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Abstract

Purpose

The present study investigated whether neuromuscular electrical stimulation for 20 min

twice a day with an electrode placed over the soleus muscle and nutritional supplementa-

tion with 19 g of protein rich lupin seeds can reduce the loss in volume and strength of the

human calf musculature during long term unloading by wearing an orthotic unloading

device.

Methods

Thirteen healthy male subjects (age of 26.4 ± 3.7 years) wore a Hephaistos orthosis one leg

for 60 days during all habitual activities. The leg side was randomly chosen for every subject.

Six subjects only wore the orthosis as control group, and 7 subjects additionally received the

countermeasure consisting of neuromuscular electrical stimulation of the soleus and lateral

gastrocnemius muscles and lupin protein supplementation. Twenty-eight days before and

on the penultimate day of the intervention cross-sectional images of the calf muscles were

taken by magnetic resonance imaging (controls n = 5), and maximum voluntary torque (con-

trols n = 6) of foot plantar flexion was estimated under isometric (extended knee, 90˚ knee

flexion) and isokinetic conditions (extended knee), respectively.

Results

After 58 days of wearing the orthosis the percentage loss of volume in the entire triceps surae

muscle of the control subjects (-11.9 ± 4.4%, mean ± standard deviation) was reduced by the

countermeasure (-3.5 ± 7.2%, p = 0.032). Wearing the orthosis generally reduced plantar
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flexion torques values, however, only when testing isometric contraction at 90˚ knee ankle the

countermeasure effected a significantly lower percentage decrease of torque (-9.7 ± 7.2%,

mean ±SD) in comparison with controls (-22.3 ± 11.2%, p = 0.032).

Conclusion

Unloading of calf musculature by an orthotic device resulted in the expected loss of muscle

volume and maximum of plantar flexion torque. Neuromuscular electrical muscle stimulation

and lupin protein supplementation could significantly reduce the process of atrophy.

Trial registration

ClinicalTrials.gov, identifier NCT02698878

Introduction

Chronic unloading of skeletal muscles commonly results in muscle atrophy, which is more

pronounced in muscles involved in locomotion than in muscles predominantly involved in

joint stabilization [1]. In patients, muscle atrophy is a negative side effect of immobilization by

bed rest or by orthopaedic devices which are used to protect healing tissues. Astronauts repre-

sent a special group of healthy persons who are severely affected by atrophy of leg and back

musculature because of microgravity-induced chronic unloading. During long term space

mission on board the former Soviet/Russian space station Mir or on the current International

Space Station ISS exercise countermeasures have been obligatory. However, formerly used

countermeasures have only been partially effective in preserving leg and back muscle volume

and function [2–5], whereas in recent years astronauts who trained on the novel Advanced

Resistive Exercise Device (ARED) returned back from space in a visibly better condition [6]

(personal observations). However, ARED training is time-consuming and connected with the

potential risk of injury by high loads. Therefore the development of more efficient and safer

for countermeasures conserving muscles and bones in space is still an ongoing challenge.

Countermeasures against microgravity effects on the human body are typically developed

and verified using the ground based models of long term bed rest [7–9], or unilateral limb sus-

pension [10] for inducing muscle atrophy. However, the bed rest model cannot distinguish local

and systemic immobilization effects, which to a lesser extent also applies for unilateral limb sus-

pension. Therefore, we recently developed the novel Hephaistos orthosis [11,12], which provides

a selective unloading model for the calf musculature. Subjects wearing the Hephaistos orthosis

can walk more or less normally [11] without crutches and without immobilization of knee and

ankle, respectively, which are both obligatory in full casts as well as in the unilateral limb suspen-

sion model. The Hephaistos orthosis significantly reduces the activity of calf muscles during

walking [11]. After 56 days of wearing the orthosis maximum isokinetic plantar flexion torque

was reduced by about 23% and soleus muscle fibre cross-section was reduced by about 9% [13].

The present study is the first one to use the Hephaistos orthosis for testing countermeasures.

It is well-established that neuromuscular electrical stimulation (NMES) can counteract the

atrophy of immobilised skeletal muscles. This was shown e.g. in experimental studies on mam-

malian animals [14–17] as well as in clinical studies on patients immobilised by long term bed

rest due to general illness [18,19], or by orthopaedic [20–24] or neurological [25] conditions.

