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Purpose: To construct optimal models for predicting the invasiveness and pathological subtypes of subsolid 
nodules (SSNs) based on CT radiomics and clinical features. 
Materials and Methods: This study was a retrospective study involving two centers. A total of 316 patients with 
353 SSNs confirmed as atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally 
invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) were included from January 2019 to 
February 2023. Models based on CT radiomics and clinical features were constructed for classification of AAH/ 
AIS and MIA, MIA and IAC, as well as lepidic-predominant adenocarcinoma (LPA) and acinar-predominant 
adenocarcinoma (APA). Receiver operating characteristic (ROC) curve was used to evaluate the model perfor
mance. Finally, the nomograms based on the optimal models were established. 
Results: The nomogram based on the combined model (AAH/AIS versus MIA) consisting of lobulation, the GGN- 
vessel relationship, diameter, CT value, consolidation tumor ratio (CTR) and rad-score performed the best 
(AUC=0.841), while age, CT value, CTR and rad-score were the significant features for distinguishing MIA from 
IAC, the nomogram based on these features performed the best (AUC=0.878). There were no significant dif
ferences in clinical features between LPA and APA, while the radiomics model based on rad-score showed good 
performance for distinguishing LPA from APA (AUC=0.926). 
Conclusions: The nomograms based on radiomics and clinical features could predict the invasiveness of SSNs 
accurately. Moreover, radiomics models showed good performance in distinguishing LPA from APA.   

1. Introduction 

Lung cancer is the second most common cancer and the leading cause 
of cancer death worldwide [1]. The most common pathological type of 
lung cancer is adenocarcinoma [2], which can be pathologically cate
gorized into adenomatous precursor lesions (APL), microinvasive 
adenocarcinoma (MIA) and invasive adenocarcinoma (IAC). APL was 
further classified into atypical adenomatous hyperplasia (AAH) and 
adenocarcinoma in situ (AIS), which is regarded as pre-invasive lesions. 
[3]. APLs often have good biological behavior and long-term un
changed, which can be followed up to select the best surgical timepoint 
and reducing the overtreatment [4,5]. MIA is a newly defined subtype of 

lung adenocarcinoma that does not invade the lymphatic vessels, blood 
vessels, or pleura [6]. Previous studies show that the disease-free sur
vival (DFS) rate after surgery for patients with MIA is reportedly almost 
100 % [7,8]. Different from MIA, IAC is the final stage in the trans
formation of lung cancer, which is characterized by invasion of the 
pleura and airway, invasion of blood vessels and lymphatics, tumor 
necrosis, airway transmission and worse prognosis compared to MIA 
[9]. In addition, IAC is further categorized into five subtypes: lepidic 
predominant adenocarcinoma (LPA), acinar predominant adenocarci
noma (APA), papillary predominant adenocarcinoma (PAP), micro
papillary predominant adenocarcinoma (MPA) and solid predominant 
adenocarcinoma (SPA), and the prognosis and therapeutic interventions 
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of different subtypes of IAC are different. LPA has the best prognosis 
with a very low risk of recurrence, while APA and PAP have a moderate 
risk of recurrence. MPA and SPA have a higher probability of lymph 
node metastasis and postoperative recurrence [10]. Therefore, early 
detection of invasiveness and subtype classification are critical for 
optimal decision-making in patients with early-stage adenocarcinoma. 
Intraoperative freezing is the routine practice to assess the invasiveness 
of pulmonary nodules in clinic, but its accuracy is probably limited due 
to the different diagnostic levels of pathologists and inadequate sam
pling [11,12]. Currently, computed tomography (CT) has played a 
crucial role in the preoperative assessment of the invasiveness of pul
monary nodules [13]. With the increasing use of CT screening and 
artificial intelligence, more and more pulmonary subsolid nodules 
(SSNs) (including pure ground glass nodules (pGGNs) and mixed ground 
glass nodules (mGGNs)) were found. Most of the SSNs are the early 
manifestation of lung adenocarcinoma. Considering the considerable 
overlap of CT imaging features among various histological subtypes [14, 
15], it is difficult to identify histological invasiveness with the CT im
aging features alone. 

