in 52 countries quan-
tified the relationships between major cardiovascular risk
factors, including long-term psychosocial factors, and the
occurrence of MI. In this study, the prevalence of psycho-
social stress is associated with an odds ratio of 2.67 for MI.
In contrast to the INTERHEART study, which analyzed
psychosocial stressors in a summarized category, other
large-scale studies investigated the links between CVD and
isolated long-term psychosocial stressors, such as job
strain, childhood abuse, and social isolation. Meta-analyses
of corresponding studies reported odds ratios of up to 1.5
for associations between psychosocial stressors and car-
diovascular endpoints (75, 174). Results from the White-
hall II study highlighted that perceiving stress as negative
stress is important for the adverse effects of psychosocial
stress on cardiovascular health (115).

In epidemiological studies, effect sizes for the relationship
between psychosocial stress and CVD have been statistically
corrected for other variables. However, chronic stress may
exacerbate the risk for CVD even further by promoting
lifestyle factors that are themselves risk factors for CVD such
as smoking, sedentary lifestyle, unhealthy diet, or disturbed
sleep (75, 122).

Observational studies not only link chronic psychosocial
stress to CVD in general but also suggest a contribution by
inflammatory processes. In this regard, higher levels of
clinical proinflammatory risk markers such as TNFa, IL-6,
C-reactive protein (CRP), and soluble adhesion molecules
were found in plasma samples from individuals with a high
burden of chronic stress (68, 73, 83). Similarly, a study in
medical residents on an intensive care unit found increased
levels of blood inflammatory leukocytes when residents were
on duty compared with when they were off duty (57). Using
state-of-the-art imaging techniques, researchers also showed
an association between resting amygdala activity—the
amygdala is part of the brain’s limbic system and processes
emotional responses—reflecting the degree of perceived
stress and the risk for cardiovascular events (164). On top of
that, amygdala activity was directly connected with bone
marrow activity, reflecting hematopoiesis, and arterial in-
flammation (69, 164). Further evidence for the influence of
chronic psychosocial stress on cardiovascular inflammation
in humans is available from intervention trials, which con-
sistently show reduced inflammatory activation in response
to immune challenges following stress-reducing interven-
tions (144).

Findings in animal studies may reveal the mechanistic
processes underlying the adverse effect of chronic psycho-
social stress on vascular inflammation; hence, data from an-
imal studies are inevitable. Attaining useful accurate results
requires proper experimental models for both atherosclerosis
and the simulation of chronic psychosocial stress. Classi-
cally, atherosclerosis experiments are done in animals with
specific genetic knockouts that lead to hypercholesteremia
and consequently result in the development of lesions similar
to human atherosclerosis. Due to the need for genetic modi-
fication and their advantageously short generation times,
mouse models are predominantly used (46). Most such mouse
models harbor a knockout in either the apolipoprotein E
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FIG. 4. The role of psychosocial stress in cardiovascular inflammation. Both chronic and acute psychosocial stress act
as major players in the inflammatory cascades that lead to the initiation and progression of atherosclerosis. This figure
summarizes current evidence regarding how chronic and acute psychosocial stress affect leukocyte distribution, systemic
proinflammatory signaling, leukocyte and endothelial cell activation, and inflammatory processes inside the vessel wall.

= Evidence from human experimental data, = evidence from animal experimental data. PBMC, peripheral blood
mononuclear cell; SMC, smooth muscle cell.
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(ApoE) gene or the LDL gene, and both varieties develop
hyperlipidemia and vascular inflammation when fed a
cholesterol-enriched diet. Models for simulating chronic
psychosocial stress in animals are numerous and were mostly
established by behavioral neuroscience studies (120, 147). In
chronic stress models, animals are exposed to a single mild
stressor or a combination of mild stressors repetitively over a
longer time period (83). Social isolation and defeat, disrupted
circadian rhythm, and environmental noise are just a few
examples of the wide range of unpleasant situations that are
used as stressors in animal studies (Fig. 5).

As described above, chronic psychosocial stress is asso-
ciated with higher levels of inflammatory markers in humans.
This has been confirmed by animal studies that demonstrated
the presence of systemic low-grade inflammation as a result
of chronic psychosocial stress (6, 104). Likewise, chronic
psychosocial stress increased circulating inflammatory leu-
kocyte levels in an animal model of chronic stress (57). This
increase is reportedly caused by the SNS overactivity in
the bone marrow, subsequently leading to increased hema-
topoietic stem cell proliferation and release of neutrophils
and inflammatory monocytes into the blood stream. Leuko-
cytes not only undergo quantitative changes but also alter
their phenotypes qualitatively in response to chronic stress. A
study using repeated social defeat demonstrated that circu-
lating leukocytes acquire a proinflammatory gene signature
in response to chronic stress, hand in hand with a bias toward
myelopoiesis in bone marrow hematopoiesis (126).

