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Abstract Vascular endothelial growth factor (VEGF) is a

key upstream mediator of tumor angiogenesis, and block-

ade of VEGF can inhibit tumor angiogenesis and decrease

tumor growth. However, not all tumors respond well to

anti-VEGF therapy. Despite much effort, identification of

early response biomarkers that correlate with long-term

efficacy of anti-VEGF therapy has been difficult. These

difficulties arise in part because the functional effects of

VEGF inhibition on tumor vessels are still unclear. We

therefore assessed rapid molecular, morphologic and

functional vascular responses following treatment with

aflibercept (also known as VEGF Trap or ziv-aflibercept in

the United States) in preclinical tumor models with a range

of responses to anti-VEGF therapy, including Colo205

human colorectal carcinoma (highly sensitive), C6 rat

glioblastoma (moderately sensitive), and HT1080 human

fibrosarcoma (resistant), and correlated these changes to

long-term tumor growth inhibition. We found that an

overall decrease in tumor vessel perfusion, assessed by

dynamic contrast-enhanced ultrasound (DCE-US), and

increases in tumor hypoxia correlated well with long-term

tumor growth inhibition, whereas changes in vascular gene

expression and microvessel density did not. Our findings

support previous clinical studies showing that decreased

tumor perfusion after anti-VEGF therapy (measured by

DCE-US) correlated with response. Thus, measuring tumor

perfusion changes shortly after treatment with VEGF

inhibitors, or possibly other anti-angiogenic therapies, may

be useful to predict treatment efficacy.
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growth response � Preclinical model � Response biomarker

Introduction

Vascular endothelial growth factor (VEGF) plays a key

role in physiological and pathological angiogenesis,

including tumor angiogenesis [1]. Therefore, a number of

agents that inhibit VEGF signaling have been developed

and tested in clinical trials [2, 3]. Bevacizumab, a VEGF

specific antibody that prevents receptor binding and acti-

vation, slowed tumor progression and provided survival

benefits in several human tumor types when used in com-

bination with chemotherapy. In addition, several small

molecule inhibitors of VEGF receptor tyrosine kinase

activity provided benefit in various cancers [4–6]. In pre-

clinical models, VEGF inhibition results in reduced tumor

growth, decreased microvessel density (MVD) and nor-

malization of tumor vessel morphology in a wide range of

tumor types [7, 8]. Similar MVD reductions were also

reported in clinical studies of colorectal tumors sampled

shortly after bevacizumab treatment [9].

Despite clear evidence for tumor vessel loss following

VEGF inhibition, the functional consequences on tumor

blood flow and oxygenation are not entirely clear. Naı̈vely,

one might expect that vessel loss would result in decreased

tumor perfusion. However, more detailed considerations

suggested the opposite, namely, that tumor vessel pruning

and ‘‘normalization’’ may lead to decreased intra-tumoral

pressure, increased tumor perfusion, and consequently

decreased tumor hypoxia [10]. Indeed, some preclinical

studies indicate increased tumor perfusion after VEGF

blockade [11, 12]. In contrast, other studies have reported

increased tumor hypoxia and decreased perfusion in
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preclinical models and non-small cell lung cancer (NSCLC)

patients [13–15]. Thus, the functional consequences of anti-

VEGF therapy are not clear, even in preclinical tumor

models.

To add to the complexity, not all tumors within a given

tumor type respond equally well to anti-VEGF therapy. For

example, in glioblastoma patients treated with a small

molecule kinase inhibitor (cediranib), approximately 60 %

of tumors displayed changes in dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI) signals indicative

of a response to anti-VEGF therapy, whereas the remaining

40 % did not [16]. Despite much effort, predicting which

tumors will respond to anti-VEGF therapy, or how long-

term tumor growth response is related to vascular changes,

has been difficult. For instance, it is unknown whether

tumors with the largest MVD reduction show the greatest

tumor growth inhibition (TGI). Further, tumor vessel fea-

tures rendering them sensitive, or resistant, to VEGF

inhibition are not well understood. Ultimately, predictive

biomarkers based on mechanistic differences in tumor cells

and tumor blood vessels are needed.

To begin to address these issues, we characterized initial

responses of tumor vessels to VEGF blockade in preclinical

tumors with a range of responses to anti-VEGF therapy

(sensitive, moderately responsive, and resistant). For these

studies, we used aflibercept (also known as VEGF Trap or

ziv-aflibercept in the United States), a recombinant fusion

protein that potently binds all isoforms of human and

murine VEGF-A, VEGF-B and Placental Growth Factor

(PlGF). Tumor bearing mice were treated with aflibercept,

and tumors were analyzed for rapid (within 3 days) chan-

ges in molecular (gene expression), morphologic (MVD)

and functional (vascular perfusion, tumor hypoxia) tumor

vessel properties. These changes were then compared to

aflibercept-mediated longer-term tumor growth effects.

Using this approach, we observed that functional changes

correlated well with the overall level of TGI, whereas

molecular or morphological changes showed a poor cor-

relation. These findings suggest that changes in functional

parameters, such as tumor perfusion and hypoxia, may be

good predictors of long term growth inhibition.

