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There are multiple drugs for the treatment of type 2 diabetes, including traditional sulfonylureas
biguanides, glinides, thiazolidinediones, α-glucosidase inhibitors, glucagon-like peptide-1 (GLP-
1) receptor agonists, dipeptidyl peptidase IV (DPP-4) inhibitors, and sodium-glucose
cotransporter 2 (SGLT2) inhibitors. α-Glucosidase inhibitors have been used to control
postprandial glucose levels caused by type 2 diabetes since 1990. α-Glucosidases are
rather crucial in the human metabolic system and are principally found in families 13 and
31. Maltase-glucoamylase (MGAM) belongs to glycoside hydrolase family 31. Themain function
of MGAM is to digest terminal starch products left after the enzymatic action of α-amylase;
hence, MGAM becomes an efficient drug target for insulin resistance. In order to explore the
conformational changes in the active pocket and unbinding pathway for NtMGAM, molecular
dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were
performed for two NtMGAM-inhibitor [de-O-sulfonated kotalanol (DSK) and acarbose]
complexes. MD simulations indicated that DSK bound to NtMGAM may influence two
domains (inserted loop 1 and inserted loop 2) by interfering with the spiralization of residue
497–499. The flexibility of inserted loop 1 and inserted loop 2 can influence the volume of the
active pocket of NtMGAM, which can affect the binding progress for DSK to NtMGAM. ASMD
simulations showed that compared to acarbose, DSK escaped fromNtMGAM easily with lower
energy. Asp542 is an important residue on the bottleneck of the active pocket of NtMGAM and
could generate hydrogen bonds with DSK continuously. Our theoretical results may provide
some useful clues for designing new α-glucosidase inhibitors to treat type 2 diabetes.
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INTRODUCTION

At present, there are multiple drugs for the treatment of type 2
diabetes, including traditional sulfonylureas (Stephen et al., 2018),
biguanides (Schäfer, 1983), glinides (Chen et al., 2015),
thiazolidinediones (Nanjan et al., 2018), α-glucosidase
inhibitors (Kazufumi et al., 2014; Patel, 2015), glucagon-
like peptide-1 (GLP-1) receptor agonists (Drucker, 2018),
dipeptidyl peptidase IV (DPP-4) inhibitors, and sodium-
glucose cotransporter 2 (SGLT2) inhibitors (Thornberry
and Gallwitz, 2009; Kelly et al., 2019). These therapeutic
drugs have been widely used in clinical trials because of
their own characteristics in hypoglycemic control. For
example, α-glucosidase inhibitors have been used to
control postprandial glucose levels caused by type 2
diabetes since 1990 (Ríos et al., 2015; Flores-Bocanegra
et al., 2017; Santos et al., 2018; Dhameja and Gupta, 2019;
Usman et al., 2019; Mi et al., 2021; Tuyen et al., 2021).
Acarbose (Chiasson et al., 2002) and miglitol (Satoru
et al., 2015), which were clinically used for treating type 2
diabetes, may control blood glucose levels by targeting
α-amylases and α-glucosidases (Lyann et al., 2010; Ren
et al., 2011).

Glycoside hydrolases play significant roles in humanmetabolism,
including digestion and decomposition of polysaccharides and
biosynthesis of glycoprotein (Lovering et al., 2005).
α-Glucosidases are rather crucial in the human metabolic system
and are principally found in families 13 and 31 (Lovering et al.,