As an emerging discipline of mining high-throughput data from 
medical images, radiomics has great potential for identifying the het
erogeneity of early-stage lung adenocarcinomas [16,17]. Previous 
studies proved that radiomics-based models could improve the perfor
mance of identifying the invasiveness of pulmonary nodules [18,19]. 
However, there are currently few studies on invasiveness prediction of 
SSN and subtypes classification of IAC. 

Thus, the purpose of this study was to establish models for inva
siveness prediction (AAH/AIS versus MIA and MIA versus IAC) of SSNs 
and subtypes classification of IAC in the early stage based on CT 
radiomics and clinical features, which is of great significance for the 
formulation of follow-up strategy and the selection of surgical protocols. 

2. Materials and methods 

2.1. Patients 

This retrospective study was approved by the Ethics Committees of 
the two centers, and the requirement for informed consent was waived 
due to the retrospective nature of the study. From January 2019 to 
February 2023, the chest CT data of patients with SSNs were collected. 
The inclusion criteria were as follows: (1) lesions presenting as SSNs less 
than 3 cm in diameter; (2) nodules pathologically determined to be 
AAH, AIS, MIA, or IAC by surgical resection; and (3) the time interval 
between CT and surgery of less than one month. Exclusion criteria were 
as follows: (1) absence of thin-section CT images (0.625–1.25 mm); (2) 
poor-quality images that affects image segmentation; and (3) patients 
with experience of chemotherapy or radiotherapy. 

2.2. CT imaging protocol 

All patients received routine non-enhanced CT. The scanning fea
tures and corresponding reconstruction parameters were listed in 
Table S1. CT scans were obtained for all patients in the supine position at 
full inspiration. 

2.3. Clinical factors and CT imaging features 

The clinical factors included age, gender and smoke. The CT imaging 
features included diameter, CT value, lobulation (absent, present), 
spiculation (absent, present), pleural indentation (absent, present), 
vacuole sign (absent, present), crescent sign[20] (absent, present), air 
bronchogram (absent, present), solid component (absent, present), solid 
component size, consolidation tumor ratio (CTR): consolidation tumor 
size/diameter[21] and the GGN-vessel relationship (I~IV): type I 
(pass-by), vessels passed by GGNs without detectable supplying 
branches to lesions; type II (pass-through), vessels passed through the 

lesions without obvious morphological changes in traveling path or size; 
type III (distorted/dilated), vessels within lesions were tortuous or rigid 
without an increase in amount; type IV (complicated), more complicated 
vasculature other than described in the aforementioned types within 
GGNs, for instance, coexistence of irregular vascular dilation and 
vascular convergence from multiple supplying vessels[22]. The imaging 
features were evaluated by two radiologists (with at least three years of 
experience in thoracic interpretation), and disagreements were resolved 
under the guidance of a senior radiologist with 20 years of experience in 
chest CT diagnosis. 

2.4. Image preprocessing and nodule segmentation 

Format conversion, bias field correction, and normalization were 
performed on all images using the open source Python 3.7 data package 
after acquiring raw CT data from patients (Figure S1). Then these pre
processed images were imported into 3D slicer software (version 4.11; 
National Institutes of Health; https://www.slicer.org, America) to adjust 
the unified grayscale parameters. Nodules were first segmented manu
ally using the 3D slicer software by drawing a region of interest (ROI) 
along the boundary of each nodule on the CT images slice by slice until 
the entire nodule had been covered. 

2.5. Radiomics feature extraction, standardization 

Shape Features, First Order Features, Gray Level Co-occurrence 
Matrix (GLCM) Features, Gray Level Size Zone (GLSZM) Features, 
Gray Level Run Length Matrix (GLRLM) Features and Gray Level 
Dependence Matrix (GLDM) Features were computed automatically 
extracted by utilizing the pyradiomics (https://pyradiomics.readthedo 
cs.io/en/latest). Z-scores was used to standardize all radiomics fea
tures. ComBaTool (https://forlhac.shinyapps.io/Shiny_ComBat/) was 
used to address batch effects and principal component analysis (PCA) 
was used to visualize the correction of batch effects on these features by 
ComBats. 

2.6. Prediction modeling 

2.6.1. Clinical model construction 
The clinical model was based on the clinical factors and CT imaging 

features. Univariate analyses were conducted on all clinical factors and 
CT imaging features in the training set. A multivariate analysis was 
performed by the logistic regression analysis to build the clinical model 
with the significant variables resulting from the univariate analysis. 