Materials and methods

In vivo tumor studies

Animal studies were performed in accordance with

Regeneron’s Institutional Animal Care and Use Committee

guidelines. Tumor cells were obtained from the American

Type Culture Collection (ATCC), except for the PC3 M

line, which was obtained from the NCI, DCT Tumor

Repository, NCI-FCRF, Frederick, MD. 1 9 106 Colo205

human colon carcinoma, 1 9 106 C6 rat glioblastoma,

2 9 106 HT1080 human fibosarcoma, 1 9 106 A431 human

squamous cell carcinoma, 1 9 106 786-0 human renal cell

carcinoma, 5 9 105 MMT murine mammary carcinoma,

1 9 106 PC-3 M metastasis-derived variant of human

prostate adenocarcinoma PC-3 and 1 9 106 LLC murine

Lewis lung carcinoma cells were grown s.c. in male

CB.17/SCID mice (Taconic). When tumors reached

approximately 100 mm3, mice were treated by s.c. injection

with hFc (control protein, 25 mg/kg) or a maximally effec-

tive anti-tumor dose of aflibercept [17] (VEGF Trap, ziv-

aflibercept, 25 mg/kg) (# mice per treatment group: n = 5–7

tumor growth; n = 4–5 IHC; n = 3–4 TaqMan; n = 8–24

micro-ultrasound; n = 5–10 FITC-lectin flow cytometry).

For long-term studies treatments occurred 2 9 per week.

Mice were monitored for tumor growth and overall health.

HypoxyProbe-1 (Chemicon; 60 mg/kg) was injected i.p. 1 h

prior to sacrifice. Tumors were harvested: *� tumor in 4 %

paraformaldehyde, a cross-section in OCT, *� tumor in

RNAlater. % Tumor Growth Inhibition (TGI) was calculated

as follows: [1 - ((Tfinal - Tinitial)/(Cfinal - Cinitial))]*100,

where T = aflibercept-treated tumor volumes and C =

control-treated tumor volumes at treatment start and after

10-14 day treatment (10 days: LLC, MMT; 14 days:

HT1080, Colo205, C6, A431, 786-0, PC-3 M). Tumor

growth curves are presented as mean ± standard error

of the mean (SEM).

Immunohistochemistry and image analysis

IHC on gelatin embedded tissue sections: Tissues were

fixed in 4 % paraformaldehyde for 72 h and embedded in a

4 % gelatin/PBS solution. Gelatin blocks were fixed in 4 %

paraformaldehyde overnight at 4 �C, then transferred into a

30 % sucrose/PBS solution at 4 �C until the blocks sunk

(*72 h). Tissue was cut into 80 lm sections, which were

stored in cryoprotectant (1 % Polyvinylpyrrolidone, 30 %

glycerol, and 30 % sucrose in NaPBS) at -20 �C until

further use. For IHC detection of CD31 and HypoxyProbe

(pimonidazole), sections were treated as follows: 30 min in

0.3 % H2O2 at 4 �C, 2 h in blocking solution (CD31: 0.3 %

Triton X100/4 % normal rabbit serum/1 % BSA/PBS;

HypoxyProbe: 0.3 % Triton X100/4 % normal horse

serum/1 % BSA/PBS) at RT followed by an overnight

incubation at 4 �C with rat anti-murine CD31 Ab (1:150;

BD; MEC13.3) or a mouse anti-HypoxyProbe-1 antibody

(1:1,000; Chemicon) diluted in the respective blocking

solution containing 1 % serum. After five 3 min washes in

PBS, CD31 was detected with a biotinylated mouse-

adsorbed rabbit anti-rat antibody (1:150; Vector Labora-

tories;) and HypoxyProbe was detect with a biotinylated

horse anti-mouse antibody (1:500; Vector Laboratories;) in

a 2 h incubation at RT. Sections were subjected to an ABC
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reaction according to the manufacturers recommendations

(Vector Laboratories; ABC VectaStain Elite) for 1 h at RT

diluted in 1 % BSA in 50 mM PBS. After five 3 min

washes in PBS, antigens were revealed with 3,3’-diam-

inobenzidine (DAB, Sigma).

OCT embedded tumors were cut into 30 lm frozen sec-

tions. Tissue was air dried, 10 min fixed in acetone (-20 �C),

avidin–biotin blocked (Vector), blocked in 2.5 % normal goat

serum/1 % BSA/PBS for 30–45 min (RT), incubated for 16 h

at 4 �C with rat anti-murine CD31 Ab (1:50; BD) diluted in

0.5 9 block followed by a 45 min (RT) incubation with a

biotinylated anti-rat antibody (1:150; Vector). Antigens were

revealed with 3,3’-diaminobenzidine (DAB, Sigma).

For analysis photomicrographs were acquired at

2.5 9 magnification. Vessel density and hypoxia area were

determined using NIH image software as previously

described [18].

