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In the hope of discovering early markers of autism, attention has recently

turned to the study of infants at risk owing to being the younger siblings

of children with autism. Because the condition is highly heritable, later-

born siblings of diagnosed children are at substantially higher risk for

developing autism or the broader autism phenotype than the general popu-

lation. Currently, there are no strong predictors of autism in early infancy

and diagnosis is not reliable until around 3 years of age. Because indicators

of brain functioning may be sensitive predictors, and atypical social inter-

actions are characteristic of the syndrome, we examined whether temporal

lobe specialization for processing visual and auditory social stimuli during

infancy differs in infants at risk. In a functional near-infrared spectroscopy

study, infants aged 4–6 months at risk for autism showed less selective

neural responses to social stimuli (auditory and visual) than low-risk controls.

These group differences could not be attributed to overall levels of attention,

developmental stage or chronological age. Our results provide the first demon-

stration of specific differences in localizable brain function within the first 6

months of life in a group of infants at risk for autism. Further, these differences

closely resemble known patterns of neural atypicality in children and adults

with autism. Future work will determine whether these differences in infant

neural responses to social stimuli predict either later autism or the broader

autism phenotype frequently seen in unaffected family members.
1. Introduction
In the hope of discovering early markers of autism, attention has recently

turned to the study of infant siblings of children with autism [1–3]. Because

the condition is highly heritable, later-born siblings of diagnosed children are

at substantially higher risk for developing autism or the broader autism pheno-

type than the general population [4,5]. While the majority of these infants

at risk do not go on to autism, studies have shown that first-degree family

members can evidence traits—in visual and auditory perception—that overlap

with those observed in autism [6]. Several studies have attempted to differen-

tiate the at-risk infants who subsequently receive a clinical diagnosis from

those who do not, as well as comparing them with low-risk infants with no

family history of autism. Moreover, prospective longitudinal studies of infants

at risk allows one to search for ‘endophenotypes’ for autism—intermediate phe-

notypes (often aspects of brain structure and function) between genes and the

resulting clinical phenotype [7]—given that during development they should be

present prior to the appearance of full clinical symptoms [8]. Current evidence

indicates that infants who go on to receive a diagnosis as toddlers begin to be

identified from around the end of the first year on the basis of atypical social

and non-social behaviours such as unusual eye contact, lack of orientation to

name and reduced flexibility in switching attention [1,2,9]. There is growing
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consensus that these early behavioural manifestations of autism

are subtle and that these clinically detectable symptoms emerge

gradually during development [1]. Thus, there is an active

search for early neural markers that may precede or predict

the later emergence of behavioural symptoms. A cautionary

note is that while group-level differences have been reported,

to date no studies have reported sensitivity and specificity of

individual markers to later autism outcomes that could have

clinical utility.

Converging evidence has implicated atypical social per-

ception (i.e. processing of cues which allow us to interpret

the intentions and dispositions of others [10]) and brain func-

tion in children and adults diagnosed with autism [11].

However, the developmental causes of this atypical neural

phenotype remain unknown. In typical adults, a network of

regions termed the ‘social brain’ [12] have been identified,

which include the orbitofrontal cortex, amygdala, temporal

lobe face-sensitive regions and superior temporal sulcus

(STS) region (hereafter we use the term ‘STS region’ to refer

to regions of the superior temporal gyrus, sulcus and middle

temporal gyrus extending to the temporo-parietal junction).

It has been suggested that a problem in one or more of the

underlying mechanisms that bias infants to orient towards

and attend to socially relevant information from early in life

may disrupt the typical developmental trajectory of the social

brain network [13–15]. For example, atypical neural responses

to face and/or eye contact [16] may interfere with the emer-

gence of critical developmental milestones relevant for later

social cognitive skills, such as joint attention. These cascading

influences may eventually preclude the typical development

of socio-communicative skills.