Another phenomenon that applies in chronic psychosocial
stress is the concept of trained immunity. It describes the
observation that not only the adaptive immune system but
also the innate immune system develops immunological
memory to previous challenges (119). Immunological
memory is conveyed by both epigenetic and metabolic re-
programming in innate immune cells (37). In first studies,

trained immunity was shown to play a role in the response to
immune challenges after initial priming with stress hor-
mones. Monocytes that were exposed to high levels of nor-
epinephrine and subsequently differentiated to macrophages
in vitro mounted a heightened proinflammatory response
after restimulation with lipopolysaccharide (LPS) (58). Ac-
cordingly, a murine macrophage-like cell line secreted higher
amounts of IL-6 and TNFa when primed with glucocorticoids
before LPS stimulation (156).

Inflammation in chronic stress situations affects not only
leukocytes but also their counterparts in the process of
leukocyte recruitment: endothelial cells. It is well known
that circulating cytokines activate endothelial cells (11, 96)
and, as outlined above, chronic psychosocial stress strongly
contributes to systemic low-grade inflammation. Mechan-
istically, most cytokines upregulate adhesion molecule ex-
pression on endothelial cells, a change that subsequently
leads to more leukocyte recruitment in the underlying tissue
(24, 127). Furthermore, systemic activation of the renin/
angiotensin/aldosterone system during chronic psychosocial
stress may contribute to endothelial dysfunction and cardio-
vascular inflammation (148). The renin/angiotensin/aldoste-
rone system involves a multitude of players, such as
angiotensin II, that act jointly to regulate fluid balance and
blood pressure. Angiotensin II, similar to systemic proin-
flammatory cytokines, induces increased expression of ad-
hesion molecules, chemokines, and cytokines by endothelial
cells (50, 99). Beyond that, endothelial cells express recep-
tors for all major stress hormones (139, 193) and may thus be
activated directly by elevated circulating hormone levels.

Taken together, the abovementioned experimental studies
demonstrate the proinflammatory potential of psychosocial
stress. Indeed, various experimental evidences demonstrate
accelerated atherosclerosis development in chronic stress
models (83). Reports about changes in lesion size are

FIG. 5. Experimental mouse models to
induce psychosocial stress. In experimental
models for chronic stress, animals are ex-
posed to a single mild stressor or a combi-
nation of mild stressors repetitively for
weeks up to months. By contrast, experi-
mental models for acute stress use severe
stressors over a short period of time (hours
to days). , Stress exposure.
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inconsistent (9, 10), however, researchers agree that chronic
psychosocial stress changes the plaque phenotype toward a
more unstable lesion, which includes more plaque inflam-
matory leukocytes (57, 191, 192), fewer plaque SMCs (191,
192), higher expression levels of matrix metalloproteinases
(57, 192) and, consequently, reduced plaque collagen content
(192) and a thinner fibrous cap (118, 191). Of note, standard
murine models of atherosclerosis acquire features of unstable
plaques but lack plaque rupture or erosion, which frequently
occur as the ultimate consequences of atherosclerosis in
humans. Using additional gene knockouts or surgical tech-
niques, researchers were recently able to mimic these condi-
tions in mice (152). In an ApoE(-/-)Fbn1(C1039G+/-) mouse
model that develops exacerbated atherosclerosis and sponta-
neous plaque ruptures, chronic psychosocial stress indeed in-
creased plaque instability and the incidence of MI (137).

Overall, evidence for the proinflammatory effect of
chronic psychosocial stress has expanded greatly in recent
years, with general consensus regarding its capacity to pro-
mote vascular inflammation and atherosclerosis progression.
Mechanistically, this is one aspect of the links between
chronic stress and higher CVD risk in affected patients.

Acute psychosocial stress. In contrast to chronic stress,
which increases the risk for CVD gradually over time, acute
stress is a major trigger for acute cardiovascular events in
people with manifest atherosclerosis (106, 159). In recent
decades, natural catastrophes, such as earthquakes, or other
population-level disasters, such as war and terror attacks,
have been associated with higher incidences of acute car-
diovascular events (4, 103). Following an earthquake in the
Los Angeles area in 1994, for example, the occurrence of
sudden deaths from cardiac causes rose around fivefold
compared with control periods before the earthquake and in
the preceding years (88). However, even more moderate
stressors such as major sporting events have been linked to
cardiovascular complications (181).