2.6.2. Radiomics feature selection and model construction 
Two experienced radiologists independently segmented the ROIs of 

CT data of 50 randomly selected nodules without any clinical informa
tion. After that, we analyzed the interobserver reproducibility of the 
feature extraction. Radiomics features with good interobserver repro
ducibility (intraclass correlation coefficient [ICC]≥0.80) were included 
in subsequent analyses. Then, two feature selection methods, maximum 
relevance–minimum redundancy (mRMR) and least absolute shrinkage 
and selection operator (LASSO), were used to select the features. Firstly, 
mRMR was performed to eliminate the redundant and irrelevant fea
tures and 30 features were retained. Secondly, LASSO was conducted to 
choose the optimized subset of features to construct the final model (The 
optimal parameter (λ.min) was selected by ten-fold cross-validation). 
Finally, radiomics score (rad-score) was calculated by summing the 
selected features weighted by their coefficients. 

2.6.3. Combined model construction and nomogram development 
The combined model, built by multivariate logistic regression anal

ysis, was based on the combination of the significant clinical features 
and rad-score. A nomogram was established based on the optimal model 
found in the training set. 
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2.7. Model evaluation and clinical utility 

The performance of the clinical model, radiomics model, and the 
combined model in the training set and test set were evaluated by uti
lizing the receiver operating characteristic (ROC) curve and the area 
under the curve (AUC) on Med Calc 18.2.1 (America). Moreover, we 
draw a nomogram to visualize the optimal model. 

2.8. Statistical analysis 

All statistical analyses in this study were performed with R software 
(version 3.6.2, America). Normally distributed variables were analyzed 
by the Students’ t-test, while non-normally distributed continuous var
iables were calculated by means of the Mann–Whitney U test. The chi- 
square test was used to compare categorical variables. The DeLong’s 
test was used to compare the area under ROC curves of different models. 
A two-sided P value < 0.05 was considered statistically significant. 

3. Results 

3.1. Clinicopathological findings 

A total of 353 SSNs in 316 patients from two centers were included, 

which were divided into AAH/AIS (n=106) group, MIA (n=160) group 
and IAC (n=87) group. IAC group were further divided into LPA (n=42) 
group and APA (n=36) group [SSNs confirmed as PAP (n=9) were 
excluded in this study due to small samples; MPA and SPA was not 
observed in this study]. All 353 SSNs from two centers were randomly 
divided with the ratio of 7:3 for training set and test set. The flowchart of 
study population was shown in Fig. 1. 

3.2. Radiomics feature extraction, standardization 

A total of 1218 radiomics features were extracted. Figure S2 shows 
that ComBat standardization aggregated the distributions of data from 
the two centers, which were scattered before addressing the center 
effects. 

3.3. SSNs invasiveness prediction model construction 

3.3.1. Clinical model 
With regards to the clinical factors and CT imaging features, the 

univariate analysis showed that diameter, CT value, lobulation, spicu
lation, the GGN-vessel relationship, solid component and CTR were 
significantly different in the training set between AAH/AIS group and 
MIA group (Table 1). Multivariate analysis further revealed that 

Fig. 1. Flowchart of study population. SSNs, subsolid nodules; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, microinvasive adeno
carcinoma; IAC, invasive adenocarcinoma; LPA, lepidic predominant adenocarcinoma; APA, acinar predominant adenocarcinoma; PAP, papillary predominant 
adenocarcinoma. 
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lobulation, the GGN-vessel relationship, diameter, CT value and CTR 
were the significant features of the clinical model in distinguishing 
AAH/AIS from MIA with AUCs of 0.837 (95 % CI, 0.778–0.896) and 
0.796 (95 % CI, 0.692–0.879) in the training set and the test set, 
respectively (Fig. 2). The univariate analysis showed that age, diameter, 
CT value, spiculation, the GGN-vessel relationship, pleural indentation, 
solid component, solid component size and CTR were significantly 
different in the training set between MIA group and IAC group (Table 2). 
Through multivariate analysis, the clinical model based on age, CT value 
and CTR were constructed for classification of MIA and IAC with AUCs of 
0.764 (95 % CI, 0.692–0.836) and 0.710 (95 % CI, 0.593–0.810) in the 
training set and the test set, respectively (Fig. 3). 