2005). Maltase-glucoamylase (MGAM) (Sim et al., 2008) and
sucrase-isomaltase (SI) (Sim et al., 2010) belong to glycoside
hydrolase family 31. The main function of MGAM and SI is to
digest terminal starch products left after the enzymatic action of
α-amylase, which becomes an efficient drug target for insulin
resistance (Van Beers et al., 1995). MGAM contains the following
units: a small cytosolic domain of approximately 26 residues, a
transmembrane domain (TMD) containing about 20 residues
inserted into the intestinal epithelial cell membrane, an
O-glycosylated linker, and two independent catalytic subunits:
NtMGAM and C-terminal luminal subunit (CtMGAM) (Sim
et al., 2008; Lyann et al., 2010) (Supplementary Figure S1).
NtMGAM containing 864 residues (PDB ID: 3L4U) (Lyann
et al., 2010) were used in this study. NtMGAM, known to be
retaining α-glycosidases (Satoh et al., 2016), has received
relatively little attention despite its importance and the number
of different activities from a range of organisms, includingmammals,
plants, andmicroorganisms (Frandsen and Svensson, 1998; Yu et al.,
1999; Lovering et al., 2005). The substrate specificities of MGAM
vary and overlap from maltose (Quezada-Calvillo et al., 2008) to
isomaltose (Elferink et al., 2020) and other small oligosaccharides.

Salacia reticulata (S. reticulata), a plant widely distributed in
China and some other countries in Southeast Asia, is used as a
traditional prescription for treating type 2 diabetes (Medagama,
2015). Sulfonium ion-containing compounds were isolated from
aqueous extracts of S. reticulata by Jayakanthan and his
colleagues (Jayakanthan et al., 2009), including de-O-
sulfonated kotalanol (DSK). DSK comprises a 1,4-anhydro-4-

FIGURE 1 | (A) Catalytic domain of NtMGAM. The catalytic (β/α)8 barrel domain is tagged and colored differently. (B) Surface diagram of NtMGAM. (C) Binding of
acarbose to NtMGAM. The active residues around acarbose binding to NtMGAM. (D)Binding of DSK to NtMGAM. The active residues around DSK binding to NtMGAM.
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thio-d-arabinitol core and a polyhydroxylated acyclic chain
(Lyann et al., 2010) and can act as an inhibitor of
α-glucosidase in human bodies. A previous study reported that

DSK could be an efficient inhibitor of NtMGAMwith a Ki of 0.03
(±0.01) μM (Lyann et al., 2010).

In order to explore the conformational changes in the
active pocket and unbinding pathway for NtMGAM,
molecular dynamics (MD) simulations (Zhu et al., 2018;
Zhu et al., 2019; Liu et al., 2020) and adaptive steered
molecular dynamics (ASMD) simulations (Zhu et al.,
2018) were performed between two inhibitors (DSK and
acarbose) and NtMGAM (PDB ID: 3L4U) (Lyann et al.,
2010) (workflow listed in Supplementary Figure S2). Our
results may provide new ideas for the further design of
α-glucosidase inhibitors.

MATERIALS AND METHODS

Preparation for the Structure of Protein
Inhibitors
AutoDock 4.2 (Morris et al., 2009) was used for docking
acarbose with NtMGAM using the Lamarckian genetic
algorithm to identify a proper binding conformation with
a grid box size of 66 Å × 58 Å × 66 Å points and a grid point
spacing of 0.375 Å. The binding conformation with the lowest
energy was chosen for simulations. The crystal structure of
NtMGAM with DSK complex and the 3D structure of
acarbose (PDB ID: 3JYR) (Vahedi-Faridi et al., 2010) was
downloaded from Protein Data Bank (www.rcsb.org) for
further studies.

MD Simulations
Simulations in our study were performed using the Amber16
package (D.A. Case et al., 2016) with the Amber ff99SB force

FIGURE 2 | Root-mean-square deviation (RMSD) and radius of gyration (Rg) analysis of NtMGAM with or without different ligands throughout 200 ns. (A) RMSD
plot. (B) The relative frequency of the RMSD plot. (C) Gyration radius (Rg) plot. (D) The relative frequency of the Rg plot.

FIGURE 3 | (A) Solvent-accessible surface area (SASA) analysis of three
systems over 200 ns MD. (B) SASA of active residues in different compound
structures.