RNA preparation and TaqMan analysis

Total RNA was purified using RNeasy (Qiagen). RNA

quality and concentration were evaluated using a specto-

photometer (NanoDrop ND-1000). cDNA was synthesized

using 1 lg of total RNA and High Capacity RNA to cDNA

Mastermix Kit (ABI). Expression of various genes was

normalized to cyclophilin expression. TaqMan primer and

probe sequences are as follows:

Flow cytometry

Tumor bearing mice (C6 or HT1080 tumors, 100 mm3), or non-

tumor control mice, were treated s.c. with hFc (control protein,

25 mg/kg) or aflibercept (VEGF Trap, 25 mg/kg) 24 h prior to

tissue harvest. To label endothelial cells of functional vessels,

mice were i.v. injected with FITC-conjugated Lycopersicon

esculentum (tomato) lectin (2.0 mg/ml; Vector) 3 min prior to

tissue harvest. Single cell suspensions were prepared from

normal skin (n = 4, n = 2 no FITC-lectin), C6 tumors (n = 7

control or aflibercept, n = 4 no FITC-lectin) or HT1080 tumors

(n = 7 control or aflibercept, n = 3 no FITC-lectin) as

described previously [19] and endothelial cells were detected

using a PE-conjugated anti-CD31 Ab (1:200; BD). DAPI

(1 lg/ml; Invitrogen) was used to exclude dead cells. Data

acquisition: Beckman-Coulter MoFlo Legacy; data analysis:

FlowJo software (Tree Star). Data shown represent mean ±

standard error of the mean (SEM).

Dynamic contrast-enhanced micro-ultrasound

(DCE-micro US)

Animals were anaesthetized (isofluorane (3.0 %)/medical

air mixture), secured to heated platform and dehaired.

Ultrasound gel (Aquasonic, Parker Laboratories) provided

coupling interface between ultrasound probe and animal.

Image acquisition: Vevo2100 micro-ultrasound imaging

system (VisualSonics); contrast agent: MicroMarkerTM

(microbubbles, VisualSonics). Contrast agent was prepared

with a final concentration of 2 9 109 microbubbles/ml

saline and a 50 ll bolus was delivered via tail vein catheter

during image acquisition. Quantification of relative blood

volume, which represents tumor perfusion, was determined

by analysis of a 2D area representing the largest tumor

cross-section (Vevo2100 analysis software).

Statistical analyses

Statistical analyses were performed using Prism software.

Specific test include 2-way ANOVA with Bonferroni post

hoc test (tumor growth curves), 1-way ANOVA with

Bonferroni post hoc test (vessel density, gene expression

changes, hypoxia analysis) and Mann–Whitney test (micro-

ultrasound analysis). p values \0.05 were considered sta-

tistically significant.

Results

Vessel morphology changes in tumors with a range

of responses to aflibercept

Based on studies with a wide variety of murine tumor

models, three tumors that display a range of responses to

Gene Forward primer Reverse primer Probe sequence

mKcne3 AGACCTGGTACATGAGCCTCCAT CAAGTGACTGTGAAGGGTTGTGTT TGGGCAGTCTCATCCT

mNid2 CCGCTGTGGCCCTAATTCT TGCGGCATTCACACCTGTA TGTGTGTCAACTTGGTGGG

mCdh5 AATCGGGAGCATGCCAAGT TGGGCACCCCGTTGTC CCCGTGCTCATCTC

mTie1 AGCCTGAGCCCTTGAGTTACC AAAGTTGCCCTCCCCTATGAG TGGGAGGACATCACC

mRobo4 GCTAGGCGCTTTCCATCCA GCGGCTGCAGAGACTATCTGA TTGGCTGGAACCTC

mEsm1 TCTGGACTTTCCCTTCTTCCAG CTGTGTGGGAGGCAGAGGTC TGCAGCAGCCAAATCTCCCAGCA

mVegfA GTATGGCTGGCTGGGTCACT GTTTGATCCGCATGATCTGTAGAG ACCACTGTGATCTGC

mCyclophilin CGTGGGCTCCGTCGTC CCCTTCTTCTTATCGTTGGCC TTGCTGCCCGGACCCTCCG
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aflibercept were chosen for more detailed study. Colo205

tumors were potently growth inhibited (Fig. 1a), C6 tumors

showed an intermediate growth inhibition in response to

aflibercept treatment, with an initial growth delay followed

by restrained tumor growth (Fig. 1b). In contrast, HT1080

tumors showed no growth inhibition upon aflibercept

treatment (Fig. 1c). These differences in tumor response

were observed at a saturating dose of aflibercept (25 mg/kg

twice per week), thus the differences reflect inherent

responses to aflibercept and not merely different dose

responses.