3.3.2. Radiomics feature selection and model construction 
For feature selection, 968 features showed good interobserver 

reproducibility (ICC≥0.80) and were selected for further analysis. The 
significant radiomics features were retained after the mRMR algorithm 

and LASSO analysis (Fig. 4), which were further used to calculate the 
rad-score. The formulas of the rad-scores was presented in Supplemen
tary Material I. The radiomics model for classification of AAH/AIS and 
MIA (rad-score1) were constructed with AUCs of 0.772 (95 % CI, 
0.705–0.830) and 0.751 (95 % CI, 0.641–0.842) in the training set and 
the test set, respectively (Fig. 2). The radiomics model for classification 
of MIA and IAC (rad-score2) showed good performance with AUCs of 
0.861 (95 % CI, 0.801–0.909) and 0.857 (95 % CI, 0.757–0.928) in the 
training set and the test set, respectively (Fig. 3). 

3.3.3. Combined model and nomogram 
The combined model for classification of AAH/AIS and MIA based on 

the significant features included rad-score, lobulation, the GGN-vessel 
relationship, diameter, CT value and CTR showed the best perfor
mance with AUCs of 0.841 (95 % CI, 0.783–0.898) and 0.827 (95 % CI, 
0.725–0.903) in the training set and the test set, respectively (Fig. 2). 
The Delong’s test showed that in the training set, the AUC of the clinical 

Table 1 
Clinical factors and CT imaging features between AAH/AIS and MIA both in the training set and test set.    

Training set  Test set 

Characteristics  AAH/AIS（n=75） MIA（n=112） P value AAH/AIS（n=31） MIA（n=48） P value 

Gender Female 57 (76.0 %) 82 (73.2 %) 0.797 19 (61.3 %) 32 (66.7 %) 0.805  
Male 18 (24.0 %) 30 (26.8 %)  12 (38.7 %) 16 (33.3 %)  

Age（y） Mean ± SD 53±13 52±11 0.388 50±10 51±12 0.722 
Smoke Yes 28 (37.8 %) 51 (45.5 %) 0.299 15 (45.5 %) 25 (52.1 %) 0.748  

No 46 (62.2 %) 61 (54.5 %)  16 (51.6 %) 23 (47.9 %)  
Diameter（mm） Mean ± SD 8.6±3.0 10.4±3.7 0.000* 8.4±3.3 9.5±3.3 0.143 
CT value（HU） Mean ± SD -544.1±147.4 -490.4±148.3 0.015* -575±123.9 -473.6±200.2 0.012* 
Lobulation Absent 40 (53.3 %) 21 (18.8 %) 0.000* 16 (51.6 %) 12 (25.0 %) 0.030*  

Present 35 (46.7 %) 91 (81.2 %)  15 (48.4 %) 36 (75.0 %)  
Spiculation Absent 68 (90.7 %) 87 (77.7 %) 0.035* 27 (87.1 %) 35 (72.9 %) 0.224  

Present 7 (9.3 %) 25 (22.3 %)  4 (12.9 %) 13 (27.1 %)  
The GGN-vessel relationship Type I 28 (37.3 %) 10 (8.9 %) 0.000* 14 (45.2 %) 11 (22.9 %) 0.000*  

Type II 36 (48.0 %) 28 (25.0 %)  15 (48.4 %) 11 (22.9 %)   
Type III 1 (1.3 %) 11 (9.8 %)  0 (0.0 %) 7 (14.6 %)   
Type IV 10 (13.3 %) 63 (56.2 %)  2 (6.5 %) 19 (39.6 %)  

Pleural indentation Absent 60 (80.0 %) 76 (67.9 %) 0.097 25 (80.6 %) 31 (64.6 %) 0.200  
Present 15 (20.0 %) 36 (32.1 %)  6 (19.4 %) 17 (35.4 %)  

Crescent sign Absent 63 (84.0 %) 86 (76.8 %) 0.310 27 (87.1 %) 40 (83.3 %) 0.893  
Present 12 (16.0 %) 26 (23.2 %)  4 (12.9 %) 8 (16.7 %)  

Vacuole sign Absent 66 (88.0 %) 91 (81.2 %) 0.303 30 (96.8 %) 38 (79.2 %) 0.061  
Present 9 (12.0 %) 21 (18.8 %)  1 (3.2 %) 10 (20.8 %)  