One perspective on the typical development of the social

brain network is that it emerges as a result of processes of ‘inter-

active specialization’, in which the adult pattern of cortical

specialization becomes evident in development through a

process of increasing functional specialization (or tuning) of

the response of cortical areas [17,18]. According to the interac-

tive specialization view, biases in attention and processing

in early infancy are reinforced by differential patterns of

experience, subsequently resulting in the patterns of cortical

specialization associated with the social brain observed in

adults. In autism, disruption in the typical emergence of

the social brain network may arise due to an atypical early

trajectory, which then becomes compounded by atypical inter-

actions with the environment, leading to the well-established

pattern of symptoms of autism becoming embedded and

observable by the age of diagnosis [14].

Several previous studies have identified differences in

brain function in response to socially relevant stimuli

between infants with low and high risk of developing

autism [16,19–22]. We use the term ‘social’ in this paper in

the broadest sense (i.e. that they are human-generated cues,

either visual or auditory, which originate from conspecifics).

This does not necessarily imply that these cues are intended

to be communicative. One of the first such studies of visual

social stimuli using electroencephalography (EEG) found

that compared with low-risk controls, high-risk infants of

10 months of age showed delayed neural responses to faces

with direct gaze [16]. More recently, related effects have

been associated with a later diagnosis of autism at 3 years

of age [6]. In a study of infants under 12 months, McCleery

et al. [20] found that pictures of toys elicited significantly

faster neural responses in high-risk infants compared with
pictures of faces, while in the low-risk age-matched infants

the pattern was reversed. However, another recent study on

face perception of familiar and unfamiliar faces with high-risk

infants of 12 months of age did not find any striking group

differences compared with low-risk controls [19].

While recent neuroimaging research has shown that por-

tions of the temporal lobe can be selectively activated by

social auditory stimuli (human vocal sounds) and non-

social environmental sounds in 4–7-month-old human

infants [23–26], functional magnetic resonance imaging

(fMRI) research in adults with autism failed to identify

vocal selective regions of the STS [27]. In accordance with

these findings, evidence in adults suggests that individuals

with autism have difficulties in vocal perception, such as

impairment in the attribution of mental state within a voice

[28] and a lack of preference for their mother’s voice [29]. More-

over, EEG findings in children with autism suggest a selective

impairment in attention to vocal-speech sounds [30], and

recent magnetic resonance imaging (MRI) work has identified

a lack of left temporal specialization for language in 1–4-year-

olds [31]. Therefore, examining the brain correlates associated

with processing social stimuli at an earlier age may help

define the infant autism endophenotype further.

To date, the study of brain function in infant siblings of

children with autism has relied heavily on EEG. However,

it remains challenging to accurately localize the cortical

generators of scalp-recorded EEG in infants owing to its sus-

ceptibility to data corruption by movement artefacts [32],

volume currents and current lack of infant head models

[33]. Functional near-infrared spectroscopy (fNIRS) poten-

tially provides an ideal method for improving our current

understanding of cortical activity in the early developing atypi-

cal brain as it can be widely adopted owing to its relatively low

cost, ease of use with infants, capacity for more specific spatial

localization with respect to EEG and suitability for use in

naturalistic settings [34–36]. Though the depth resolution of

fNIRS is dependent on the age of the infant and the optical

properties of the tissue [37], and offers lower spatial resolution

relative to fMRI, it is similar in that it measures haemodynamic

responses to neuronal activation. Research from adults has

shown a high degree of correlation between simultaneous

recordings of haemodynamic responses with fNIRS and

fMRI [38]. Thus, the data acquired from fNIRS can complement

the high spatial resolution of function and anatomy data

obtained with MRI [31,39].

In previous work, we have used fNIRS to show that

specific regions of the frontal and temporal lobes in

4–7-month-old human infants are selectively activated by

visual and auditory social stimuli relative to non-human

stimuli in 5-month-old infants [25,40,41]. In the present

study, we used an fNIRS protocol from previous work [25]

to ascertain the extent to which infants at risk for autism

show early specialization of the frontal and temporal cortex

for the processing of social stimuli (visual social stimuli

such as ‘peek-a-boo’, and auditory social stimuli such as

yawning, coughing and laughing). While not all infants

from the group at risk will go on to a diagnosis of autism,

the majority of the group may show trait neural signatures

[6] that, when combined with other factors, can result in

later-emerging autism. Specifically, we hypothesized that,

in comparison with low-risk infants, the group of infants at

risk for autism (high-risk) would show less evidence of tem-

poral lobe areas being tuned to social visual and auditory
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stimuli. This would be evident as fewer channels showing