Frontiers in Chemistry | www.frontiersin.org August 2021 | Volume 9 | Article 7112423

Zhang et al. Conformational Changes of NtMGAM

http://www.rcsb.org/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


field (Lindorff-Larsen et al., 2010). At the same time, the Gaff2 force
field (Wang et al., 2004) was utilized to generate the parameterization
of DSK and acarbose. It is well known that charged residues affect the
environment of protein (Popović and Stuchebrukhov, 2004; Tashiro
and Stuchebrukhov, 2005; Sugitani and Stuchebrukhov, 2009). H++
is an online tool that can automatically compute pKa values of
ionizable groups in proteins (http://biophysics.cs.vt.edu/). We
computed the ionizable groups of NtMGAM on H++ and then

manually fixed the ionizable groups. All three complexes were
analyzed using the MD simulations in a cubic periodic boundary
box with the TIP3P water model (Bogunia and Makowski, 2020),
which was prolonged to 12 Å from the protein atoms. Sodium ions
were randomly added to the simulation systems for neutralization.
To get the initial equilibrious structure, energy minimization was
performed through the steepest descent method in 1,000 cycles.
Subsequently, 50 ps of NVT (Berendsen temperature coupled with
constant particle number, volume, and temperature) (Berendsen
et al., 1984) and 50 ps of NPT (Parrinello–Rahman pressure
coupled with constant particle number, pressure, and
temperature) (Andersen, 1980) were performed to maintain the
stability of the system (300 K, 1 bar). After stabilizing all
thermodynamic properties, a 200 ns unconstrained MD
simulation was performed with a time interval of 2 fs. The
coordinates for all models were stored every 2 ps. During the
simulation, the following options were specified: (I) bonds
involving hydrogen are constrained and bond interactions
involving H-atoms were omitted using the SHAKE algorithm
(Miyamoto and Kollman, 1992), (II) the particle mesh Ewald
summation algorithm (Essmann et al., 1995) was taken to
calculate the long-range electrostatic interactions, (III) 1 atm
constant pressure was maintained by the Langevin dynamics
method (Rosenberg et al., 1986) (Guàrdia and Padró, 1985), and
(IV) an optimum temperature (300 K) was maintained. MD
simulations were performed three times for each system in this
study (Supplementary Figures S3, S4). The root-mean-square
deviation (RMSD), radius of gyration (Rg), root-mean-square
fluctuation (RMSF), and solvent-accessible surface area (SASA)
values were calculated using VMD (Humphrey et al., 1996).

MM-PBSA Calculations
MMPBSA.py (Miller et al., 2012) in the AmberTools17 package
was employed to conduct free energy calculations for the two
complexes. 200 conformations were extracted from each
equilibrious trajectory (from 100 to 200 ns with an interval of
50 frames) for calculations. The binding free energies were
calculated by subtracting the free energies of the receptor and
the ligand DSK or acarbose from the free energy of the bound
complex of two systems:

ΔGbinding , solvated � ΔGcomplex, solvated − [ΔGreceptor, solvated

+ ΔGligand, solvated].

Then, the free energy change associated with each term of ΔGwas
calculated according to the following:

ΔGsolvated � Egas + ΔGsolvation − TSsolute,

where ΔGsolvation represents true free energy. To determine the
relative stability, end-state method calculations were performed
to estimate the energies, according to averages from the ensemble
of these snapshots:

ΔGsolvated � <Egas> + <ΔGsolvation> − T <Ssolute>

� 1
N

∑
N

i�1
Ei, gas + 1

N
∑
N

i�1
ΔGi, solvation − T

N
∑
N

i�1
Si, solute,

FIGURE 4 | (A) Average atom positional root-mean-square fluctuations
(RMSF) of the backbone atoms per residue for the inhibitors bound NtMGAM.
(B–D) The eigenvector components for atomic displacement along the first
eigenvectors for MD-generated ensembles of free-NtMGAM, DSK-
NtMGAM, and acarbose-NtMGAM, respectively.
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where i is the index of a particular frame and N is the total
number of frames analyzed. The gas-phase energies (Egas) can
be computed from the quantum mechanical (QM)
calculations and used further as a part of the force field
parameterization; therefore, the Egas energies can be
abstracted from the molecular mechanical (MM) energies
and the corresponding force field (Miller et al., 2012).