Air bronchogram Absent 70 (93.3 %) 96 (85.7 %) 0.168 30 (96.8 %) 40 (83.3 %) 0.141  
Present 5 (6.7 %) 16 (14.3 %)  1 (3.2 %) 8 (16.7 %)  

Solid component Absent 55 (73.3 %) 67 (59.8 %) 0.081 26 (83.9 %) 27 (56.2 %) 0.021*  
Present 20 (26.7 %) 45 (40.2 %)  5 (16.1 %) 21 (43.8 %)  

Solid component size（mm） Median （25 %,75 %） 0.0 (0.0, 1.0) 0.0 (0.0, 2.8) 0.020* 0.0 (0.0, 0.0) 0.0 (0.0, 3.1) 0.006* 
Consolidation tumor ratio (CTR)（%） Median （25 %,75 %） 0.0 (0.0, 12.0) 0.0 (0.0, 27.3) 0.048* 0.0 (0.0, 0.0) 0.0 (0.0, 31.2) 0.004* 

Note: * indicates P < 0.05. AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, microinvasive adenocarcinoma. 

Fig. 2. The ROC curve of clinical model, radiomics model and combined model for AAH/AIS versus MIA in the training set and test set.  
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model was greater than that of the radiomics model (P = 0.05), and the 
combined model significantly improved the diagnostic efficiency of the 
radiomics model (P = 0.021). However, there was no significant dif
ference in AUCs between clinical model and combined model (P =
0.771). In the test set, the AUCs of the combined model and the radio
mics model were close to statistical significance (P = 0.068). 

For distinguishing MIA from IAC, the combined model based on rad- 
score, age, CT value and CTR showed the best performance with AUCs of 
0.878 (95 % CI, 0.829–0.928) and 0.857 (95 % CI, 0.757–0.928) in the 
training set and the test set, respectively (Fig. 3). The AUCs of the 
combined model in the training set and the test set were greater than 
those of the clinical model (P = 0.0001, 0.0015), and the AUCs of the 
radiomics model in the training set and the test set were also greater 
than those of the clinical model (P = 0.0063, 0.013). However, there was 
no significant difference in AUC between the combined model and the 
radiomics model (P = 0.0965, 1). 

The optimal nomograms of AAH/AIS versus MIA (nomoscore1) and 
MIA versus IAC (nomoscore2) were constructed respectively based on 
the combined models (Fig. 5 and Fig. 6), the formulas of which were 
presented in Supplementary Material II. 

3.4. IAC subtype classification model construction 

We constructed the IAC subtype classification model separately using 
the same method described above. There were no significant differences 
in clinical features between LPA and APA (Table 3), and then ten 
radiomics features were retained to construct the radiomics model, 
which showed good performance (The AUCs were 0.926 and 0.792 in 
training set and the test set respectively) in differentiating LPA from APA 
(Fig. 7). 

Table 2 
Clinical factors and CT imaging features between MIA and IAC both in the training set and test set.    

Training set  Test set 

Characteristics  MIA（n=112） IAC（n=61） P value MIA（n=48） IAC（n=26） P value 

Gender Female 83 (74.1 %) 39 (63.9 %) 0.220 31 (64.6 %) 18 (69.2 %) 0.884  
Male 29 (25.9 %) 22 (36.1 %)  17 (35.4 %) 8 (30.8 %)  

Age（y） Mean ± SD 51±11 57±10 0.000b* 53±12 61±8 0.005* 
Smoke Yes 53 (47.3 %) 34 (55.7 %) 0.290 23 (47.9 %) 16 (61.5 %) 0.263  

No 59 (52.7 %) 27 (44.3 %)  25 (52.1 %) 10 (38.5 %)  
Diameter（mm） Mean ± SD 10.3±3.7 13.7±5.3 0.000* 9.9±3.2 14.0±5.2 0.000* 
CT value（HU） Mean ± SD -478.5±167.6 -322.9±232.7 0.000b* -501.4±159.7 -358.4±180.1 0.000* 
Lobulation Absent 22 (19.6 %) 8 (13.1 %) 0.382 11 (22.9 %) 4 (15.4 %) 0.641  