We investigated the rapid effects of VEGF blockade on

the vasculature of these 3 tumor types. As revealed by

immunohistochemistry (IHC) for the vessel specific marker

CD31 in thick sections, untreated Colo205 and C6 tumors

have a significantly lower MVD (17 and 20 %, respectively)
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Fig. 1 Tumor growth and vascular response to aflibercept in

Colo205, C6 and HT1080 tumors. a–c Colo205, C6 and HT1080

xenografts (n = 5–7 each treatment group/tumor type) show different

levels of TGI in response to aflibercept treatment (black) compared to

control-treated tumors (grey): sensitive Colo205, moderately respon-

sive C6 and resistant HT1080. d–f Representative images of MVD

assessed by CD31 IHC in control and 24 h aflibercept-treated

Colo205, C6 and HT1080 tumors (80 lm gelatin sections). g–

i Quantitative analysis of vessel area density (%) in control and 8, 24

and 72 h aflibercept-treated Colo205, C6 and HT1080 tumors

(n = 4–5 each time point/tumor type). All experiments were repeated

at least twice; shown is an example experiment (n = 5–7 for each

treatment group (tumor growth data) or n = 4–5 for each time point

(MVD data)). Results shown represent means for tumor growth data

and mean ± standard deviation (SD) for MVD analysis. P \ 0.05*,

\0.01**, \0.001***, \0.0001**** by 2 way-ANOVA with Bonfer-

roni post hoc test (tumor growth data compared to control treated

tumor growth) and by 1 way-ANOVA with Bonferroni post hoc test

(MVD, each time point compared to control (0 time point))
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than HT1080 tumors (55 %) (Fig. 1d–f upper images; g–i

time point 0). Following aflibercept treatment, MVD rapidly

decreased in all tumor types, albeit to varying degrees

(Fig. 1d–f lower images; g–i). Quantitative analysis of rel-

ative MVD after aflibercept administration in comparison to

control-treated tumors revealed that Colo205 tumors lost 11,

32 and 54 % of their vasculature at 8, 24 and 72 h after

treatment, respectively. C6 tumors lost even more vessels

(28, 67 and 81 % at 8, 24 and 72 h after treatment, respec-

tively). Aflibercept resistant HT1080 tumors progressively

lost vessels after aflibercept treatment, albeit to a much lesser

degree (up to 29 % by 72 h), suggesting that the HT1080

tumor vasculature is only partially dependent on VEGF.

These results show that blockade of VEGF can cause rapid

loss of tumor vascularity, and further, that the vasculature in

different xenograft tumors varies in its dependence on

ongoing VEGF signaling.

Identification of two phases of gene expression changes

in tumor vessels following aflibercept treatment

To determine how morphological tumor vessel changes

manifest as molecular changes in gene expression, micro-

array analysis was performed on RNA from whole tumors

treated with aflibercept for 8, 24 and 72 h. Mouse and

human genes were assessed separately using mouse and

human specific gene chips (custom Agilent microarray).

Microarray analysis of mouse (host) genes in different

tumors implied a rapid and consistent decrease in expres-

sion of a number of genes specific to endothelial cells

[20–22] following aflibercept treatment. To confirm and

extend the microarray findings, six genes were analyzed for

expression changes in Colo205, C6 and HT1080 tumors

treated with aflibercept for 8, 24 and 72 h by TaqMan,

using primer pairs specific for murine mRNA. Gene

expression was normalized to cyclophilin expression

(similar results were obtained using GAPDH as a nor-

malization gene; data not shown). Close inspection of these

gene expression changes revealed two distinct temporal

patterns: ‘acute’ and ‘delayed’ response genes. The ‘acute’

set of genes decreased in expression rapidly after afliber-

cept treatment (8 h) and remained decreased (Fig. 2a–c,

black lines). Further, these ‘acute’ genes showed a large

absolute decrease in expression levels, dropping up to

85 %. Among the ‘acute’ genes were potassium voltage-

gated channel Isk-related subfamily gene 3 (Kcne3),

endothelial cell-specific molecule 1 (Esm1) and nidogen2

(Nid2). Because of their rapid decrease after VEGF

blockade (Fig. 2a–c, black lines), these ‘acute’ genes are

likely direct targets of VEGF signaling.

A second set of genes decreased in expression at 24 and

72 h after aflibercept treatment, but were not yet signifi-

cantly affected at the 8 h time point, thus showing a

‘delayed’ response (Fig. 2a–c, grey lines). Examples of

genes that displayed robust ‘delayed’ changes were

roundabout homolog 4 (Robo4), cadherin 5 (Cdh5) and

tyrosine kinase with immunoglobulin-like and EGF-like

domains 1 (Tie1). Other genes in this category included

platelet/endothelial cell adhesion molecule 1 (Pecam1 or

CD31) and intercellular adhesion molecule 2 (Icam2) (data

not shown), two commonly used IHC endothelial cell

markers [23, 24]. Thus, these ‘delayed’ genes may reflect a

decrease in overall tumor vascularity or endothelial cell

number. Changes in ‘delayed’ gene expression and MVD

(Fig. 1d–i) appeared to have similar trends in terms of both

timing and magnitude of decrease in different tumor types.