evidence of vocal-specialized activation (vocal . non-vocal)
in the temporal lobe of the high-risk group when compared

with the low-risk group. Further, we would expect fewer

channels over the temporal lobe to evidence significant

responses to the visual social stimuli in relation to the visual

non-social baseline in the high-risk group compared with

the low-risk group. In addition, we were also interested in

investigating non-vocal selective responses given the dis-

crepancy between findings in infants evidencing non-vocal

selective responses in the posterior superior temporal

region [23,25] compared with adults with [42] and without

autism [27], which show a marked absence of this response.
SocB
280:20123026
2. Material and methods
(a) Participants
Thirty-four 4–6-month-old infants participated in this study,

comprising 18 infant siblings of children with autism (high-

risk; 10 female, mean age ¼ 149.56 days, s.d. ¼ 26.75) and 16

infants who have no family history with autism (low-risk; 6

female, mean age ¼ 153.81, s.d. ¼ 25.67; note that 14 of the

low-risk infants contributed data to a previous study on voice

processing [25]). The high-risk infants were from the British

Autism Study of Infant Siblings (BASIS; www.basisnetwork.

org), all of whom had an older full sibling with a community

clinical diagnosis of autism [43]. Families enrol from various

regions of the UK, and they are invited to attend multiple

research visits over their children’s first years of life. Each visit

lasts a day or two and is adapted to meet the families’ needs.

Measures collected are anonymized and shared among scientists

to maximize collaborative value and to minimize burden on the

families. A clinical advisory team of senior consultants works

closely together with the research team(s) and, if necessary,

with the family’s local health services, to ensure that any con-

cerns about the child arising during the study are adequately

addressed. The low-risk infants were from a volunteer database

with no reported family history (first-degree relative) of autism

and had at least one older full sibling. The fNIRS data presented

in the current study originates from the first two-day visit that

the infants attended as part of the prospective long-term project

at the Centre for Brain and Cognitive Development. In addition

to the fNIRS session, this first visit also included an MRI session

(on the second day) and the Mullen Scales for Early Learning

[44]. A further 20 infants participated but were excluded from

the study (11 high-risk infants, 9 low-risk infants) owing to an

insufficient number of valid trials according to looking time

measures (14 infants), equipment failure (5 infants) or a high

level of rejected data (3 infants; artefact detection algorithms

and analyses). This attrition rate is within the typical range for

infant fNIRS studies [34] as an exclusion rate (owing to unsuffi-

cient looking time) of 10–15 per cent per condition is observed in

the majority of fNIRS studies with awake infants (therefore, in

the current study the use of three conditions with the same

visual stimuli may have contributed to the reported attritrion

rate). The infants in the high-risk group fell within the average

range of functioning as verified by the Mullen Early Learning

Composite score (mean ¼ 102.5; s.d. ¼ 12.69), as did the infants

in the low-risk group (mean ¼ 99.44; s.d. ¼ 8.51).

(b) Experimental procedures
Infants wore custom-built fNIRS headgear consisting of two

source–detector arrays (figure 1), containing a total of 26 chan-

nels (source–detector separations: 2 cm), and were tested with

the UCL topography system [45]. This system used two
continuous wavelengths of source light at 770 and 850 nm. The

different channel separations allowed the measurement of acti-

vation at different depths into the cortex. Based on an

understanding of light transport and given that the cortex is

approximately 0.5 cm from the skin surface in this age group

(measure taken from structural MRIs) [46], the channel separ-

ation used in the current study was predicted to penetrate up

to a depth of approximately 1 cm from the skin surface, poten-

tially allowing measurement of both the gyri and parts of the

sulci near the surface of the cortex. Before the infants began the

study, head measurements were taken to align the headgear

with 10–20 coordinates [25]. Measurements from this group of

infants showed that the average head circumference was

42.99 cm, and the average distance from the glabella to the ear

(T3/T4 of the 10 : 20 system; figure 1) was 11.27 cm (s.d. ¼ 0.72).