Principal Component Analysis and Free
Energy Landscapes
PCA is a common statistical multivariate method, which can select the
structure of each frame in an MD trajectory as a new set of variables,
called principal components (PCs), with aminimal loss of information.
In our study, we employed the bio3d package in R to refine structural
superposition and examine the relationship between different

conformers (Grant et al., 2006). The current protocol excludes the
residues displaying the largest positional differences at each round and
identifies only the core residues. Following the superposition of core
residues, PCA was performed to examine the conformers based on
their equivalent residues. The PCs collected during MD simulation are
originally the eigenvector values collected from the covariance matrix,
each corresponding to the change in protein trajectory (Al-Khafaji and
Taskin Tok, 2020). In order to obtain a lower-dimensional
representation of the structural dataset, we project the distribution
onto the subspace defined by the largest principal components. In each
dimension, the corresponding eigenvalue represents the percentage of
the total mean square displacement (or variance) of atom positional
fluctuations. In PCA, very few dimensions are generally enough to
capture about 70% of the total variance in the structures to be studied
(Grant et al., 2006). Therefore, thefirst few eigenvectors are sufficient to
provide a useful description while still retainingmost of the variance in

FIGURE 5 | (A) The NtMGAM domains with residue numbers labeled. (B)New cartoon diagram of NtMGAMwith domains colored differently. (C) Inserted loop 1 in
aligned compounds (the lowest energy conformations from FEL analysis). (D,E) NtMGAM active site pocket shown in surface representation occupied by DSK D and
acarbose E. The structure of NtMGAM is shown in new cartoon and colored dissimilarly as follows: purple for catalytic domain, pink for inserted loop 1, cyan for inserted
loop 2.
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the original distribution. After PCA, the FEL (Frauenfelder et al., 1991)
was obtained by calculating the joint probability distribution from the
essential plane constructed from the top two eigenvectors (Singh et al.,
2015).

Pathways Identified With CAVER
The software called CAVER has been widely used to analyze and
visualize possible cavities and channels in protein structures.
CAVER Analyst 2.0 (Jurcik et al., 2018) was employed to
determine the channel position. The starting point was set at
the position of the ligand for the channel computation. The
minimum probe radius, clustering threshold, shell depth, and
radius were set to be 0.9, 3.5, 4, and 3 Å, respectively. All the other
parameters were used as default. 1,000 snapshots (we took one
frame every ten frames in 10,000 from the 100–200 ns
simulations) were analyzed utilizing CAVER Analyst 2.0.

Adaptive Steered Molecular Dynamics
Simulations
ASMD simulations (Ozer et al., 2010; Ozer et al., 2012a; Ozer
et al., 2012b; Ozer et al., 2014) were performed for NtMGAMwith

the two different ligands using the Amber 16 package. ASMD has
been shown to alleviate the problem that many simulations must
be run to converge the potential mean of force (PMF) in steered
molecular dynamics (Izrailev et al., 1999) by dividing the
predetermined reaction coordinate into numerous smaller
stages. Each stage in the ASMD simulation contained multiple
simulations that should be performed parallelly. In each stage, the
trajectory with the work value closest to the Jarzynski average
(JA) (Jarzynski, 1997) should be selected, and the coordinates at
the end of that trajectory should be used as an initial coordinate
for the next stage. Then, the JA structures were used for PMF
calculation. Here, in our study, the distance between the ligand
and NtMGAM in the initial conformation is 6 Å. The reaction
coordinate in ASMD is predetermined to be set at 20 Å, at which
the inhibitor is considered to escape from the enzyme. The
stretching velocity was 10 Å/ns in this ASMD simulation,
coupling a spring constant k of 40 kcal/(mol×Å2). Each
simulation was split every 2 Å into seven stages; each stage
contains 14 simulations to reach the final reaction coordinate
of 20 Å. As the distance between the two selected atoms reached
20 Å, there were no longer any interactions between the ligand
and the receptor.