Present 90 (80.4 %) 53 (86.9 %)  37 (77.1 %) 22 (84.6 %)  
Spiculation Absent 82 (73.2 %) 34 (55.7 %) 0.030* 40 (83.3 %) 11 (42.3 %) 0.001*  

Present 30 (26.8 %) 27 (44.3 %)  8 (16.7 %) 15 (57.7 %)  
The GGN-vessel relationship Type I 15 (13.4 %) 1 (1.6 %) 0.005* 6 (12.5 %) 0 (0.0 %) 0.004*  

Type II 24 (21.4 %) 6 (9.8 %)  15 (31.2 %) 1 (3.8 %)   
Type III 14 (12.5 %) 7 (11.5 %)  4 (8.3 %) 2 (7.7 %)   
Type IV 59 (52.7 %) 47 (77.0 %)  23 (47.9 %) 23 (88.5 %)  

Pleural indentation Absent 73 (65.2 %) 26 (42.6 %) 0.007* 34 (70.8 %) 16 (61.5 %) 0.579  
Present 39 (34.8 %) 35 (57.4 %)  14 (29.2 %) 10 (38.5 %)  

Crescent sign Absent 85 (75.9 %) 50 (82.0 %) 0.465 41 (85.4 %) 21 (80.8 %) 0.851  
Present 27 (24.1 %) 11 (18.0 %)  7 (14.6 %) 5 (19.2 %)  

Vacuole sign Absent 92 (82.1 %) 49 (80.3 %) 0.929 37 (77.1 %) 22 (84.6 %) 0.641  
Present 20 (17.9 %) 12 (19.7 %)  11 (22.9 %) 4 (15.4 %)  

Air bronchogram Absent 93 (83.0 %) 45 (73.8 %) 0.211 43 (89.6 %) 16 (61.5 %) 0.010*  
Present 19 (17.0 %) 16 (26.2 %)  5 (10.4 %) 10 (38.5 %)  

Solid component Absent 59 (52.7 %) 16 (26.2 %) 0.001* 35 (72.9 %) 7 (26.9 %) 0.000*  
Present 53 (47.3 %) 45 (73.8 %)  13 (27.1 %) 19 (73.1 %)  

Solid component size（mm） Median （25 %,75 %） 0.0 (0.0, 3.1) 4.5 (0.0, 7.4) 0.000* 0.0 (0.0, 2.0) 3.8 (0.0, 5.7) 0.000* 
Consolidation tumor ratio (CTR)（%） Median （25 %,75 %） 0.0 (0.0, 30.5) 30.8 (0.0, 57.6) 0.000* 0.0 (0.0, 17.4) 25.6 (0.0, 40.3) 0.000* 

Note: * indicates P < 0.05. MIA, microinvasive adenocarcinoma; IAC, invasive adenocarcinoma. 

Fig. 3. The ROC curve of clinical model, radiomics model and combined model for MIA versus IAC in the training set and test set.  
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4. Discussion 

The invasiveness and pathological subtypes of SSNs are related to the 
prognosis, clinical decision and treatment. In this study, we established 
models based on CT radiomics and clinical features that can accurately 
differentiate AAH/AIS from MIA and differentiate MIA from IAC, which 
is helpful to guide the clinical follow-up and treatment of patients with 
SSNs more reasonably. In addition, we also established the IAC subtypes 
classification model and found that clinical features had low diagnostic 

accuracy in distinguishing LPA from APA, while the radiomics model 
showed good performance in differentiating LPA from APA. 

We constructed the combined model of AAH/AIS versus MIA based 
on five clinical features (the GGN-vessel relationship, lobulation, CT 
value, CTR and diameter) and rad-score. The clinical model performed 
better than the radiomics model, but the combined model did not 
significantly improve the performance for classification of AAH/AIS and 
MIA compared with the clinical model, indicating that clinical features 
are very important in distinguishing AAH/AIS from MIA, especially the 

Fig. 4. The significant radiomics features and their coefficients of AAH/AIS versus MIA (A) and MIA versus IAC (B).  