NMES activates signalling pathways controlling the synthesis of proteins involved in growth

NMES and dietary lupin protein as countermeasures against disuse atrophy

PLOS ONE | DOI:10.1371/journal.pone.0171562 February 16, 2017 2 / 13

German Aerospace Center (DLR). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://clinicaltrials.gov/ct2/show/NCT02698878


and differentiation of muscle fibres, in muscle energy metabolism, in the activation of satellite

cells, etc. [20,26,27].

The growth stimulus provided by muscular training, including by means of NMES, is fre-

quently supported by nutritional protein supplementation in order to optimise the metabolic

conditions for muscle protein synthesis in terms of the availability of the different amino-acids

[28–35]. However, in most cases this protein is of animal origin which is rich in sulphur-con-

taining amino acids causing a moderate metabolic acid load. A metabolic acidification would

stimulate bone resorption and muscle protein degradation [36–38]. To reduce the risk of a

potentially occurring acidosis and its negative effects on bone and muscle, which at least would

partially counteract the benefits of supplementation with animal protein, in this study lupin

seeds were applied as nutritional supplementation. The vegetable seeds contain up to 40% of

protein and due to a lower amount of sulphur-containing amino acids (lupin flour analysis:

methionine: 0.13 g / 100 g; cysteine: 0.61g/100g) than whey protein for example (methionine:

2.28g/100g; cysteine: 2.41g/100g) result in a lower metabolic acidification than animal protein.

The NutriHEP study (ClinicalTrials.gov identifier NCT02698878) focussed on the local and

the systemic alteration in glucose metabolism in the soleus muscle during atrophy induced by

partial unloading with the Hephaistos orthosis and the effectiveness of NMES plus lupin protein

supplementation for reducing muscle atrophy induced by the orthosis and the effects of atrophy

on glucose metabolism. Out of the greater NutriHEP study, this first paper describes the study

design and the principal structural and functional alterations induced by the orthosis, which are

the losses in calf muscle volume and maximal voluntary strength, as well as the effectiveness of

the applied countermeasures for minimizing the expected loss in muscle volume and strength.

Methods

Subjects

Thirteen healthy male subjects (Fig 1) with an age of 26.4 ± 3.7 years (mean ± standard devia-

tion (SD)) and a body mass index of 22.9 ±1.6 kg/m2 completed the intervention phase and

the maximal voluntary strength test. Only 12 out of 13 subjects (age of 27.3 ±3.9 years, body

mass index of 23.0 ±1.54 kg/m2) participated in the MRI experiments (Fig 1). Subjects were

enrolled between April 1st and August 3rd 2014. All measurements were performed at the Ger-

man Aerospace Center, DLR, in Cologne, Germany.

The entire NutriHEP-study comprising all experiments including those reported here was

registered on 23rd February 2016 at ClinicalTrials.gov identifier NCT02698878 in response to

the altered policy of PLOS-ONE assigning physiological studies on healthy subjects as clinical tri-

als that must be registered. The NutriHEP study complied with the Declaration of Helsinki and

was approved on the 25th April 2014 by the ethics committee of the Ärztekammer Nordrhein,

Düsseldorf, Germany.All subjects gave their written informed consent before study inclusion.

Study design

For 60 days, all subjects wore the Hephaistos orthosis during their regular life activity. Whether

a subject wore the orthotic device on the left or the right leg was assigned randomly by tossing a

coin. Each orthosis was individually adapted by ORTEMA GmbH (Markgröningen, Germany).

A temperature probe (Orthotimer, rollerwerk medical engineering & consulting, Balingen, Ger-

many) integrated in the orthosis recorded the daily duration of wearing the orthosis.

Six subjects were only wearing the orthosis (control group). Seven subjects additionally

underwent the countermeasure including daily lupin protein supplementation and NMES

twice a day. Groups of two subjects were allocated to the two study groups by tossing a coin.

One subject of the control was excluded from MRI examination (Fig 1).

NMES and dietary lupin protein as countermeasures against disuse atrophy
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Countermeasures

NMES was applied to the soleus muscle two times per day using the T-ONE MEDIPRO device

(I.A.C.E.R. srl, Martellago, Italy). A 5 × 5 cm stimulation electrode was positioned on the soleus

muscle lateral and distal from the lower edge of the gastrocnemius lateralis muscle. A further

accessory stimulation electrode was placed over the belly of the gastrocnemius lateralis muscle,

where the electrical current likely reached both, the thin lateral gastrocnemius muscle and the

underlying proximal part of the soleus muscle. The reference electrode (5 × 10 cm) was placed

transversally on the proximal aspect of the two gastrocnemii. The stimulator delivered pre-pro-

grammed biphasic rectangular pulses with the following characteristics: frequency of 30 Hz,

pulse duration of 200 μs, on/off ratio of 5/5 s with a ramp-up of 1 s and a ramp-down of 0.5 s.