RESULTS AND DISCUSSION

Docking Pose and System Stabilize
It was reported that the structure of the NtMGAM substrate-
binding site consisted of two sugar-binding sites, which in the
acarbose-NtMGAM binding structure were occupied by the two
nonreducing rings of acarbose (Lyann et al., 2010). To determine
the docking pose, we chose to dock the DSK crystal structure to
NtMGAM with AutoDock 4.2 (Morris et al., 2009). Comparing

FIGURE 6 | Conformation changes in residues Asn491-Leu493 of the three systems: (A) free-NtMGAM, (B) DSK-NtMGAM, and (C) acarbose-NtMGAM.

TABLE 1 | The probability of secondary structures of residues H497 to L499.

Residue Free-
NtMGAM

DSK-
NtMGAM

Acarbose-
NtMGAM

α-Helix Loop α-Helix Loop α-Helix Loop

H497 0.94 0.06 0.59 0.41 0.89 0.11
N498 0.94 0.06 0.59 0.41 0.92 0.08
L499 0.94 0.05 0.6 0.40 0.92 0.08
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the crystal structure of DSK-NtMGAM and the docked pose
(Supplementary Figure S5), it can be concluded that they were
similar (RMSD 0.50), which indicated that this system may use
AutoDock 4.2 software to determine the binding pose. Acarbose
was docked to NtMGAM using the same method.

NtMGAM has a typical catalytic (β/α)8 barrel domain
(Figure 1A). DSK and acarbose were docked in an active
pocket of NtMGAM (Figure 1B). Figures 1C,D shows that
the active residues around acarbose and DSK were bound
around NtMGAM. It can be seen that His600, Arg526,
Asp542, Asp203, Trp406, and Asp327 were anchor residues
for DSK binding in Figure 1D. In contrast, in the acarbose-
NtMGAM, His594, Asp321, Arg520, Asp197, and Asp536 made
hydrogen bonds with acarbose, indicating that they are important
residues for acarbose binding to NtMGAM.

The MD simulations for three systems have been performed
three times. The RMSD values of the Cα atom backbone of
residues of three systems were calculated to evaluate the
equilibrium of systems (Supplementary Figures S3, S4 and
Supplementary Table S1). It can be seen in Supplementary
Figure S3 that all MD simulations have got equilibrium. In
Supplementary Figure S4, the RMSD of the three simulations
of free-NtMGAM are slightly different from each other, with
the average values of 1.67, 1.94, and 2.13 (from 100 to 200 ns),
respectively. Although the RMSD values of each of the three

repetitions seldom cross each other, the three simulations have
all reached a state of relative equilibrium. The group with the
most equilibrious and generally balanced RMSD was chosen
for further study (Supplementary Table S1). The parameters
of 200 ns MD simulations for three systems were listed in
Supplementary Table S2. From Figure 2A, the RMSD values
of NtMGAM, DSK-NtMGAM, and acarbose-NtMGAM are
stabilized at about 1.67, 2.16, and 2.15 Å, respectively
(Figure 2B), suggesting the structures of the three systems
had reached a state of relative equilibrium. The Rg values of the
three systems are shown in Figures 2C,D and are finally
stabilized at 28.75 Å. In Figure 3A, the SASA values of
acarbose-NtMGAM were stabilized at 34,000 Å2;
meanwhile, the other two systems were stabilized at
33,000 Å2. These results indicate that three systems have
attained stability and their states reached equilibrium.
SASA values of single residue of the three systems were
calculated for core residues. Tyr299, Phe412, Asn433,
Asp542, and Phe575 had higher scores in the DSK-
NtMGAM complex than the others. It was reported that
Asp542 and Phe575 were important residues interacting
with the hydroxyl groups of inhibitors binding to
NtMGAM (Usman et al., 2019). Our results were consistent
with the experimental data. In summary, all the systems were
stabilized and can be used for further study.