Therefore, across the majority of the infants, the position of the

channels varied relative to T3/T4 by no more than 1 cm. Further-

more, the head measurements did not differ across the two groups

(table 1). With the use of age-appropriate infant structural MRIs,

anatomical scalp landmarks and the 10–20 system, we can there-

fore approximate the location of underlying cortical regions for

the infants and draw comparisons of general regional activation

in infants at risk for autism with findings from adult populations.

Once the fNIRS headgear was placed on their heads, the

infants sat on their parent’s lap in a dimly lit and sound-attenuated

room. The parent was instructed to refrain from interacting with

the infant during the stimuli presentation unless the infant

became fussy or sought their attention. The sequence of stimulus

presentation is illustrated in figure 1. The conditions alternated

one after the other, with a period of baseline between each. The

three types of condition—visual social (silent; V-S), auditory vocal
(V) and auditory non-vocal (N-V)—were presented in the same

order across infants in a repeating loop (V-S, N-V, V, V-S, V,

N-V) of trials (single presentation of a condition) until the infants

became bored or fussy, as judged by the experimenter who was

monitoring their behaviour. The reference for the haemodynamic

change observed in response to the different conditions was

obtained from the baseline (described in the following section).

Therefore, the resulting activation was specific to the nature of

the stimuli (or the contrast of two auditory stimuli) rather than

visual or auditory stimulation per se.

A restriction of studying auditory processing in awake infants

of this age is that they need to be presented with concurrent visual

stimulation to reduce infant movement, and thus artefact in the

signal. We chose to use the same visual stimuli during the presen-

tation of the auditory stimuli, bearing in mind that we collected

data from the same stimulus without auditory stimulation.

(i) Visual stimuli
Visual stimuli consisted of full-colour, life-size (head and

shoulders only) social videos of female actors who either moved

their eyes left or right or performed hand games —‘peek-a-boo’

and ‘incy wincy spider.’ Two visual social videos were presented

for varying duration over each 9–12 s trial to avoid inducing

anticipatory brain activity. To control for effects of attention—

given that the social visual stimuli was sometimes presented sim-

ultaneously with auditory stimuli—there were six different visual

social videos (two actors; three types of social video), whereas

each auditory condition used two different recordings (two speak-

ers; one recording each—see below). During the baseline, visual

stimuli were displayed, which consisted of full-colour still

images of different types of transport (i.e. cars and helicopters)

presented randomly for a pseudorandom duration (1–3 s) for

9–12 s (see figure 1 for stimulus presentation order). Dynamic

non-social baseline stimuli have also been used in previous

work investigating responses to visual social dynamic stimuli,

and have been found to produce similar effects to the static non-

social baseline used in the current study [40,41]. These visual

http://www.basisnetwork.org
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Figure 1. Illustrations of the procedure used in this experiment. (a) The experimental design showing the order and timing of stimulus presentation for the three
conditions (visual social, vocal and non-vocal). The baseline period is extracted from the sections with no sound and non-social visual stimuli. (b) A participant wearing
the fNIRS headgear with channel locations and the locations of the 10 – 20 coordinates on an average 4 – 6-month-old head displayed. (Online version in colour.)
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stimuli were displayed on a 117 cm plasma screen with a viewing

distance of approximately 100 cm.

(ii) Auditory stimuli
During the presentation of visual stimuli the infants were some-

times presented with auditory stimuli (figure 1). These stimuli

were presented at the onset of two of every three of the trials.

The content and duration of the social videos (9–12 s) were not syn-

chronized with the auditory stimuli. Each auditory stimulus

presentation lasted 8 s and consisted of four different sounds (of

vocal or non-vocal stimuli) presented for 0.37–2.92 s each, inter-

leaved by short silence periods (of 0.16–0.24 s). The two auditory

conditions were equivalent in terms of average sound intensity

and duration ( p . 0.65). Within the vocal condition, infants were

presented with non-speech adult vocalizations of two speakers

(who coughed, yawned, laughed and cried). Within the non-

vocal condition, the infants were presented with naturalistic

environmental sounds (that were not human- or animal-produced,

but were likely to be familiar to infants of this age: running water,

rattles, squeaky toys). Vocal and non-vocal stimuli were chosen

from the Montreal Affective Voices (for more detail, see [47]) and

the stimuli of the voice functional localizer (http://vnl.psy.gla.ac.

uk/resources_main.php). Additional non-vocal stimuli (toy

sounds) were also recorded by the authors [23].