The notion that acute stress can trigger acute cardiac events
is further supported by a great number of individual-level
studies (34). A recent meta-analysis calculated a 4.74 higher
risk for MI or acute coronary syndrome within 2 h following
anger, for example (108). This was confirmed in a sub-
analysis of the INTERHEART study that reported a 2.44
higher odds ratio for acute MI associated with emotional
upset (155).

Observational studies show that, similar to chronic psy-
chosocial stress, acute stress is linked to inflammation (83). In
a study investigating the effect of a stressful sporting event,
classical inflammatory mediators such as soluble vascular
adhesion molecule 1 (sVCAM-1), monocyte chemoattractant
protein 1 (MCP-1), and TNFa were up to 65% higher
in subjects experiencing a stress-associated ACS event
compared with control patients (182). Likewise, patients
suffering from Takotsubo cardiomyopathy, an acute stress-
associated type of nonischemic cardiomyopathy, displayed
higher plasma levels of inflammatory cytokines (143).

Experimental human data provided further evidence that
acute stress produces proinflammatory responses in the body.
Psychological research experiments involving public speak-
ing tests, arithmetic tasks, or a combination of different
stressors were the first simulations of acute psychosocial
stress in humans. In a study using oral presentations as a

stress model in physicians, participants had increased plasma
levels of IL-1b and ICAM-1 (59). A classical adhesion
molecule on endothelial cells, ICAM-1 mediates leukocyte
recruitment and is upregulated under inflammatory condi-
tions. Its soluble form is also found in plasma and serves as a
biomarker for atherosclerotic plaque burden (5). In another
study using a standardized public speaking stressor, greater
peripheral vasoconstriction with mental stress was associated
with a higher risk of adverse cardiovascular outcomes in
participants with preexisting CVD (74). Of note, the re-
searchers observed an association between greater peripheral
vasoconstriction and circulating norepinephrine and IL-6
plasma levels. An interesting recent study showed that
increased mental stress-induced myocardial ischemia in
young women post-MI is accompanied by more microvas-
cular dysfunction than in their male counterparts (168). Im-
portantly, microvascular dysfunction has been linked to
systemic inflammation by several studies (36, 130, 131). In a
randomized-controlled trial using a sequential series of psy-
chosocial stressors, acute stress raised the plasma levels of
IL-6 and IL-1b (80). In addition, this rise in inflammatory
cytokines was accompanied by a proinflammatory gene ex-
pression profile in blood leukocytes, an effect likely mediated
by the transcription factor nuclear factor kappa B (NF-jB).
Another recent randomized-controlled trial study reported
increased IL-6 levels in a CO2 stress test that simulated acute
stress in humans (76). This test was previously established as
a more severe experimental model for panic disorders (172).

While chronic psychosocial stress consistently elevated
circulating leukocytes and inflammatory subtypes in human
and animal studies (57), things are less clear in acute psy-
chosocial stress. On the one hand, for example, performing a
speech task resulted in general leukocytosis and higher levels
of all major leukocyte subtypes (48). On the other hand, a
study that used skydiving as a model for acute psychosocial
stress reported increased neutrophils and natural killer cells,
while lymphocyte and monocyte levels decreased immedi-
ately before and after the jump compared with baseline (14).
These differences may be explained by the different kinetics
of leukocyte populations and varied stress stimuli used in
studies. The picture becomes even more complex as the acute
stress response redistributes leukocyte subsets between he-
matopoietic organs, blood, and various tissues (62).

As with chronic psychosocial stress, detailed mechanistic
data on how acute stress exacerbates disease come from an-
imal and cell culture experiments. To simulate acute stress,
studies use severe stressors including restraint stress (128,
175, 187), in which animals are immobilized for minutes up
to several hours, pain stress models such as eye bleeding
(128) or social defeat (Fig. 5) (128, 187).

Similar to human experimental data, animal studies dem-
onstrate that an acute stress procedure impacts circulating
blood leukocyte levels. However, in contrast to human data,
individual studies using animal models have more aligned
outcomes, mostly likely due to better standardization in an-
imal experiments. Such studies consistently report a decline
in circulating monocyte and lymphocyte levels after at least
30 min of acute stress, while neutrophil levels are unchanged
or even increase (61, 175, 186, 187). Initially, leukocytes are
massively mobilized from reservoirs, but blood numbers
rapidly decline as leukocytes traffic to sites of inflammation
and immune activation (25).
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This redistribution also requires endothelial cell compart-
ment activation in the respective tissue. However, although
researchers show that psychosocial stress robustly affects the
endothelium in the context of hemodynamic processes (40, 125,
168), very little is known about the inflammatory consequences.
Our group recently proved that locally released norepinephrine
activates endothelial cells under acute stress exposure (61). As a
consequence, activated endothelial cells increasingly express
cell adhesion molecules and release chemokines, which result
in enhanced blood inflammatory leukocyte recruitment to sus-
ceptible tissues, especially atherosclerotic plaques. In addition,
similar to chronic stress situations, the increased circulating
chemokines likely further activate the endothelium in an al-
ready proinflammatory setting due to preexisting atheroscle-
rosis. Cardiovascular events such as MI can themselves be
regarded as acute psychosocial stress. Accordingly, prior MI
accelerated atherosclerosis in an animal model (31).