Subjects were asked to constantly increase current intensity during each session to the maxi-

mally tolerated level (range: 0–100 mA), while they were seated with the knee flexed at approxi-

mately 90˚. This knee angle minimizes the contribution of gastrocnemius muscles to plantar

flexion [39]. Subjects were asked to minimize heel rising by the contraction of the stimulated

plantar flexor muscles by holding down the knee of the stimulated leg with both hands. The

total duration of a treatment session was 20 min (40 min/day).

Every day for the whole duration of the intervention subjects of the countermeasure group

received 19g of lupin crunchy which they mixed with their regular food. The amount of crunchy

was independent of body weight and based on the literature [40,41] considering a conglutin

Fig 1. CONSORT 2010 Flow Diagram. The diagram shows the recruitment, allocation and analysis of

subjects in the NutriHEP-study with respect to the orthosis intervention and the examinations concerning

maximum voluntary contraction (MVC) and magnetic resonance imaging (MRI)

doi:10.1371/journal.pone.0171562.g001
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gamma content of 4% of the total protein and a protein content of 41.3% in the lupin crunchy

(Eurofins Laborservice GmbH, Cologne, Germany). The content of sulphur containing amino

acids methionine and cysteine for whey and lupin protein (analysed as lupin flour) and the con-

tent of protein in lupin crunchy were analysed by a local laboratory (Eurofins Laborservice

GmbH, Cologne, Germany).

Assessment of muscle volume using MRI

MRI examinations of the calf musculature were conducted 28 days before and on the 58th day

of wearing the orthosis. Both MRI measurements were scheduled on the day before the biopsies

from the soleus muscle were taken. The first biopsy was taken almost four weeks before wearing

the orthosis to reduce the risk of thrombosis. MRI acquisitions were obtained from a 3T scanner

(mMR Biograph (PET-MRI scanner based on the Verio system), Siemens, Erlangen, Germany)

with the the Verio’s standard body coil. During the examination the lower leg was placed in a

mono-resonant sodium birdcage coil (Rapid Biomedical, Würzburg, Germany) for another

experiment. Changes in muscle volume were determined from 1H-MR images recorded with

the body coil.

All examinations were carried out at rest and in the supine position. Prior to MRI scanning,

subjects were resting for 30 min in the supine position to reach a constant distribution of the

interstitial volume before the measurements started. Subjects were then transferred into the

scanner room and positioned for examination. The belly of the calf musculature from the

orthosis leg was positioned in volume of homogenous sensitive of the sodium coil. To avoid

motion and to achieve a defined and reproducible region of the calf musculature for pre and

post measurements, the leg was supported by cushions and stabilized with a wooden footrest.

The distance between the footrest and the sodium coil was individually defined for each sub-

ject. The first muscle volume measurement started after 45 min of supine rest after the sodium

MRI experiment.

For the assessment of muscle volume a series of trans-axial 2-dimensional PD-weighted

Dixon TSE (turbo spin echo) sequence was used with the following parameters: acquisition

time (TA) 2:48 min, pulse repetition time (TR) 3000 ms, echo time (TE) 11 ms, flip angle

180˚., bandwidth 292 Hz/Px. The field of view covered a distance of 16.5 cm with series of 17

images. Each image had an area of 192 x 192 mm with a 256 x 256 pixel matrix resulting in a

resolution of 0.75 mm x 0.75 mm per pixel. The slice thickness was 5 mm with a gap of 5 mm

in-between slices.

In each image the individual areas of the gastrocnemius lateralis muscle, the gastrocnemius

medialis muscle, and the soleus muscle were segmented using custom made software (ROI-seg-

menter, University of Applied Technology Niederrhein, Institute for Pattern Recognition, Kre-

feld, Germany). Before and after the intervention, for all series of images covering identical

regions of the lower legs the sum areas were calculated and multiplied by slice thickness (5 mm).

For each examination the volume of the whole triceps surae muscle was calculated as the sum of

its three heads. The percent changes in muscle volumes pre and post intervention were calcu-

lated as 100 x (pre–post)/pre.