FIGURE 7 | The binding pocket conformations of free-NtMGAM (A), DSK-NtMGAM (B), and acarbose-NtMGAM (C) at 0, 100, and 200 ns with the volume of the
pockets labeled.
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Conformational Changes for Inhibitors
Binding
To evaluate the deviation amount of displacement in three trajectories
fromMD simulations, atom positional RMSF values were calculated
for the backbone atoms of three systems (Figure 4A). Figures 4B–D
show that residue displacements correspond to themotions described
by the first eigenvector for three complexes. These displacements
represented the relative displacement of each residue caused by the
motion described by a given eigenvector. It was reported that
NtMGAM contains 868 residues, which can be divided into five
structural domains: (I) a trefoil Type-P domain (residue No. 1–51);
(II) N-terminal β-sandwich domain (residue No. 52–269); (III)
catalytic (β/α)8 barrel domain (residue No. 270–651) with two
inserted loops [inserted loop 1 (residue No. 367–416) and inserted
loop 2 (residueNo. 447–492)] protruding out between β3 and α3 and
between β4 and α4, respectively; (IV) proximal C-terminal domain
(residue No. 652–730); (V) distal C-terminal domain (residue No.
73–868), both with β-sandwich topologies (Sim et al., 2010) (see
Figure 5A). In the DSK-NtMGAM complex, residues Ser376,
Gly397, and Trp406, which are located at inserted loop 1 domain,
exhibited distinct atom positional fluctuation amplitudes. This

FIGURE 8 | PCA based FEL analysis of NtMGAM (A). DSK-NtMGAM (B). Acarbose-NtMGAM (C) as a function of projections of the MD trajectory onto the first
(PC1) and second (PC2) eigenvectors. The structures of the two most stable conformations of the three systems are presented with the conformation of Asn491 to
Leu493.

TABLE 2 | The probabilities of PC1 and PC2 of the three systems.

PC 1 (%) PC 2 (%)

Free-NtMGAM 16.46 6.28
DSK-NtMGAM 17.03 6.44
Acarbose-NtMGAM 19.61 5.46

TABLE 3 | MM-PBSA results.

DSK Acarbose

VDWAALS −15.84 ± 0.39 −29.86 ± 1.01
EEL −586.14 ± 2.32 −81.12 ± 4.95
EGB 565.10 ± 1.55 108.44 ± 4.87
ESURF −5.02 ± 0.06 −6.22 ± 0.19
ΔG gas −601.98 ± 2.49 −110.99 ± 4.99
ΔG solv 560.08 ± 1.50 102.21 ± 4.74
ΔTOTAL −41.90 ± 1.14 −8.77 ± 1.08
Ki (μM) 0.03 ± 0.01 62 ± 13
ΔGexp −10.32 −5.76
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displacement widened the active site pocket, which would affect the
inhibitors’ binding.

Subsequently, secondary structure analysis was also
performed, and the corresponding average secondary structure
values for each residue are shown in Figures 6A–C andTable 1. It
can be seen that the proportion of α-helix in Asn498 in free-

NtMGAM and acarbose-NtMGAM was about 90%, whereas in
DSK-NtMGAM, it was about 59% (Table 1 and Supplementary
Table S3). Supplementary Table S3 shows that the proportion of
α-helix in residue 497–499 in free-NtMGAM and acarbose-
NtMGAM are almost above 90%. In contrast, in the DSK-
NtMGAM complex, the odds are reduced to under 70%. The
results revealed that the α-helix of DSK-NtMGAM during 200 ns
MD simulations disappeared partly. Residues 497–499 are located
near the inserted loop 2 domain, which is quite close to the opening
of the (β/α)8 barrel. Despiralization of these residues can enlarge
the domain of the inserted loop 2, therefore, contributing to the
architecture of the inhibitor binding site.