When the combined expression of the ‘delayed’ gene

changes was overlayed with MVD changes, comparable

patterns emerged for each tumor (Fig. 2d–f), suggesting

that ‘delayed’ gene changes can be used as markers for

changed MVD in tumors treated with VEGF inhibitors.

Decreased tumor perfusion following treatment

with aflibercept

To determine whether VEGF blockade also affected vessel

functionality, we assessed tumor vessel perfusion 24 h after

aflibercept administration using contrast-enhanced micro-

ultrasound. Analysis of 2-dimensional (2D) ultrasound data

revealed that perfusion of Colo205 and C6 tumors

decreased by 32 and 59 %, respectively (Fig. 3a, b, d, e). In

comparison, HT1080 tumor perfusion was not decreased at

24 h after aflibercept treatment (Fig. 3c, f). Interestingly,

although HT1080 tumors have a dramatically higher base-

line MVD (55 %; Fig. 1i) than C6 (20 %; Fig. 1h) or

Colo205 tumors (17 %; Fig. 1g), baseline perfusion in the

three tumor types was comparable (relative contrast inten-

sity values of 8–10; Fig. 3d–f, control), as was previously

shown for other tumor types [25]. These data suggest that a

smaller fraction of vessels are well perfused in HT1080

tumors compared to C6 or Colo205 tumors.

To further compare the relative amounts of perfused

vessels in C6 and HT1080 tumors, vessel perfusion was

assessed by another method, namely i.v. injection of

FITC-conjugated Lycopersicon esculentum tomato lectin

(FITC-lectin), which binds to the luminal surface of blood

endothelial cells (BECs, defined as CD31 positive) in func-

tionally perfused vessels. Following in vivo labeling, the

proportion of endothelial cells in the tumor and normal skin,

and the fraction of endothelial cells labeled by FITC-lectin

were both assessed by flow cytometry. For reference, BECs

from normal skin comprise 1.9 % of all skin cells, and 96 %

of the BECs in normal skin were labeled by FITC-lectin

(Fig. 3g, skin). As a further control, the same proportion of

BECs were found in skin and tumors of mice that were

injected with FITC-lectin versus those that were not injected,
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but virtually no BECs were found to be positive for FITC-

lectin in non-injected mice (Fig. 3g).

The number of BECs in untreated C6 tumors (0.8 % of

total cells) was significantly less than in HT1080 tumors

(2.2 %) (Fig. 3g). Of the BECs in untreated C6 tumors,

approximately 55 % were perfused (i.e., positive for FITC-

lectin). In contrast, only 18 % of the BECs in untreated

HT1080 tumors were perfused (Fig. 3g; Table 1). Thus,

despite more than a twofold difference in total BEC,

the fraction of BECs labeled by intravascular lectin

(FITC-positive BECs) was similar in C6 and HT1080 tumors

(0.40 vs. 0.43 % of total cells, respectively). This finding

corroborates our micro-ultrasound findings that untreated C6

and HT1080 tumors have similar levels of perfusion as

measured by micro-ultrasound (Fig. 3e, f, control), despite

dramatically different MVD (Fig. 1i, h, control).

Treatment with aflibercept (24 h) decreased the number

of BECs in C6 tumors to 0.5 % of total cells (*37 %

decrease) and to 1.6 % in HT1080 tumors (*28 %

decrease) (Fig. 3g, h; Table 1). These data correspond with
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Fig. 2 Gene expression

analysis revealed two phases of

gene expression changes in

tumor vessels following

aflibercept treatment. a–c Gene

changes (TaqMan) upon VEGF

blockade occur in two distinct

patterns: ‘acute’ gene changes

occur in Kcne3, Esm1 and Nid2

(black), while ‘delayed’ gene

changes occur in Tie1, Cdh5

and Robo4 (grey) in Colo205,

C6 and HT1080 tumors after 8,

24 and 72 h aflibercept

treatment (n = 3–4 each time

point/tumor type) d–f Averages

of MVD changes (grey) and

averages of ‘delayed’ gene

expression changes (black)

show a corresponding pattern in

Colo205, C6 and HT1080

tumors after 8, 24 and 72 h

aflibercept treatment. All

experiments were repeated at

least twice; shown is an

example experiment for

TaqMan data (n = 3–4 for each

time point). Results shown

represent means or

mean ± standard deviation

(SD). P \ 0.05*, \0.01**,

\0.001***, \0.0001**** by 1

way-ANOVA with Bonferroni

post hoc test (TaqMan data,

each time point compared to

control (0 time point))
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the relative decrease in MVD after aflibercept treatment

(Fig. 1h, i; Table 1). After 24 h of aflibercept treatment,

the proportion of FITC-lectin positive BEC in C6 tumors

increased slightly to 66 % of all BECs, although the total

number of FITC-lectin positive BECs went down (to

0.33 % of total cells). In HT1080 tumors after aflibercept
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Fig. 3 Perfusion decreased in response to aflibercept treatment in