Assessment of maximum voluntary strength

Maximum voluntary strength of the plantar flexors was evaluated in three different modes: 1)

isometric, with the knee almost extended and a neutral foot position (internal angle: 90˚), 2)

isokinetic concentric, with the knee almost extended and an angular velocity of 60˚/s, and 3)

isometric with hip and knee joints flexed at 90˚ and ankle joint in 10˚ of dorsiflexion (internal

angle: 80˚).

NMES and dietary lupin protein as countermeasures against disuse atrophy
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Maximum voluntary strength in modes 1 and 2 was tested using the Isomed 2000 dyna-

mometer (D&R Ferstl GmbH, Hemau, Germany), which measures instantaneous torque in

Nm. Subject laid supine with their knees almost extended and the foot of the orthosis wearing

leg fixated on a pedal attached to the dynamometer. For these two tests on the dynamometer

subjects completed a warm-up of 3 sets of 5 consecutive submaximal isokinetic plantar- and

dorsal flexions at 60˚/s. The warm-up was followed by 2 sets of 5 consecutive isokinetic, con-

centric-concentric plantar- and dorsal flexions at 60˚/s with only plantar flexion performed at

maximal intensity. Subsequently, maximum isometric plantar flexion torque was evaluated

during 3 contractions of 3 to 5 s duration. Rest periods of 1 min were consistently utilized

between sets (isokinetic mode) and contractions (isometric mode).

Maximum isometric plantar flexion torque was also evaluated with the knee flexed at 90˚

(mode 3) by means of a custom made device. The subject was seated on a chair and the foot of

the tested leg was placed in 10˚ dorsiflexion on a footplate, which was adjusted such that the

rotational axis of the plate corresponded to that of the ankle joint. A strain gauge sensor was

placed under the footplate with a fixed lever to assess the torques around the rotational axis of

the device Thighs were prevented from moving up during maximal plantar flexion efforts

using a bended and padded metal plate placed above the knee. To adjust the device according

to the individual lengths of lower legs, the metal plate could be height adjusted by a threaded

rod within a strong metal frame. After a brief warm-up consisting of 15 to 20 repetitive sub-

maximal isometric plantar flexions, subjects performed two maximal isometric plantarflexion

efforts of 3 to 5 s duration with a 2-min rest period. In case the differences in maximum torque

between the two trials was higher than 5% an additional trial was performed.

Only the highest torque value reached during the different maximal contractions was

retained for all three testing modes.

Statistical analyses

IBM SPSS statistics software (version 21) was used for data evaluation. Absolute volume and

torque values given in ml or Nm, respectively, were tested with the fixed factors phase (pre,

post) and group (control, countermeasure) as well as phase�group using linear mixed models

(LME) for repeated measurements (phase per subject, covariance structure was set to “diago-

nal”). Where the repeated measure LME did reach convergence for absolute values, we also

applied LME using phase as a simple fixed factor. Delta-values of volume and torque (pre-

post) were calculated and given in ml and Nm, respectively, or in %. Delta-values in % were

tested with LME using only the fixed factor group. Furthermore, for each group pre- and post-

values of volume and torque were tested for normality using the Kolmogorov-Smirnov-test.

Subsequently, pre- and post-values were group wise tested for significant differences using

paired t-test. A significance level of p<0.05 was defined. An effect size of 1.52 was calculated

using the R-project package “basic functions of power analysis” with the function “power cal-

culations for two samples (different sizes) t-tests of mean” and the parameters n1 = 6 and

n2 = 7 as numbers of observation, significance level = 0.05, power = 0.7, and the two sided

hypothesis alternative. Expecting a relative loss in isokinetic torque of -23.4% ± 8.2% in the

control group [13] the minimum significant countermeasure effect would reduce the loss in

maximum isokinetic torque to about -10.9%.

Results

The control group wore the orthosis for 12.6 h/day (±2.0 (SD), minimum 10.2 h/day, maxi-

mum 15.9 h/day). The countermeasure group wore the orthosis for 11.4 h/day (±1.5 (SD), 8.3

to 12.8 h/day, p = 0.358).

NMES and dietary lupin protein as countermeasures against disuse atrophy
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In subjects from the control group the volume of the triceps surae muscle was reduced by

-11.9 ± 4.4% (mean ± SD). Volume loss was significantly less in the countermeasure group

(-3.5 ± 7.2%) than in the control group (p = 0.044, Fig 2, Table 1). In control subjects, volume

was significantly reduced in all three heads of the triceps surae muscle. As a trend the greatest

effect was observed for the soleus muscle. In the countermeasure group, volume losses of the

individual heads of triceps surae muscle were not significantly different from 0. However, the

countermeasure effect also did not reach statistical significance when comparing the two sub-

ject groups for the single parts of the triceps surae muscle (Fig 2, Tables 1 and 2).