POCASA 44 (http://altair.sci.hokudai.ac.jp/g6/service/pocasa/)
(Yu et al., 2010) was utilized to predict the volume of the binding
pocket. Parameters are listed as follows: the radius of probe
sphere value was 1 Å, single point flag value was 10 Å, and
protein depth flag value was 15Å. The active pocket
conformations at 0, 100, and 200 ns were shown in Figures
7A–C. The volume of the pocket in free-NtMGAM was smaller
than that of DSK-NtMGAM and acarbose-NtMGAM.
Obviously, it could be considered that inhibitor of NtMGAM
binding to the pocket with the nonreducing sugar ring in the −1
subsite and the reducing ring in the +1 subsite results in net
retention of configuration at the anomeric center (Sim et al., 2010).
Large active pockets will facilitate the inhibitor binding and entry.
However, acarbose is so large that it binds to the NtMGAM active
site primarily with its acarvosine unit (−1 and +1 subsite), few with
its glycone rings (+2 and +3 subsite) (Sim et al., 2008).

In addition, the S group of DSK can generate charge
interaction with residues (Trp400, Asp437, and Asp536)

FIGURE 9 | (A) 3D visualization of candidate tunnels of (1) free-NtMGAM, (2) DSK-NtMGAM, and (3) acarbose-NtMGAM. (B) The details of the tunnel bottleneck
contour over time of (1) free-NtMGAM, (2) DSK-NtMGAM, and (3) acarbose-NtMGAM.

FIGURE 10 | PMF profiles along with the reaction coordinates of
acarbose-NtMGAM (red) and DSK-NtMGAM (blue).
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FIGURE 11 | Interactions during ASMD simulations between DSK (1) or acarbose (2) with NtMGAM. (A) The initial state of the two systems before the ASMD
simulations. Reaction coordinates reached (B) 8.44 Å, (C) 9.58 Å, (D) 10.96 Å, and (E) 12.72 Å.
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(Supplementary Figure S5), which may stabilize the DSK-
NtMGAM complex.

PCA and FEL Analysis
PCA was performed to confirm whether the conformational changes
of the three systems were continuous and stable, and the results are
displayed throughFEL (Figures 8A–C).Table 2 lists the PC1 andPC2
probabilities of the three systems. The structures of the most stable
conformations of the three systems revealed that the conformational
changes in the residues 497–499 domain were complex in DSK-
NtMGAM (α-helix disappeared partly). In summary, we can confirm
that the conformational changes in the three systems were continuous
and stable, and our analyses above are reliable.

MM-PBSA Calculations
We used the end-point method to calculate the free energy
between NtMGAM and the two inhibitors. The results of the
Generalized Born (GB) implicit solvent method with a SASA
term calculation are shown in Table 3. The binding free energies
weremainly contributed by electrostatic energy, which is calculated
by the molecular mechanics force field and the electrostatic
contribution to the solvation free energy calculated by GB.
Meanwhile, the VDW interactions are approximately consistent.
As shown in Table 3, the binding free energy of the DSK-
NtMGAM complex (−41.90 ± 1.14 kcal/mol) is lower than that
of the acarbose-NtMGAM complex (−8.77 ± 1.08 kcal/mol). The
results have the same trend as the data calculated from the Ki value
from Sim’s works (Sim et al., 2008).

ASMD Simulations
The 3D visualization of the channel of the free-NtMGAM, DSK-
NtMGAM, and acarbose-NtMGAMobtained by CAVERAnalyst
2.0 is listed in Figure 9A. The detailed exploration of the channel
bottleneck and surrounding residues is shown in Figure 9B. The
bottleneck of the channel in DSK-NtMGAM was larger than that
of acarbose-NtMGAM. The surrounding residues displayed
around the contour demonstrated the frequency. It can be
seen that there are more residues in the DSK-NtMGAM
complex comparing to that in the acarbose-NtMGAM complex.