(c) Data processing and analysis
Changes in HbO2 and HHb chromophore concentration (mmol)

were calculated and used as haemodynamic indicators of

neural activity [48]. Initially, the recorded near-infrared attenu-

ation measurements for each infant were analysed, and trials or
channels were rejected from further analysis by looking time

measures (trials were coded offline by a researcher unfamiliar

with the study’s aims: .60% trial looking considered valid)

and the quality of the signals, using artefact detection algorithms

[34,40]. For each infant, the trials and channels that survived

these rejection criteria were entered into further analyses.

Inclusion criteria required each channel to contain valid data in

all three conditions. A minimum of three valid trials per con-

dition was set as a threshold for inclusion within infants.

Grand averaged time response curves of the haemodynamic

responses (across all infants) for each channel were compiled.

A time window was selected between 8 and 16 s post-stimulus

onset for each trial. This period of time was selected to include

the range of maximum concentration changes observed across

infants for HbO2 and HHb, as illustrated by the example haemo-

dynamic time courses provided in the electronic supplementary

material. Either a significant increase in HbO2 concentration or a

significant decrease in HHb is commonly accepted as an indi-

cator of cortical activation in infant work [34]. During statistical

analyses, if HbO2 and HHb were either to increase or decrease

significantly in unison, the signal was considered inconsistent

with a haemodynamic response to functional activation [48]

and not reported in the analyses (for further discussion of phys-

iological changes reported in infant fNIRS work see [25,34,35]).
3. Results
The high-risk and low-risk groups did not differ on a number

of baseline measures, including age, gender, developmental

stage, looking time measures and motion artefact detected
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Table 1. Characteristics of participants included in the analysis and their
behaviour during the task. Note that when an entry includes a bracketed
number this refers to the s.d. while the first number refers to the mean
value across the group.

low-risk high-risk

n 16 18

age (days) 153.81

(25.67)

149.56

(26.75)

female : male 6 : 10 10 : 8

total number of trials

presented

13.77 (2.31) 14.13 (2.96)

total valid trials 12.54 (2.63) 12.06 (2.46)

looking time per trial (%) 94.18 (3.2) 91.07 (5.52)

valid trials in social visual

condition

4.38 (0.87) 4.06 (1.03)

valid trials in non-vocal

condition

4.08 (1.04) 4.29 (0.92)

valid trials in vocal condition 4.08 (0.95) 4.06 (1.09)

excluded channels/condition 1.67 (1.12) 3.06a (2.81)

Mullen standard score 99.44 (8.51) 102.5

(12.69)

head circumference (cm) 43.3 (1.81) 42.83 (1.59)
aThough there was a trend for a significant difference in the number of
excluded channels between the high-risk and low-risk groups ( p¼ 0.074), this
is explained by a particularly high number of excluded channels in two of the
infants in the high-risk group (note that if these infants are excluded from the
dataset the pattern of significant effects described in this paper do not change).

(a)

(b)

Figure 2. Visual social versus non-social stimuli analysis for the (a) low-risk
and (b) high-risk infants. The statistically significant effects (two-tailed, p ,

0.05) for the analysis of the visual social condition (no auditory stimulation)
versus non-social baseline are presented on a diagram of the infant head. The
channels that revealed a significant response during the specified time
window of activation are plotted in red (increase in HbO2 concentration).
Channels are plotted following the same layout as in figure 1.
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in the fNIRS signal (table 1). The haemodynamic responses