Colo205 and C6 tumors, but remained unchanged in HT1080 tumors. a–

c Representative images of vessel perfusion assessed by 2-dimensional

(2D) DCE-US in control and 24 h aflibercept-treated Colo205, C6 and

HT1080 tumors. Tumors are outlined in red. d–f Quantitative analysis of

vessel perfusion in control and 24 h aflibercept-treated Colo205 (n = 18

and 24, respectively), C6 (n = 8 and 12, respectively) and HT1080

tumors (n = 12 and 9, respectively) g Flow cytometry analysis of CD31-

positive blood vessel endothelial cells (BECs) in combination with the

intravenously injected perfusion marker FITC-lectin in control and 24 h

aflibercept-treated C6 (n = 10 each treatment group; n = 5 for

‘no-FITC’ group) and HT1080 tumors (n = 10 each treatment group;

n = 5 for ‘no-FITC’ group) as well as control-treated skin tissue (n = 5

each group). Shown are perfusion and flow cytometry results combined

from multiple experiments. Results shown represent mean ± standard

error of the mean (SEM). P \ 0.05*,\0.01**,\0.001***,\0.0001****

by Mann–Whitney test (tumor perfusion). Differences between

FITC-lectin positive BECs in ctrl versus aflibercept treated C6 or

HT1080 tumors and between ctrl treated C6 and ctrl treated HT1080

tumors were not statistically significant by Mann–Whitney test
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treatment, the proportion of FITC-lectin positive BEC also

increased slightly to 31 % of all BECs, whereas the total

number of BECs increased slightly (to 0.48 % of all cells)

(Fig. 3g; Table 1). Again, these findings are consistent

with perfusion changes seen by micro-ultrasound following

treatment of these tumors with aflibercept (Fig. 3e, f).

Thus, this flow cytometry-based analysis of tumor vessel

perfusion provides a powerful link between functional

perfusion assays and immunohistochemistry of tumor

blood vessels following anti-VEGF treatment.

Increased tumor hypoxia following treatment

with aflibercept

To determine whether the decreased tumor perfusion fol-

lowing aflibercept treatment resulted in tumor oxygenation

changes, we analyzed hypoxia in Colo205, C6, and

HT1080 tumors at 8, 24 and 72 h after aflibercept treat-

ment. Hypoxia was assessed by HypoxyProbe IHC

(Fig. 4a–c) as well as by analyzing the expression of

VEGF, a hypoxia regulated gene (Fig. 4g–i). Colo205 and

C6 tumors have hypoxic regions even under baseline

conditions, which become more pronounced upon afliber-

cept treatment starting at 8 h (Fig. 4a, b, d, e). The increase

in HypoxyProbe staining observed in C6 and Colo205

tumors after 24 h aflibercept treatment (Fig. 4d, e) corre-

sponded with decreased perfusion (Fig. 3d, e). In com-

parison, HT1080 tumors had little or no hypoxic regions at

baseline, and no increase in hypoxia at 72 h of treatment

with aflibercept (Fig. 4c, f), consistent with the unchanged

tumor perfusion (Fig. 3c, f). Similarly, expression of

VEGF progressively increased in C6 and Colo205 tumors,

whereas VEGF expression was unchanged in HT1080

tumors (Fig. 4g). Taken together, increased tumor hypoxia

correlated with decreased tumor perfusion.

Tumor perfusion changes correlated with long-term

response to aflibercept

The results from our analysis of three tumor types sug-

gested that rapid changes in tumor perfusion and/or

hypoxia correlated better with long-term tumor growth

response to aflibercept than did other parameters such as

changes in microvessel density or vascular gene expression

(Fig. 5a). To further assess whether tumor vascular perfu-

sion changes at 24 h after aflibercept treatment correlated

with long-term growth inhibition, we extended our analy-

ses to several additional tumor types (A431, 786-0, MMT,

LLC and PC-3 M) grown in immunocompromised SCID

mice. We also included a syngeneic model, LLC tumors

grown in C57Bl6 mice, to assess the effects of aflibercept

on tumor perfusion and growth in immunocompetent mice.

As expected, tumor growth inhibition in immunocompro-

mised mice did not correlate well with changes in tumor

vessel density (Fig. 5b, R2 = 0.09). In comparison, in this

larger sample including one syngeneic model, tumor

growth inhibition showed a correlation with changes in

tumor perfusion (Fig. 5c, R2 = 0.73).

Discussion

The search for early response and predictive biomarkers of

tumor response to anti-angiogenic agents has so far not

provided definitive candidates. While clinical studies have

sought such markers by sampling numerous growth factors

and cytokines, preclinical studies may be able to provide

more mechanism-based candidates and approaches. In this

study, we analyzed several tumors with a wide range of long-

term tumor growth responses to anti-VEGF therapy. Using

subcutaneous tumor models, we correlated early morpho-

logic and functional vascular changes following treatment

with aflibercept to long-term tumor growth inhibition (TGI).

We found that changes in tumor hypoxia and perfusion

correlated with long-term TGI, whereas changes in vascular

gene expression and MVD showed a poor correlation.