To explore the enzyme-inhibitor interactions and the affinity
of the active sites of NtMGAM via inhibitors unbinding pathway,
ASMD simulations were performed on the two complexes. In
Figure 10, the PMF profile displayed the energy changes during
the process of pulling the ligands out of the NtMGAM channel. In
the DSK-NtMGAM complex, a lower energy barrier (13 kcal/
mol) should be transferred to completely dissociate DSK from the
channel of NtMGAM than that in the acarbose-NtMGAM
complex (22 kcal/mol).

Figures 11A1–E1 show the interactional changes during the
dissociation process of DSK-NtMGAM along the reaction
coordinate (RC). First, for the initial coordinate (RC � 7 Å)
[Figure 11A1], Asp542 and Asp443 formed a salt bridge with
DSK. Then, at 8.44 Å [Figure 11B1], the free energy value
dropped sharply due to the break of stronger hydrogen bonds
between DSK and Asp203 and Asn449 residues. With the
movement of DSK, the salt bridge between Asp443 and DSK
disappeared and the salt bridge between Asp542 and DSK

persisted. Nevertheless, at 9.58 Å [Figure 11C1], the residues that
formed hydrogen bonds with the DSK were changed. Except
for the salt bridge between Asp542 and DSK, the hydrogen
bonds (salt bridge) were disappeared. Thereafter, the
interconnections, including hydrogen bonds between
channel residues and DSK, increased rapidly after 10.96 Å
[Figure 11D1], giving rise to an increase in free energy value.
Finally, at 12.72Å [Figure 11D1], DSK completely departed
from the channel of NtMGAM and the curve of PMF tended
to be flat. Asp542, as an important channel residue, could
generate hydrogen bonds with DSK continuously, which was
consistent with the results obtained in the channel analysis.

The acarbose dissociating fromNtMGAM is shown in Figures
11A2–E2. At the beginning of the ASMD simulation
[Figure 11A2], acarbose was tightly fixed due to the strong
hydrogen bond interactions with Tyr303, Asp327, Arg298, and
His600. Subsequently, at 8.44 Å [Figure 11B2], the free
energy value increased slowly because of the stronger
hydrogen bond interactions between acarbose and Glu404
and Trp406. At 9.58 Å [Figure 11C2], the acarbose made
hydrogen bond interactions with Asn449, Val405, and
Phe450, which were stronger than DSK, resulting in the
increased free energy value (Figure 11C). Thereafter, the
interconnections, including the hydrogen bonds between
acarbose and channel residues, disappeared at about
10.96 Å besides the only hydrogen bond with Ser448
[Figure 11D2]. Finally, at 12.72 Å [Figure 11E2], acarbose
was completely departed from the unbinding pathways of
NtMGAM, and the curves of PMF tended to be flat.

To sum up, compared to acarbose, DSK escaped from
NtMGAM easily with lower energy. Asp542 is an important
residue on the bottleneck of the active pocket of NtMGAM, which
could generate hydrogen bonds with DSK continuously. Our
results may provide some useful clues for designing newmedicine
to relieve symptoms of postprandial hyperglycemia caused by
type 2 diabetes. For example, we can modify the 3D structure of
acarbose to get a new compound that is suitable for the active
pocket of NtMGAM.

CONCLUSION

At present, there are multiple drugs for the treatment of type 2
diabetes on the market, including α-glucosidase inhibitors. MGAM
has become an efficient drug target for insulin resistance. In order to
explore the conformational changes in the active pocket and
unbinding pathway for NtMGAM, MD simulations and ASMD
simulations were performed between two inhibitors (DSK and
acarbose) and NtMGAM. MD simulations indicated that DSK
binding to NtMGAM may lead to an enlargement of the active
pocket due to the flexibility of the two domains (inserted loop 1 and
inserted loop 2), which would facilitate the binding of DSK to
NtMGAM. ASMD simulation results indicated that Asp542 was an
important channel residue, which could continuously generate
hydrogen bonds with DSK. Our results may provide some
interesting thoughts for designing new medicine for the
treatment of type 2 diabetes based on the molecular structure
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and specific intermolecular interactions between NtMGAM and
DSK substrate in the binding pocket and the entrance channel.
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