As plaque rupture does not often occur in classical, athero-
sclerotic animal models, research previously focused primarily
on how acute psychosocial stress impacted plaque phenotypes,
cardiac function, and hemostatic processes (83). Researchers
showed that acute psychosocial stress leads to plaque desta-
bilization (84) and ultimately MI in hypercholesterolemic

ApoE-/- mice (16). Indeed, our group recently showed that
acute mental stress affects plaque stability in a mouse plaque
rupture model. Mechanistically, increased plaque rupture in-
cidence was accompanied by higher intimal myeloid cell
numbers and decreased SMC and collagen content (61).

As mentioned above, human data suggest an association
between acute stress and systemic inflammation, and signif-
icantly accumulating recent evidence also links acute psy-
chosocial stress to increased vascular inflammation.

Clinical Outlook and Future Perspectives

In summary, society faces a high burden of psychosocial
stress-related CVD cases. Although lipid-lowering therapy
has greatly reduced CVD risk in recent decades, the residual
risk remains substantial, and psychosocial factors strongly
contribute to this condition (188). Indeed, both chronic stress
and acute stress are associated with CVD risk, even in pa-
tients receiving state-of-the-art treatment (181).

Successful intervention in this area first requires the
identification of people at risk (75). These individuals have
both preexisting atherosclerosis and either a high burden of
chronic stress or a behavior type that is especially susceptible

FIG. 6. Therapeutic options of psychosocial stress. People at high risk of stress-induced CVD can potentially be treated
at three different levels alongside the physiological stress response cascade. Especially in chronic stress, the stimulus itself
can be removed/reduced. On the stress perception level, behavioral intervention strategies may increase resilience to
stressful events or strengthen coping strategies. In addition, external support strategies by the individual environment can be
established. Pharmacological interventions to modify the stress response itself can target inflammatory processes (as
outlined in this review), and also hemodynamics and hemostasis. However, up to now, pharmacological interventions in the
context of psychosocial stress and CVD are not routinely used in clinical practice. CVD, cardiovascular disease.
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to acute stress. Biomarkers such as hormone levels and
platelet aggregates at baseline or after stress challenges might
help identify people carrying this type of risk (160).

Behavioral interventions might be best suited to reducing
chronic stress. Such interventions include both population-
based and targeted approaches; the latter is mostly used in
secondary prevention (75). It is worth noting that the occur-
rence of acute stress strongly depends on external factors and
cannot necessarily be reduced by behavioral interventions.
Still, possible behavioral intervention strategies may target
coping mechanisms in particularly stress-susceptible individ-
uals (52, 185) or provide external support strategies in both
chronic stress and acute stress. Potential resilience and coping
mechanisms that might be entrained include mindfulness,
meditation, cognitive behavioral therapy, and physical activity
(157, 179). Up to now, however, systematic analysis of such
interventions in controlled trials is lacking (75).

Along with behavioral interventions, susceptible individ-
uals may need pharmacological treatment (Fig. 6). However,
there are currently no drugs that reduce chronic or acute
stress-associated inflammation, partly due to a paucity of
mechanistic understanding. In chronic stress, the specific
effects of stress hormones on endothelial cells and in-
traplaque processes particularly need to be addressed. For the
acute stress response, different questions remain unanswered.
It is still largely unknown whether acute mental stress in-
fluences other vascular cell types apart from endothelial cells.
Furthermore, the effects of acute mental stress on circulating
leukocytes warrant further investigation. Most of all, tailor-
ing pharmacological interventions requires a deeper knowl-
edge of stress-specific mechanistic effects on inflammation.
The majority of circulating cytokines that are upregulated
during psychosocial stress, for example, IL-1b and IL-6, are
also crucial players in the immune response to nonsterile
infections. Thus, targeting these cytokines in stress therapy
may lead to off-target effects and increase, for instance, the
incidence of fatal infections.

All in all, psychosocial factors are increasingly acknowl-
edged as key to the primary and secondary prevention of
CVD. Going forward, additional mechanistic studies are
needed to provide better tools for behavioral and pharma-
cological treatment options.
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