Fig 2. Percent changes (means ± standard error of the mean) in the triceps surae muscle and its three parts by the

orthosis intervention in the control and in the countermeasure group, respectively. *: p<0.05 for the delta-value

versus 0. †: p<0.05 for differences between the two groups.

doi:10.1371/journal.pone.0171562.g002

Table 1. Significance (p-values) of the percent decreases in muscle volume and strength induced by wearing the orthosis with and without the

countermeasures tested by LME and t-tests (compare Figs 2 and 3).

LME, constant term vs. 0 LME, intervention paired t-test countermeasure group paired t-test control group

muscle volume

gastrocnemius medialis 0.033 0.261 0.458 0.005

gastrocnemius lateralis 0.266 0.549 0.739 0.056

soleus 0.063 0.184 0.684 0.014

triceps surae 0.002 0.044 0.242 0.004

muscle strength

isometric, knee extended 0.010 0.765 0.035 0.115

isometric, knee flexed <0.001 0.032 0.012 0.005

isokinetic, knee extended 0.017 0.801 0.013 0.242

doi:10.1371/journal.pone.0171562.t001
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Significant effects on both, wearing of the orthosis and the combination of countermeasures

on calf muscle strength was only found for the isometric test with the knee flexed at 90˚. Under

these conditions maximal voluntary torque of the control group decreased by -22.3 ± 11.2%

(mean ±SD) versus -9.7 ± 7.2% for the countermeasure group (p = 0.032, Fig 3, Tables 1 and 3).

Table 2. Muscle volume (means ± standard deviation, ml) of the triceps surae muscle and its three heads

muscle volume (ml) intervention pre post post—pre

gastrocnemius medialis countermeasure 116.6± 29.5 112.1 ± 26.7 -4.4± 12.1

control 115.4 ± 37.5 104.6 ± 30.3 -10.8 ± 8.2 †

gastrocnemius lateralis countermeasure 55.3 ± 23.4 53.2 ± 24.5 -2.1 ± 11.8

control 66.0 ± 19.7 59.4 ± 16.9 -6.5 ± 6.7

soleus * countermeasure 214.6 ± 31.0 205.2 ± 25.2 -9.4 ± 31.4

control 200.3 ± 27.0 170.8 ± 27.1 -29.6 ± 15.4 †

triceps surae countermeasure 386.5 ± 67.3 370.5 ± 54.1 -16.0 ± 23.8

control 381.7 ± 71.6 334.7 ± 50.1 -47.0 ± 26.0 †

Muscle volume was measured in 17 slices of 5 mm thickness located around the belly of the calf with 5 mm gaps in between the slices. Measurements were

made before and after 58 days of wearing the orthosis.

Countermeasure effect: * p<0.05, LME.

Delta-Value different from 0: † p<0.05, t-test.

doi:10.1371/journal.pone.0171562.t002

Fig 3. Percent changes (means ± standard error of the mean) in maximal voluntary plantar flexion torque by the

orthosis intervention in the control and in the countermeasure group, respectively. *: p<0.05 for the delta-value versus

0. †: p<0.05 for differences between the two groups.

doi:10.1371/journal.pone.0171562.g003

NMES and dietary lupin protein as countermeasures against disuse atrophy
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The isometric and isokinetic tests performed with the knee extended showed a loss of strength

for both groups (constant term by LME, Tables 1 and 3) with no difference between the control

and the countermeasure subjects (Table 1). When both groups were analysed separately at post-

intervention, only the countermeasure group showed a significant decrease in isometric and

isokinetic torque with the knee extended (Table 1, Fig 3).

Discussion

In this ambulatory study the Hephaistos orthosis subjects wore the Hephaistos orthosis

between 8 and 16 h/day which indicated a good tolerance of the orthosis and high compliance

of the subjects during their daily walking activity. After two short familiarization sessions

before the intervention phase, subjects accustomed quickly to the usage of the orthosis. Only

one subject reported excessive pressure caused by the upper edge of the shin pad of the ortho-

sis, but this problem was resolved by the manufacturer during the first week of unloading.