(mmol) within the two groups of infants were first assessed

separately. For each channel, the maximum change (or ampli-

tude) in HbO2 (increase in chromophore concentration) and/

or HHb (decrease in chromophore concentration) was

assessed during the specified time window (see §2). Group

analyses were conducted on channels that showed a signifi-

cant response to the social stimuli (either visual or

auditory) in the channel-by-channel analyses. Given the

exploratory nature of this study, p-values were uncorrected

for multiple comparisons.
(a) Visual social condition
To assess the responses to the visual social stimuli the exper-

imental condition with no sound (visual only) was analysed

relative to the baseline (t-test, two-tailed). This analysis

revealed significant haemodynamic increases in HbO2 for

both the high-risk and low-risk groups. These were centred

over the posterior area of the arrays (figure 2; electronic

supplementary material), corresponding to the posterior STS

region of the cortex. The response in the low-risk group was

more extensive, with several channels revealing a signifi-

cant response (channels 8, 10 and 25; also a trend towards

significance in channel 6: t ¼ 2.17, p ¼ 0.051; channel 12:

t ¼ 2.03, p ¼ 0.061; and channel 13: t ¼ 2.11, p ¼ 0.057). By con-

trast, a response was only evident in one channel in the right
array in the high-risk group (channel 25; also a trend towards

significance in channel 26: t ¼ 2.04, p ¼ 0.059). This analysis

did not reveal any significant decreases in HHb in either group.

In a confirmatory analysis, the average amplitude in

the HbO2 concentration change in response to the visual social

condition was compared across the two groups using a

two-tailed independent-samples t-test in channels 8, 10 and

25. Channel 10 revealed a significantly greater response in the

low-risk group compared with the high-risk group (t ¼ 3.255,

p ¼ 0.003), and there was a trend towards significance in chan-

nel 8 (t ¼ 1.934, p ¼ 0.063). Grand averaged haemodynamic

responses of channel 10 and 25 for each group are available in

the electronic supplementary material. These two posterior

temporal channels were chosen to provide an example of one

channel that showed significant responses to the visual social

stimuli in both groups (channel 25), and one channel that

showed a greater response in the low-risk group compared

with the high-risk group (channel 10).
(b) Auditory vocal and non-vocal conditions
Paired-sample channel-by-channel t-tests (two-tailed) were

performed within each group to compare responses to the

vocal relative to the non-vocal condition (figure 3; electronic

supplementary material). For statistical analyses of vocal

and non-vocal auditory responses compared with silence

(baseline), see the electronic supplementary material.

For the low-risk group this analysis revealed a greater

hemodynamic response to the vocal condition relative to

the non-vocal condition in the right hemisphere, centred

over the anterior portion of the STS region (HbO2, channel

21: t ¼ 2.42, p ¼ 0.03). There was also a trend towards signifi-

cance in channel 24 (HbO2, t ¼ 1.80, p ¼ 0.096) and in the

left hemisphere in channel 5 (HHb, t ¼ 1.90, p ¼ 0.086).

Further, the analysis revealed that the left posterior region

of the array displayed greater haemodynamic responses to

the non-vocal condition relative to the vocal condition



(a) (b)

(c) (d )

Figure 3. Vocal versus non-vocal stimuli analysis for the (a,b) low-risk and (c,d) high-risk infants. The statistically significant effects (two-tailed, p , 0.05) are
displayed for (a,c) the vocal . non-vocal and (b,d) the non-vocal . vocal selective responses. The channels that revealed a significantly greater response during
the specified time window of activation are plotted in red (increase in HbO2 concentration) and blue (decrease in HHb concentration). Channels are plotted following
the same layout as in figure 1.
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(HHb, channel 9: t ¼ 3.16, p ¼ 0.007; channel 12: t ¼ 2.35,

p ¼ 0.034). These responses were centred approximately

over the mid-posterior STS region.

By contrast, for the high-risk group significant effects

were only evident for the non-vocal condition relative to the

vocal condition (HbO2, channel 12: t ¼ 3.20, p ¼ 0.006; HHb,

channel 9: t ¼ 2.91, p ¼ 0.01, channel 23: t¼ 2.90, p ¼ 0.01).

This effect was largely confined to the posterior regions of

the lateral arrays. There was also a trend towards signifi-

cance in a further four channels (HbO2, channel 1: t ¼ 1.91,

p ¼ 0.078; channel 15: t ¼ 1.80, p ¼ 0.094; channel 22: t¼ 1.95,

p ¼ 0.07; HHb, channel 19: t ¼ 2.14, p ¼ 0.05). In comparison

with the low-risk group these responses were bilateral, and

centred approximately over the mid-posterior STS region.