Fig. 5. The nomogram of AAH/AIS versus MIA. A. Sample A has a total score of 78, corresponding to a low probability (27 %) of MIA. Sample A is a pure ground 
glass nodule with type II vessel-GGN relationship on CT images, and finally was pathological confirmed as AAH. B. sample B has a total score of 189, corresponding to 
a high probability (＞90 %) of MIA. Sample B is a mix ground glass nodule with type III vessel-GGN relationship and lobulation on CT images, and finally was 
pathological confirmed as MIA. 
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Fig. 6. The nomogram of MIA versus IAC. A. Sample A has a total score of 31.5, corresponding to a low probability (22 %) of IAC. Sample A is a mix ground glass 
nodule on CT images, and finally was pathological confirmed as MIA. B. sample B has a total score of 45.5, corresponding to a high probability (70 %) of IAC. Sample 
B is also a mix ground glass nodule shown on CT images, and finally was pathological confirmed as IAC. 

Table 3 
Clinical factors and CT imaging features between LPA and APA both in training set and test set.    

Training set  Test set 

Characteristics  LPA（n=30） APA（n=26） P value LPA（n=12） APA（n=10） P value 

Gender Female 16 (53.3 %) 20 (76.9 %) 0.119 11 (91.7 %) 6 (60.0 %)  0.210  
Male 14 (46.7 %) 6 (23.1 %)  1 (8.3 %) 4 (40.0 %)   

Age（y） Mean ± SD 60±10 58±10 0.419 56 ±10 53±8  0.402 
Smoke Yes 14 (46.7 %) 15 (57.7 %) 0.410 9 (75.0 %) 7 (70.0 %)  1.000  

No 16 (53.3 %) 11 (42.3 %)  3 (25.0 %) 3 (30.0 %)   
Diameter（mm） Mean ± SD 16.4±6.8 11.9±3.0 0.002b* 14.1±4.4 12.1±3.1  0.215 
CT value（HU） Mean ± SD -360±219.7 -311±200.5 0.386b -412±256.6 -331.5±216.9  0.432 
Lobulation Absent 4 (13.3 %) 4 (15.4 %) 1.000 2 (16.7 %) 2 (20.0 %)  1.000  

Present 26 (86.7 %) 22 (84.6 %)  10 (83.3 %) 8 (80.0 %)   
Spiculation Absent 15 (50.0 %) 14 (53.8 %) 0.985 6 (50.0 %) 7 (70.0 %)  0.607  

Present 15 (50.0 %) 12 (46.2 %)  6 (50.0 %) 3 (30.0 %)   
The GGN-vessel relationship Type I 0 (0.0 %) 1 (3.8 %) 0.410 0 (0.0 %) 0 (0.0 %)  0.682  

Type II 2 (6.7 %) 1 (3.8 %)  1 (8.3 %) 2 (20.0 %)    
Type III 4 (13.3 %) 1 (3.8 %)  3 (25.0 %) 1 (10.0 %)    
Type IV 24 (80.0 %) 23 (88.5 %)  8 (66.7 %) 7 (70.0 %)   

Pleural indentation Absent 10 (33.3 %) 14 (53.8 %) 0.202 7 (58.3 %) 6 (60.0 %)  1.000  
Present 20 (66.7 %) 12 (46.2 %)  5 (41.7 %) 4 (40.0 %)   

Crescent sign Absent 24 (80.0 %) 23 (88.5 %) 0.621 10 (83.3 %) 8 (80.0 %)  1.000  
Present 6 (20.0 %) 3 (11.5 %)  2 (16.7 %) 2 (20.0 %)   

Vacuole sign Absent 23 (76.7 %) 21 (80.8 %) 0.963 9 (75.0 %) 9 (90.0 %)  0.724  
Present 7 (23.3 %) 5 (19.2 %)  3 (25.0 %) 1 (10.0 %)   

Air bronchogram Absent 18 (60.0 %) 17 (65.4 %) 0.890 9 (75.0 %) 9 (90.0 %)  0.724  
Present 12 (40.0 %) 9 (34.6 %)  3 (25.0 %) 1 (10.0 %)   

Solid component Absent 8 (26.7 %) 6 (23.1 %) 1.000 4 (33.3 %) 4 (40.0 %)  1.000  
Present 22 (73.3 %) 20 (76.9 %)  8 (66.7 %) 6 (60.0 %)   