In early clinical analyses, MVD was proposed as a

prognostic indicator for disease stage, likelihood of

metastasis, recurrence, and survival in a range of tumor

types [26–28]. To date, however, neither baseline values,

nor treatment-related changes in MVD have proven useful

for evaluating or guiding anti-angiogenic treatments [29].

To extend the analysis of MVD, we identified a set of

endothelial cell marker genes, including Tie1, Pecam1,

Cdh5, Icam2 and Robo4 [20–22], which decreased fol-

lowing treatment with aflibercept. The timing and

Table 1 Flow cytometry analysis of all CD31-positive blood vessel endothelial cells (BECs) and perfused (FITC-lectin positive) BECs derived

from control and 24 h aflibercept-treated C6 and HT1080 tumors

% CD31 ? (BEC) cells out of

total cells

Relative

change (%)

% FITC-lectin ? BECs out of

total cells

Relative

change (%)

% FITC-lectin ? BECs out of

total BECs

Control Aflibercept Control Aflibercept Control Aflibercept

C6 0.8 0.5 -37 0.43 0.33 -24 55 66

HT1080 2.2 1.6 -28 0.4 0.48 ?20 18 31
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magnitude of the decrease in these genes correlated well

with changes in tumor MVD. However, these gene

expression changes did not correlate with long-term TGI.

Further, changes in ‘acute’ gene expression, such as Esm1

and Nid2, which appear to reflect direct VEGF target genes

[30–32], similarly did not correlate with long-term TGI

following treatment with aflibercept. This latter finding

suggests that VEGF inhibition within a tumor is a neces-

sary but not sufficient determinant of efficacy of anti-

VEGF therapy.

Agents that target other angiogenic signaling pathways

further confound the attempts to correlate MVD, vascular

markers or indicators of VEGF signaling with anti-tumor

effects. For example, in pre-clinical models, blockade of

the angiogenic ligand Dll4 results in increased MVD [18,

33] and endothelial cell marker genes (data not shown), but

inhibits tumor growth, thus clearly showing that MVD

changes are not predictive of anti-angiogenic treatment

efficacy. In the case of Dll4 inhibition, the newly formed

tumor vascular structures are non-functional [18, 33].
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Fig. 4 Tissue oxygenation decreased in response to aflibercept

treatment in Colo205 and C6, but not in HT1080 tumors. a–

c Representative images of hypoxia assessed by HypoxyProbe IHC in

control and 24 h aflibercept-treated Colo205, C6 and HT1080 tumors

(80 lm gelatin sections). d-f) Quantitative analysis of hypoxia area

(%) in control and 8, 24 and 72 h aflibercept-treated Colo205, C6 and

HT1080 tumors (n = 4–5 each time point/tumor type). g–i TaqMan

analysis of the hypoxia responsive gene VEGF in Colo205, C6 and

HT1080 tumors after 8, 24 and 72 h aflibercept treatment (n = 3–4

each time point/tumor type). All experiments were repeated at least

twice; shown is an example experiment (n = 4–5 (hypoxia data) or

n = 3–4 (TaqMan data) for each time point). Results shown represent

means or mean ± standard deviation (SD). P \ 0.05*, \0.01**,

\0.001***, \0.0001**** by 1 way-ANOVA with Bonferroni post

hoc test (hypoxia IHC, each time point compared to control (0 time

point); TaqMan data, each time point compared to control (0 time

point))
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These findings, as well as our current results, emphasize

the concept that changes in tumor vessel functionality are

much more important for predicting tumor growth response

than changes in the number of vessels, their morphology or

their signaling profiles.

In preclinical models, intravenous injection of dyes like

FITC-lectin, Hoechst 33342 or DiOC7 prior to sacrifice has

frequently been used to distinguish perfused/functional

vessels from non-perfused vessels in tissue sections [7, 19,

34–36]. In addition, FITC-lectin or Hoechst 33342 have

been used with flow cytometry to detect perfused endo-

thelial cells or to assess the ratio of tumor cells close to

perfused blood vessels versus those further away [37, 38].

Our studies further validate the use of i.v. FITC-lectin

combined with CD31 flow cytometry, to distinguish endo-

thelial cells from perfused versus non-perfused vessels.

In clinical studies of VEGF blockade, DCE-MRI has

been used frequently to evaluate the functional microvas-

culature within tumors. In particular, decreases in Ktrans, a

volume transfer constant for contrast agent in blood/plasma

and the extravascular extracellular space, was shown to be

predictive of time to progression in liver cancer upon

VEGF blockade [39]. Similarly, changes in Ktrans allowed

the prediction of responses in glioblastoma patients treated

with bevacizumab and irinotecan [40]. In some preclinical

tumor models, DCE-MRI has also revealed a decrease in
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Fig. 5 Changes in tumor