In a confirmatory analysis, vocal selectivity was compared

across the two groups using a two-tailed independent-samples

t-test (in the channel that was found to be vocal selective in

the low-risk group—channel 21). In the right temporal

region, this revealed a trend towards significance (HbO2, chan-

nel 21: t ¼ 1.61, p ¼ 0.12). Interestingly, in channel 24, which

revealed a trend towards vocal selectivity in the low-

risk group, a significantly greater HbO2 vocal-selective

response was found in the low-risk group compared with the

high-risk group (t ¼ 2.48, p ¼ 0.019).
4. Discussion
In this fNIRS study, infants at familial high risk for autism

revealed different responses to social auditory and visual

stimuli compared with a group of low-risk infants. The per-

ception of the visual social stimuli produced a diminished

response in the high-risk infants (one channel over the right

posterior temporal cortex) relative to the low-risk infants

(three channels over bilateral posterior temporal cortex),

with significantly stronger responses evident in the low-risk

infants relative to high-risk infants in the left STS region of

the cortex. Further, in contrast to the low-risk infants, there

was a noticeable absence of vocal-specialized areas in the

high-risk group, with greater vocal selectivity in the right
mid-posterior STS region in low-risk infants compared with

high-risk infants. In contrast, the pattern of non-vocal selec-

tive responses was similar across groups. Indeed, non-vocal

selective responses were more robust in the high-risk infants

compared with the low-risk infants. In contrast to the high-

risk group, the social (visual and auditory) responses in the

low-risk infants were similar to those observed in previous

research with infants [23,25,40,41,49] and adults [10,42,50].

These findings support our hypothesis that some infants at

risk for autism may show a lack of cortical specialization to

social stimuli within the first 6 months of life.

These group differences are not due to levels of overall

looking time to the stimuli, head size, developmental stage

or age, as these did not differ across the groups. Although

there was a trend towards a higher number of channels

rejected through the artefact detection algorithms in the

high-risk group, this effect was driven largely by two infants,

and all other measures of data quality were equal (table 1). As

the differential response to the non-vocal sound was, if any-

thing, stronger in the high-risk group, the sensitivity to

stimulus-dependent effects on cortical activation appears

comparable between the groups.

As stated in §1, it has been proposed that atypicality in one

or more of the mechanisms that bias infants to orient towards

and attend to socially relevant information from early in life

may disrupt the typical developmental trajectory that leads

to the adult social brain network [13–15]. We have found

that areas of the mid-posterior STS region—which may form

part of the developing social brain network—show a less

specialized and/or weaker pattern of activation during the

perception of complex and dynamic social stimuli relative to

age-matched controls. Our findings are in line with fMRI

research in children [6] and adults with autism [51,52],

which report atypical functioning to the perception of biologi-

cal motion and social stimuli in the posterior STS.

Interestingly, the posterior STS activation to the perception of

biological motion in the children with autism [6] was related

to the degree of severity of autistic symptoms within individ-

uals. It will therefore be of importance to revisit the current

results when the high-risk infants in our study have been
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assessed for autism at 3 years of age, to allow us to ascertain

whether STS region activation during infancy is associated

with later outcome (autism or broader autism phenotype).

Clearly, only a minority of our infants at risk will go on to a

later diagnosis of autism and, given that recurrence rates

vary according to infant (male/female) and family (simplex/

multiplex status) [4], larger samples may be required in

future studies to reliably detect predictive risk markers. In

this regard, it may be important to note that Kaiser et al. [6]

report that the unaffected siblings of children with autism

share common patterns of atypical activation (‘trait activity’)

in response to viewing biological motion in several cortical

regions, including the right inferior temporal gyrus. Thus, it is

possible that our current fNIRS results reflect ‘trait’ activity in

our at-risk infants that will result in autism only when

combined with other genetic, neural or environmental factors.