Solid component size（mm） Median （25 %,75 %） 4.3 (0.0, 8.1) 3.9 (1.4, 6.4) 0.772 2.8 (0.0, 5.4) 4.3 (0.0, 5.5)  0.866 
Consolidation tumor ratio (CTR)（%） Median （25 %,75 %） 25.2 (0.0, 56.6) 31.6 (9.5, 49.3) 0.608 25.7 (0.0, 39.5) 31.4 (0.0, 52.2)  0.787 

Note: LPA, Lepidic Predominant Adenocarcinoma; APA, Acinar Predominant Adenocarcinoma; * indicates P < 0.05. 
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GGN-vessel relationship, which contributed the most. Previous studies 
have found that the GGN-vessel relationship can effectively predict the 
invasiveness of GGNs. The GGN-vessel relationship reflects the influence 
of tumor infiltrating components of nodules on peripheral blood vessels 
and interstitial fiber hyperplasia is the main factor to type III and IV 
vascular changes [22]. MIA/IAC have pathologically infiltrating com
ponents as opposed to AAH/AIS, and thus are prone to present as type III 
or IV GGN-vessel relationship. Lobulation is caused by the different 
growth rate in all directions and the contraction of the internal structure 
of the tumor. Previous studies have also reported that the appearance of 
lobulation often indicates high risk of aggressive nodules [13,23,24], 
which is consistent with our initial expectations because of the more 
aggressive behavior of the latter. Moreover, we found that diameter 
greater than 8.4 mm indicates possible MIA, which is similar to the 
findings of Kim et al. [25]. 

Intriguingly, the radiomics model performed better than the clinical 
model, and the combined model did not improve the performance for 

classification of MIA and IAC in the test set compared with the radiomics 
model, suggesting that radiomics can mine more quantitative data that 
cannot be identified by naked eye. Small Area Low Gray Level Emphasis 
(SALGLE) and Large Dependence High Gray Level Emphasis (LDHGLE) 
contributed most to the rad-score, the differences of which suggested 
that the image texture of IAC nodules is rougher and the proportion of 
high gray value distribution is larger. CTR is an important indicator to 
identify the invasiveness of SSNs. In this study, it was found that the 
critical value of the CTR for distinguishing MIA from IAC was 24.4 %, 
which was similar to the findings of Suzuki et al.[21]. Type III and type 
IV GGN-vessel relationship were more common in MIA and IAC. How
ever, the GGN-vessel relationship was not included in the classification 
model of MIA versus IAC in this study, indicating that distinguishing 
type III and type IV is less helpful to predict the invasiveness of nodules. 

Previous studies found that CT image features could not effectively 
identify different pathological subtypes of IAC [26,27], which was 
consistent with our findings. The radiomics model based on ten features 

Fig. 7. The radiomics model for classification of LPA and APA. A. the significant radiomics features and their coefficients. B. the ROC curves of the radiomics model 
in the training set and test set. 
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can effectively distinguish between LPA and APA. Gray Level Depen
dence Matrix (GLDM), Dependence Variance and First order Kurtosis 
contributed most significantly to the model, suggesting that there were 
differences in gray distribution and inhomogeneity of the two subtypes 
on CT images. Park et al. supposed that a series of radiomics features, 
including Root Mean Squared (RMS), could distinguish LPA from other 
pattern-predominant IAC [26], partly consistent with our findings. RMS 
suggested the effect of volume-confounding. The significant differences 
in RMS reflected that APA had more heterogeneous and complex voxels, 
which might correspond to its high-grade pathological growth pattern. 

This study has some limitations. First, although we used the data 
from two centers, the sample of this study was still small and this study 
was lack of external validation. A larger sample from other centers 
would be used to further confirm the generalization of the model in the 
next step. Second, in this study, we used the pathological types of 
nodules as the classification standard for invasiveness, without pre
dicting the behavioral invasiveness of nodules (growth rate, changes in 
solid components, etc.). Thus, more samples with follow-up CT data will 
be collected to further confirm the value of radiomics and clinical fea
tures in predicting the invasiveness of SSNs. Finally, it was a retro
spective study with selection bias, and a multi-center prospective study 
would be considered in our future study. 

5. Conclusion 

The invasiveness-prediction nomograms based on CT radiomics and 
clinical features could accurately evaluate the invasiveness of SSNs and 
radiomics is of great value of disguising LPA from APA, which might 
improve the efficiency of lung cancer screening and providing a theo
retical basis for individualized and accurate medical treatment of pa
tients with SSNs. 
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