perfusion, but not in MVD, 24 h

after aflibercept treatment are

predictive of long-term tumor

growth inhibition. a Summary

of aflibercept effects on long-

term tumor growth and short-

term (up to 72 h) MVD, gene

expression, tumor perfusion and

hypoxia. b Poor correlation

between MVD changes (30 lm

OCT sections; n = 4–5 each

treatment group/tumor type) and

long-term TGI (n = 5–7 each

treatment group/tumor type) in

Colo205, C6, HT1080, MMT,

A431 and LLC tumors. c Good

correlation between tumor

perfusion changes (n = 7–24

each treatment group/tumor

type) and long-term TGI

(n = 5–7 each treatment group/

tumor type) in Colo205, C6,

HT1080, MMT, A431, LLC,

786-0 and PC-3 M tumors. All

experiments were repeated at

least twice; shown is an

example experiment for tumor

growth (n = 5–7) and vessel

density (n = 4–5) data along

with combined data for tumor

perfusion data (n = 7–24 each

treatment group/tumor type)
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Ktrans in response to VEGF blockade [41]. However, DCE-

MRI was not predictive of treatment efficacy upon anti-

angiogenic therapy in other cancers, such as NSCLC [42].

In an attempt to better predict anti-angiogenic efficacy,

DCE-MRI was combined with assessment of MVD and

plasma collagen IV levels shortly (24 h) after the start of

treatment. This ‘vascular normalization index’, was pre-

dictive of responsiveness to anti-angiogenic therapy in

glioma patients [43]. In a follow-up study, a prolonged

increase in tumor perfusion, as evidenced by DCE-MRI,

was associated with longer survival in glioma patients [44].

However, a recent positron emission tomography (PET)

imaging study reported a decrease in perfusion and

impaired docetaxel delivery after a single dose of bev-

acizumab in NSCLC patients [14], suggesting that vessel

normalization after VEGF blockade does not occur in

NSCLC. In another recent study, single-photon emission

computed tomography (SPECT) imaging revealed that

anti-VEGF treatment decreased tumor uptake of an anti-

Her2 antibody (trastuzumab) in preclinical breast cancer

models, thus further supporting that VEGF blockade results

in decreased tumor perfusion rather than vessel normali-

zation [15].

In addition to DCE-MRI, PET and SPECT, other

imaging modalities have been used to predict efficacy of

anti-angiogenic therapies. For example, dynamic contrast-

enhanced ultrasound (DCE-US) imaging has been used to

assess tumor perfusion before and after treatment of vari-

ous cancers with anti-angiogenic agents [45–47]. DCE-US

imaging typically uses gas-filled lipid-shell microbubbles

several micrometers in diameter as contrast agent [48].

DCE-US differs from DCE-MRI in that it solely assesses

changes in vascular perfusion, while DCE-MRI measures a

combination of blood flow through the vasculature as well

as tracer movement across the vessel wall [49]. Although

DCE-MRI and DCE-US appear to have predictive potential

in anti-angiogenic therapy, DCE-US may be less sensitive

to changes in tumor vascular permeability, and thus be

more robust for assessing changes in tumor perfusion.

Decreases in tumor perfusion can result in hypoxia, as

was observed after aflibercept treatment of sensitive

Colo205 and moderately responsive C6 tumors, but not in

resistant HT1080 tumors. These findings can be compared

to the vascular normalization hypothesis, which proposed

that tumor vessels remaining after anti-VEGF therapy

temporarily ‘normalize’ in terms of morphology and

functionality, resulting in increased tumor blood flow and

decreased hypoxia [10]. Other preclinical studies, however,

have shown that the anti-angiogenic agents DC101 and

AG-013736 induce decreased perfusion and increased

hypoxia [13, 35, 50]. Although it is well established that

human tumors are often hypoxic and poorly perfused [51],

direct measurement of tumor oxygenation before and after

VEGF blockade in patients is challenging. Instead, hypoxia

changes have been assessed indirectly. For example, bev-

acizumab treatment of RCC patients resulted in increased

tumor cell apoptosis, along with increased tumor cell

proliferation, which were hypothesized to be at least par-

tially due to increased blood flow and decreased hypoxia

[52].

The current study used various tumor models grown

subcutaneously in mice, a site that can be readily accessed

for micro-ultrasound studies of tumor perfusion. While the

vascular structures and responses to anti-angiogenic ther-

apies of such tumors may not fully reflect those of primary

and metastatic human tumors, the ability to directly mea-

sure tumor blood flow provides opportunities to identify

potential early response biomarkers that can be further

tested in orthotopic preclinical tumor models and in clinical

settings.

Early response biomarkers that can predict long-term

outcome to therapy would be powerful tools, and panels of

such potential biomarkers for anti-angiogenic therapies

have been explored. For example, changes in circulating

VEGF or PlGF levels, as well as tumor VEGF levels, were

thought to be predictive, but to date have not shown to be

well correlated with outcome [53]. In the current preclin-

ical study, decreases in tumor perfusion and increases in

hypoxia following treatment of subcutaneous xenograft and

syngeneic models with aflibercept correlated with long-

term TGI. Our results suggest that perfusion changes, as

measured by DCE-US, shortly after treatment with VEGF

inhibitors or possibly other anti-angiogenic therapies, could

potentially be used as an early response biomarker to assess

treatment efficacy.
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