An important feature of the social stimuli we used may be

that they were dynamic in the sense of rapidly changing over

time. Taken together with our previous studies with different

cohorts of at-risk infants with a different measure of brain func-

tion, namely EEG [16,21], a pattern of results is emerging that

supports the view that the rapid temporal processing required

by dynamic stimuli is affected in infants at risk and/or those

who go on to a later diagnosis. A characteristic of interactions

with other humans is that it is dynamic and probabilistic,

and it may be these features that lead to greater deficits in

social perception and cognition than in understanding of the

physical world.

We acknowledge the possibility of cross-modal effects

given our experimental design. Though we were careful to

ensure the visual and auditory stimuli were non-synchronous

and pseudo-randomized, our design was clearly restricted by

what is possible with infants in a limited time period. How-

ever, we do not believe that cross-modal effects are a

significant contributor to our findings as the voice-selective

effects in the low-risk group largely replicate those of pre-

vious fMRI and fNIRS studies in adults and infants (see

summary in [25]). In these previous studies the response is

evident in the temporal cortex whether the auditory stimuli

are [25,49] or are not [23,42] accompanied by visual stimuli.

Further, the multi-modal presentation in Grossman et al.
[24] used non-human dynamic visual stimuli alongside the

vocal and non-vocal auditory stimuli, yet still found similar

patterns of voice-selective activation to the current study.

In order to avoid a type II error in this initial study, we

did not use correction for multiple comparisons. While Bon-

ferroni correction is a rather conservative approach for such

exploratory infant data, other methods such as Monte Carlo

simulation, non-parametric statistics [53] or spatially contig-

uous activation [41]—the statistical likelihood of two or

more spatially contiguous (neighbouring) channels produ-

cing false positive results is far lower—may be introduced

in future work. However, in the present study we prefer to
give a full account of the results, given that this is the first

investigation of its kind. Indeed, if, for example, we were to

remove single active channels, it would remove all social

stimulus-specific activation in the high-risk group, presenting

an even stronger case for atypical cortical activation in the

infants at risk for autism.

A caveat of the current findings does exist. Given that the

fNIRS headgear in the current study was restricted to the

investigation of the frontal and temporal lobes, we cannot

be certain whether the high-risk infants were responding

less to the social stimuli, or whether they instead used an aty-

pical network of brain regions not covered by the current

set-up. Future work with a more extensive array of fNIRS

channels or functional MRI (for the auditory contrasts)

may help elucidate this further. Furthermore, there have

been several MRI studies on anatomical brain development

in individuals at risk for autism. Recent findings [39] suggest

that white matter pathways may have aberrant development

from 6–24 months in at-risk infants that go on to develop

autism, in contrast to those who do not. Further, brain

volume has been reported to be significantly enlarged by 2–3

years of age in children with autism relative to age-matched

controls [54–59], and connectivity to be disrupted at 5 years

of age [60,61]. Future anatomical work in younger infants

will be essential to elucidate how the current functional data

in at-risk infants may relate to atypical anatomical develop-

ment, and whether one precedes or causes the other.

Taken together, our results are consistent with the view

that atypical functioning of parts of the social brain network

may be manifest from the first few months of life in infants

at risk for a later diagnosis of autism. However, it is also poss-

ible that we have detected early manifestations of the broader

autism phenotype, trait activity or adaptive responses in

infants who will later go on to be unaffected [6]. It is likely

that early atypical responses to social stimuli combine with

other factors, consequently resulting in a later diagnosis of

autism for some individuals [16].

Recruitment, ethical approval (UK National Health Service National
Research Ethics Service London REC 08/H0718/76 and 06/MRE02/
73) and informed consent, as well as background data on partici-
pating families with high-risk infants, were made available for
the current study through BASIS. Data and research materials sup-
porting the results in the article are stored in the BASIS Network
Data Repository. BASIS provides support for scientific projects and
access to published datasets once these projects become affiliated
with the network (for further details see http://www.basisnet
work.org).

We are very grateful for the enormous contributions the BASIS
families have made towards this study. The UK Medical Research
Council (G0701484), a grant from The Simon’s Foundation
(no. SFARI201287 to M.H.J.) and the BASIS funding consortium
led by Autistica (www.basisnetwork.org) supports the research
of M.H.J.
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