Wearing the Hephaistos orthosis for 60 days resulted in the expected decrease in triceps

surae muscle volume and plantar flexion strength. Both MRI and maximum voluntary torque

results at 90˚ of knee flexion demonstrated that volume and strength loss were greater in the

mono-articular soleus muscle than in the bi-articular gastrocnemii. NMES together with the

nutritional supplementation of protein rich lupin seeds resulted in significantly lower

decreases in triceps surae muscle volume and plantar flexion strength compared to the control

group. These results are remarkable, because the benefits in this study were obtained with

comparably little effort for the subjects (40 min/day of NMES and easy-to-control nutritional

supplementation). So far, preventing muscle atrophy during bed rest was only fully effective

when countermeasures such as resistance training were performed at least on a daily basis and

with very forceful contractions [42,43].

Even if the intensity of the contractions evoked by NMES was not controlled in this study,

due to practical reasons (all NMES sessions were conducted at home and not in a laboratory),

we expect that–based on average current intensities and settings comparable to previous stud-

ies [24,44,45] we conducted–plantar flexion force evoked by NMES was close to 50% of pre-

intervention maximal voluntary strength.

NMES therapy has been shown to be effective in treating skeletal muscles–the quadriceps

in particular–during prolonged periods of disuse/immobilization due to injury, surgery or ill-

ness, as it has the potential to preserve muscle protein synthesis and prevent muscle atrophy

[24]. Probably due to its peculiar motor unit recruitment pattern (superficial, incomplete, asyn-

chronous and non-selective [46]), NMES has also been shown to enhance whole-body glucose

Table 3. Maximum voluntary contraction torque (means ± standard deviation, Nm) of the plantar flexors in three different modes

torque (Nm) intervention pre post post-pre

isometric, extended knee countermeasure 244 ± 42 215 ± 22 -28 ± 28 †

control 221 ± 50 195 ± 59 -26± 29

isometric, knee flexed * countermeasure 220 ± 38 198 ± 30 -22 ± 18 †

control 242 ± 46 186 ± 37 -56 ± 32 †

isokinetic, extended knee *, # countermeasure 155 ± 28 129 ± 8 -27 ± 22 †

control 129 ± 16 112 ± 31 -22± 25

Measurements were made before and after 58 days of wearing the orthosis.

Orthosis effect: * p<0.05, LME.

Countermeasure effect: # p<0.05, LME.

Delta-Value different from 0: † p<0.05, t-test.

doi:10.1371/journal.pone.0171562.t003
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uptake in healthy subjects [47] and to maintain glycemic control in critically-ill patients [48] by

preventing muscle-specific AMPK failure, restoring GLUT4 disposition, and diminishing pro-

tein breakdown. Interestingly, a short period of NMES also prevented type 2 muscle atrophy in

this latter study [48], which represents an important finding for the treatment of the typical dis-

use atrophy. In the current study, the NMES treatment was quite unique because of (1) the

unloading model, (2) the combined implementation with protein supplementation and (3) the

application of NMES exclusively to the triceps surae muscle of one side, which was quite a

minor stimulus for preserving muscle protein synthesis as well as for countering neuromuscular

and functional alterations induced by disuse. Nevertheless, our muscle volume and strength

results are quite solid, despite the small sample size, and confirm the effectiveness of NMES as a

countermeasure to disuse-induced muscle atrophy and weakness for a muscle group other than

the quadriceps.

However, and despite the fact that wearing the Hephaistos orthosis leads to a muscle weak-

ening that is comparable to bed rest, there is also a possibility that countermeasures could gen-

erally be more effective with the Hephaistos than during bed rest.

As with all studies, there are some limitations that need to be considered. Firstly, this was a

comparatively small study, and therefore caution must be taken when generalizing the find-

ings. Secondly, it remains unclear from this study what the contribution from the two constitu-

ents of the countermeasure was. However, there is a genuine possibility that the combination

of protein supplementation and NMES could be more effective than each of the two on its

own. Therefore, we feel that the study rationale of combining the two countermeasures in the

first approach was justified and that one should now go ahead and disentangle the partial con-

tribution of each of the two countermeasures.

In conclusion, the present study has successfully used the novel Hephaistos unloading

device to study the effectiveness of a combined lupin protein / NMES countermeasure against

calf muscle atrophy. The countermeasure showed good effectiveness to preserve calf muscle

volume, and to a somewhat lesser extent also to preserve plantar flexor strength. Results are

encouraging to further explore this combined countermeasure. Moreover, we feel the unload-

ing model also lends itself to study immobilization effects and countermeasure efficacy in pop-

ulations that cannot be easily be studied by bed rest, such as older people.
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